Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.370
Filter
1.
J Colloid Interface Sci ; 679(Pt A): 141-151, 2024 Sep 29.
Article in English | MEDLINE | ID: mdl-39357224

ABSTRACT

Enhancing the fire safety of epoxy resins (EPs) typically requires a significant amount of flame retardants, which often results in considerable degradation of their mechanical properties. To address this issue, a novel flame retardant known as PDCP@DPA@MXene was synthesized and integrated into EP to achieve notable improvements in flame retardancy, smoke suppression, and mechanical strength. By incorporating 1.5 wt% PDCP@DPA@MXene, the impact strength, tensile strength, and elongation at break of the resulting PDM-1.5 %/EP composite reached 12.1 kJ/m2, 57.4 MPa, and 13.0, respectively, reflecting enhancements of 63.5 %, 18.4 %, and 17.1 % compared to the pure EP. The enhancement in tensile strength may be attributed to the high rigidity of Ti3C2Tx MXene, which reinforces the EP matrix. Additionally, the intertwined structure of PDCP@DPA@MXene chains effectively mitigates material fracturing and absorbs impact forces, thus toughening the EP. The presence of phosphorus, nitrogen, and titanate in PDCP@DPA@MXene contributes to the formation of a more compact char layer. The PDM-1.5 %/EP sample achieved a V-0 rating in the vertical UL-94 test and exhibited a high limiting oxygen index of 32.0. Furthermore, the sample containing 2 wt% PDCP@DPA@MXene showed a significant reduction in peak heat release rate (p-HRR) and total heat release (THR), recording values of 689 kW/m2 and 71.9 MJ/m2, which are decreases of 45.1 % and 26.9 %, respectively, compared to pure EP. Additionally, the incorporation of PDCP@DPA@MXene led to a reduction in CO production. These flame-retarded EPs demonstrate strong potential for various applications due to their elevated glass transition temperature and robust thermal stability.

2.
Carcinogenesis ; 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39367810

ABSTRACT

Using LC-MS/MS analysis we previously showed for the first time (Carcinogenesis 43:746-753, 2022) that levels of DNA damage-induced by benzo[a]pyrene (B[a]P), an oral carcinogen and tobacco smoke (TS) constituent, were significantly higher in buccal cells of smokers than those in non-smokers; these results suggest the potential contribution of B[a]P in the development of oral squamous cell carcinoma (OSCC) in humans. Treating cancers, including OSCC at late stages even with improved targeted therapies, continues to be a major challenge. Thus interception/prevention remains a preferable approach for OSCC management and control. In previous preclinical studies we and others demonstrated the protective effects of black raspberry (BRB) against carcinogen-induced DNA damage and OSCC. Thus, to translate preclinical findings we tested the hypothesis, in a Phase 0 clinical study, that BRB administration reduces DNA damage induced by B[a]P in buccal cells of smokers. After enrolling 27 smokers, baseline buccal cells were collected before the administration of BRB lozenges (5/day for 8 weeks, 1 gm BRB powder/lozenge) at baseline, at the middle and the end of BRB administration. The last samples were collected at four weeks after BRB cessation (washout period). B[a]P-induced DNA damage (BPDE-N2-dG) was evaluated by LC-MS/MS. BRB administration resulted in a significant reduction in DNA damage: 26.3% at the midpoint (p = 0.01506) compared to baseline, 36.1% at the end of BRB administration (p = 0.00355), and 16.6% after BRB cessation (p = 0.007586). Our results suggest the potential benefits of BRB as a chemopreventive agent against the development of TS-initiated OSCC.

3.
Heliyon ; 10(19): e38145, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39386774

ABSTRACT

Cracking is a significant concern for pavements and should be appropriately treated during road, highway, and runway rehabilitation. This study investigates the behavior of asphaltic materials under tensile and shear loading modes in intact, fractured, and repaired conditions. With this aim, several methods and materials are utilized for repairs, such as poring adhesive into the crack (using bitumen, neat epoxy resin, and polymer concrete adhesives) and patching the crack with textile (by glass fiber and epoxy resin or bitumen). These tests were conducted at +10 °C, with a three-point bending loading configuration, the same as the actual loading configuration of pavements. Criteria such as failure load, failure work, and post-failure work, as well as failure patterns, were assessed to assess the effectiveness of repairs. Numerical analysis was also performed, and a constitutive model was presented. The ultimate tensile capacity of the cracked specimen is measured at 63 % lower than the intact condition (778 N). The ultimate tensile load of the bitumen-repaired specimen is higher than that of the cracked specimen, but it is still 11 % lower than that of the intact condition. The ultimate tensile capacity of epoxy resin repaired and polymer concrete repaired specimens are 88 % and 79 % higher than the intact specimen (about 1400 N). The ultimate tensile load of the fabric patch reinforced specimen that used bitumen as the adhesive is 38 % higher than the intact specimen (1075 N), while for the case of using the epoxy resin adhesive, this value is 258 % (2788 N). Observations of tensile failure patterns show that, because bitumen is viscoelastic, failure in bitumen-repaired specimens happens in bitumen necking mode and starts at the repaired crack tip. In other cases, the failure occurred far from the pre-crack plane.

4.
Sci Rep ; 14(1): 22268, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39333637

ABSTRACT

Emulsified asphalt mixtures' cold mix and paving features facilitate asphalt pavements in fulfilling dual-carbon and energy-saving demands. Anionic emulsifiers can enhance emulsion stability, ensure uniform dispersion of oil and water, possess good decompression viscosity, thickening, and lubricating properties, and maintain good stability under acidic conditions. Nevertheless, anionic emulsified asphalt is restricted in engineering applications due to problems like its storage stability. In this paper, eight anionic emulsifiers and two preparation procedures were chosen for stability tests. Through static tests, storage tests, sieve residue tests, and laser particle size tests, the impacts of emulsifiers on the storage stability and dispersion of asphalt were analyzed. Waterborne epoxy resin exhibits excellent adhesive properties, mechanical properties, chemical resistance, and heat stability. A fluorescence microscope test, static and storage test, laser particle size test, and cementation test were employed to explore the effects of different preparation processes and waterborne epoxy mixing ratios on emulsified asphalt's storage stability, dispersion stability, and structural stability. The results showed that: (1) the emulsified asphalt prepared with the BWH-02 emulsifier exhibits the best storage stability, and blending with 20% of the waterborne epoxy modifier can notably enhance the bonding properties; (2) the shear strength of the BWH-02 waterborne epoxy emulsified asphalt prepared can reach 1.543 MPa, and the tensile viscosity can reach 0.848 MPa; (3), The emulsified asphalt prepared by the process of modification has better storage stability than that prepared by the side of the emulsification process. Moreover, the storage stability of emulsified asphalt prepared by emulsification and modification is superior to that of the emulsification and modification process. This research provides theoretical and technical support for popularizing and applying cold-mixed cold-paving asphalt mixtures.

5.
Nanomaterials (Basel) ; 14(18)2024 Sep 22.
Article in English | MEDLINE | ID: mdl-39330693

ABSTRACT

Carbon fiber-reinforced composites have been widely used in the aerospace industry because of their superior comprehensive performance, including high strength, low density, fatigue resistance, long service life, etc. The interface between the fiber reinforcement and the matrix is one of the key factors that determines the performance of the composites. The construction of covalent bonding connections between the components has proven to be an effective strategy for improving the interfacial bonding strength but always reduces the toughness. In this work, dual silane coupling agents are applied to covalently connect cellulose nanocrystals (CNCs) onto carbon fibers, constructing hierarchical interfacial connections between the fibers and the epoxy matrix and significantly improving the interfacial bonding strength. As a result, the tensile strength of the epoxy composites increased from 519 MPa to nearly 900 MPa, which provides a potential approach for significantly improving the mechanical performance of composites.

6.
Polymers (Basel) ; 16(18)2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39339033

ABSTRACT

The present work details the development of carbon fiber-reinforced epoxy membranes with excellent rejection of small-molecule dyes. It is a proof-of-concept for a more sustainable membrane design incorporating carbon fibers, and their recycling and reuse. 4,4'-methylenebis(cyclohexylamine) (MBCHA) polymerized with either bisphenol-A-diglycidyl ether (BADGE) or tetraphenolethane tetraglycidylether (EPON Resin 1031) in polyethylene glycol (PEG) were used to make monolithic membranes reinforced by nonwoven carbon fibers. Membrane pore sizes were tuned by adjusting the molecular weight of the PEG used in the initial polymerization. Membranes made of BADGE-MBCHA showed rejection of Rose Bengal approaching 100%, while tuning the pore sizes substantially increased the rejection of Methylene Blue from ~65% to nearly 100%. The membrane with the best permselectivity was made of EPON-MBCHA polymerized in PEG 300. It has an average DI flux of 4.48 LMH/bar and an average rejection of 99.6% and 99.8% for Rose Bengal and Methylene Blue dyes, respectively. Degradation in 1.1 M sodium hypochlorite enabled the retrieval of the carbon fiber from the epoxy matrix, suggesting that the monolithic membranes could be recycled to retrieve high-value products rather than downcycled for incineration or used as a lower selectivity membrane. The mechanism for epoxy degradation is hypothesized to be part chemical and part physical due to intense swelling stress leading to erosion that leaves behind undamaged carbon fibers. The retrieved fibers were successfully used to make another membrane exhibiting similar performance to those made with pristine fibers.

7.
Polymers (Basel) ; 16(18)2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39339040

ABSTRACT

Conventional waterborne polyurethane (WPU) has poor water resistance and poor overall performance, which limits its application in outdoor coatings. A solution to this problem is urgently needed. The introduction of fluorine-containing groups can effectively improve the water resistance of WPU. In this study, a new fluorinated chain extender (HFBMA-HPA) synthesized by free radical copolymerization and epoxy resin (E-44) were used to co-modify WPU, and five waterborne fluorinated polyurethane (WFPU) emulsions with different fluorine contents were prepared by the self-emulsification method. The effects of HFBMA-HPA content on the emulsion particle properties, coating surface properties, mechanical properties, water resistance, thermal stability, and corrosion resistance were investigated. The results showed that the WFPU coating had excellent thermal stability, corrosion resistance, and mechanical properties. As the content of HFBMA-HPA increased from 0 wt% to 14 wt%, the water resistance of the WFPU coating gradually increased, the water contact angle (WCA) increased from 73° to 98°, the water absorption decreased from 7.847% to 3.062%, and the surface energy decreased from 32.8 mN/m to 22.6 mN/m. The coatings also showed impressive performances in the adhesion and flexibility tests in extreme conditions. This study provides a waterborne fluorinated polyurethane material with excellent comprehensive performance that has potential application value in the field of outdoor waterproof and anticorrosion coatings.

8.
Polymers (Basel) ; 16(18)2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39339035

ABSTRACT

In our continuing search for new polymer composites with antimicrobial activity, we observed that even unmodified epoxy resins exhibit significant activity. Considering their widespread use as starting materials for the realization of multifunctional nanocomposites with excellent chemical and mechanical properties, it was deemed relevant to uncover these unexpected properties that can lead to novel applications. In fact, in places where the contact with human activities makes working surfaces susceptible to microbial contamination, thus jeopardizing the sterility of the environment, their biological activity opens the way to their successful application in minimizing healthcare-associated infections. To this end, three commercial and widely used epoxy resins (DGEBA/Elan-TechW 152LR, 1; EPIKOTETM Resin MGS®/EPIKURETM RIM H 235, 2 and MC152/EW101, 3) have been investigated to determine their antibacterial and antiviral activity. After 24 h, according to ISO 22196:2011, resins 1 and 2 showed a high antibacterial efficacy (R value > 6.0 log reduction) against Staphylococcus aureus and Escherichia coli. Resin 2, prepared according to the ratio epoxy/hardener indicated by the supplier (sample 2a) and with 10% w/w hardener excess (sample 2b), exhibited an intriguing virucidal activity against Herpes Simplex Virus type-1 and Human Coronavirus type V-OC43 as a surrogate of SARS-CoV-2.

9.
Polymers (Basel) ; 16(18)2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39339049

ABSTRACT

The application of binary gas mixtures consisting of heptafluorobutyronitrile (C4F7N) and carbon dioxide (CO2) in AC GIS is currently attracting much attention. Therefore, the evaluation of the gas-solid interface charge distribution characteristics of epoxy resin is indispensable. Additionally, the phase-dependency of the charging behavior remains not fully understood. We simulated coaxial electrode structure in GIS and investigated the surface charge distribution on a down-scaled epoxy insulator. The influence of the truncated phase angle and duration of AC voltage on charge behavior were analyzed, and the charge transport mechanism under AC voltage was theoretically analyzed. The results showed that there was a noticeable negative charge speckle with the presence of the metal particle and the accumulated negative charge on the insulator surface far exceeded that of the positive charge. The maximum surface charge density and the amount of surface charge accumulated first increased and then decreased over time. It was found that the phase angle has a negligible influence on the surface charge distribution at the cut-off moment.

10.
Polymers (Basel) ; 16(18)2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39339061

ABSTRACT

In this work, epoxy was added into commercial Sn-3.0Ag-0.5Cu (SAC305) solder paste to enhance the thermal cycling reliability of the joint. The microstructure and fracture surface were observed using a scanning electron microscope/energy dispersive spectrometer (SEM/EDS), and a shear test was performed on the thermally cycled joint samples. The results indicated that during the thermal cycling test, the epoxy protective layer on the surface of the epoxy-enhanced SAC305 solder joint could significantly alleviate the thermal stress caused by coefficients of thermal expansion (CTE) mismatch, resulting in fewer structural defects. The interfacial compound of the original SAC305 solder joints gradually coarsened due to the accelerated atomic diffusion, but epoxy-enhanced SAC305 solder joints demonstrated a thinner interfacial layer and a smaller IMC grain size. Due to the reduced stress concentration and the additional mechanical support provided by the cured epoxy layer, epoxy-enhanced SAC305 solder joints displayed superior shear performance compared to the original joint during the thermal cycling test. After 1000 thermal cycles, Cu-Sn IMC regions were observed on the fracture surfaces of the original SAC305 solder joint, exhibiting brittle fracture characteristics. However, the fracture of the SAC305 solder joint with 8 wt.% epoxy remained within the solder bulk and exhibited a ductile fracture mode. This work indicates that epoxy-enhanced SAC305 solder pastes display high thermal cycling reliability and could meet the design needs of advanced packaging technology for high-performance electronic packaging materials.

11.
Polymers (Basel) ; 16(18)2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39339059

ABSTRACT

The demand for polymer composites with improved mechanical and electrical properties is crucial for advanced aerospace, electronics, and energy storage applications. Single-walled carbon nanotubes (SWCNTs) and iron oxide (Fe3O4) nanoparticles are key fillers that enhance these properties, yet challenges like orientation, uniform dispersion, and agglomeration must be addressed to realize their full potential. This study focuses on developing SWCNTs/Fe3O4 epoxy composites by keeping the SWCNT concentration constant at 0.03 Vol.% and varying with Fe3O4 concentrations at 0.1, 0.5, and 1 Vol.% for two different configurations: randomly orientated (R-) and magnetic field-assisted horizontally aligned (A-) SWCNTs/Fe3O4 epoxy composites, and investigates the effects of filler concentration, dispersion, and magnetic alignment on the mechanical and electrical properties. The research reveals that both composite configurations achieve an optimal mechanical performance at 0.5 Vol.% Fe3O4, while A- SWCNTs/Fe3O4 epoxy composites outperformed at all concentrations. However, at 1 Vol.% Fe3O4, mechanical properties decline due to nanoparticle agglomeration, which disrupts stress distribution. In contrast, electrical conductivity peaks at 1 Vol.% Fe3O4, indicating that the higher density of Fe3O4 nanoparticles enhances the conductive network despite the mechanical losses. This study highlights the need for precise control over filler content and alignment to optimize mechanical strength and electrical conductivity in SWCNTs/Fe3O4 epoxy nanocomposites.

12.
Polymers (Basel) ; 16(18)2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39339066

ABSTRACT

The possibility of producing and designing bio-epoxides based on the natural polyphenol lignin/epoxidized lignin and tannic acids for application as wood adhesives is presented in this work. Lignin and tannic acids contain numerous reactive hydroxyl phenolic moieties capable of being efficiently involved in the reaction with commercial epoxy resins as a substitute for commercial, non-environmentally friendly, toxic amine-based hardeners. Furthermore, lignin was epoxidized in order to obtain an epoxy lignin that can be a replacement for diglycidyl ether bisphenol A (DGEBA). Cross-linking of bio-epoxy epoxides was investigated via FTIR spectroscopy and their prospects for wood adhesive application were evaluated. This study determined that the curing reaction of epoxy resin can be conducted using lignin/epoxy lignin or tannic acid. Tensile shear strength testing results showed that lignin and tannic acid can effectively replace amine hardeners in epoxy resins. Examination of the failure of the samples showed that all samples had a 100% fracture through the wood. All samples of bio-epoxy adhesives displayed significant tensile shear strength in the range of 5.84-10.87 MPa. This study presents an innovative approach to creating novel cross-linked networks of eco-friendly and high-performance wood bio-adhesives.

13.
Polymers (Basel) ; 16(18)2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39339099

ABSTRACT

A phosphorus-containing compound, (oxybis(4,1-phenylene))bis(phenylphosphine oxide) (ODDPO), was successfully synthesized and used as a flame retardant for epoxy resin (EP). The results demonstrated that EP/ODDPO, containing 1.2 wt% phosphorus, achieved a vertical burning V-0 rating, with a limited oxygen index value of 29.2%, indicating excellent flame retardancy. Comprehensive evaluations revealed that ODDPO exhibited both gas-phase and condensed-phase flame-retardant effects on EP, with a particularly notable barrier effect. In addition, the incorporation of ODDPO had a minimal negative impact on the glass transition temperature (Tg) and thermal stability of the EP matrix. Compared to unmodified EP (EP-0), the Tg value and initial decomposition temperature of EP/ODDPO-1.2 decreased by only 7.6 °C and 10.0 °C, respectively. Moreover, the introduction of ODDPO significantly improved the hydrophobicity and water absorption resistance of epoxy materials, which is attributed to ODDPO's rigidity and symmetric structure, reducing water molecule permeation. Furthermore, the dielectric properties of ODDPO-modified EP samples were strengthened compared to EP-0, due to the ODDPO's symmetric structure reducing the polarity of the matrix. The above results indicated that ODDPO serves as an excellent flame retardant while enhancing other properties of the EP matrix, thereby contributing to the preparation and application of high-performance epoxy materials.

14.
Polymers (Basel) ; 16(18)2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39339105

ABSTRACT

The organic coating on the surface is common and the most effective method to prevent metal materials from corrosion. However, the corrosive medium can penetrate the metal surface via micropores, and electrons cannot transfer in the pure resin coatings. In this paper, a new type of anticorrosive and electrically conductive composite coating filled with graphene oxide/carbon nanotube/polyaniline (GO/CNT/PANI) nanocomposites was successfully prepared by in situ polymerization of aniline (AN) on the surface of GO and CNT and using waterborne epoxy resin (WEP) as film-forming material. The structure and morphology of the composite were characterized using a series of characterization methods. The composite coatings were comparatively examined through resistivity, potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS), and salt spray tests. The results show that the GO/CNT/PANI/WEP composite coating exhibits excellent corrosion resistance for metal substrates and good conductivity when the mass fraction of GO/CNT/PANI is 3.5%. It exhibits a lower corrosion current density of 4.53 × 10-8 A·cm-2 and a higher electrochemical impedance of 3.84 × 106 Ω·cm2, while only slight corrosion occurred after 480 h in the salt spray test. The resistivity of composite coating is as low as 2.3 × 104 Ω·cm. The composite coating possesses anticorrosive and electrically conductive properties based on the synergistic effect of nanofillers and expands the application scope in grounding grids and oil storage tank protection fields.

15.
Polymers (Basel) ; 16(18)2024 Sep 22.
Article in English | MEDLINE | ID: mdl-39339129

ABSTRACT

This study designs and uses water-borne epoxy resin (WBER) and curing agent (CA) to modify traditional cement-based grouting for tunnels. The purpose of this paper is to analyze the rheological and mechanical properties of composite grouting with different ratios of WBER and CA and analyze the modification mechanism by means of chemical characterization to explore the feasibility of WBER as a high-performance modifier for tunnel construction. The composite grouting is prepared by mixing cement paste with polymer emulsion. A series of experiments was carried out to investigate the effects of WBER and CA, including the slump test, viscosity, rheological curve, setting time, bleeding rate, grain size distribution, zeta potential, compressive and splitting tensile strength, X-ray diffraction(XRD), Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM), on the composite grout. The results show that WBER improves grout fluidity, which decreases in combination with CA, while also reducing the average particle size of the composite grout for a more rational size distribution. Optimal uniaxial (38.9%) and splitting tensile strength (48.7%) of the grout are achieved with a WBER to CA mass ratio of 2:1. WBER accelerates cement hydration, with the modification centered on the reaction between free Ca2+ and polymer-OH, significantly enhancing the strength, fluidity, and stability of the polymer-modified composite grout compared to traditional cement-based grouting.

16.
J Colloid Interface Sci ; 678(Pt A): 842-857, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39217699

ABSTRACT

In this study, we developed a composite material comprising UIO-66-NH2 encapsulated tannic acid (TA) loaded on Ti3C2Tx to improve the corrosion resistance of water borne epoxy (WEP) coatings. The successful synthesis of the material was determined by FT-IR, XRD, XPS, EDS, TGA, SEM and TEM characterization. Furthermore, ultraviolet (UV)tests were conducted to evaluate the release rate of TA at varying pH levels, revealing a release rate of approximately 95 % at pH 2. Electrochemical impedance spectroscopy (EIS) results over 60 d indicated that the Rc value of TU-T/WEP remained unchanged at 3.934 × 108, demonstrating a two-order magnitude increase compared to those of pure epoxy coatings, attributed to the synergistic active and passive protection of TU-T materials. The self-healing ability of the TU-T/WEP coating was validated through manual scratch experiments. Additionally, the EIS test showed that the Rc value of TU-T/WEP coating increased to 3.5 × 105 after 72 h, representing a two-order magnitude increase over that of the WEP coating alone. This study introduces a novel approach using green tannic acid as a corrosion inhibitor and amino-functionalized Ti3C2Tx with UIO-66-NH2 to enhance corrosion resistance and self-healing aproperties of coatings.

17.
Article in English | MEDLINE | ID: mdl-39303009

ABSTRACT

Structural adhesives are currently applied in the assembly of automobiles, aircraft, and buildings. In particular, epoxy adhesives are widely used due to their excellent mechanical strength and durability. However, cured epoxy resins are typically rigid and inflexible; thus, they have low peel and impact strength. In this study, tough cured epoxy adhesives were developed by mixing a liquid epoxy prepolymer (EP) and polystyrene-b-polyisoprene-b-polystyrene (SIS). SIS is a block polymer-based thermoplastic elastomer (TPE) composed of polystyrene (S) soluble in liquid EP and polyisoprene (I) insoluble in liquid EP, where S and I have a glass transition temperature that is higher and lower than room temperature, respectively. In addition, cured adhesives tougher than the cured adhesives containing SIS were prepared by mixing liquid EP and SIS with hydrogen-bonding groups in the I block (h-SIS). Transmission electron microscopy (TEM) observations revealed mixed S/cured EP domains, with a d-spacing of several tens of nanometers, and cured EP domains, with diameters of one hundred to several hundred nanometers, that were macroscopically dispersed in the I or hydrogen-bonded I matrix of the cured adhesive containing SIS or h-SIS. The lap shear, peel, and impact strength of cured neat EP (EP*) were 23 MPa, 45 N/25 mm, and 0.62 kN/m, respectively. Meanwhile, the cured adhesive containing 16.5 wt % SIS exhibited the slightly lower lap shear strength of 17 MPa compared to that of cured EP*, whereas the peel and impact strength of the cured adhesive with SIS were 61 N/25 mm and 7.1 kN/m, respectively, both higher than those of EP*. Furthermore, the lap shear strength of the cured adhesive containing 15.5 wt % h-SIS was 21 MPa, which was similar to that of cured EP*. The cured adhesive with h-SIS also exhibited an excellent peel strength of 97 N/25 mm and an impact strength of 14 kN/m which was 22 times higher than that of cured EP*. Therefore, mixing liquid EP and SIS improved the cured adhesive properties and flexibility of the cured epoxy adhesives compared to the cured adhesive composed of neat EP, and further enhancement of the adhesive properties was achieved by mixing liquid EP and h-SIS with hydrogen-bonding groups instead of mixing with SIS.

18.
Chemistry ; : e202403116, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39292511

ABSTRACT

Biofouling and corrosion of submerged equipment caused by marine organisms severely restrict the rapid development of the marine industry. Traditional antifouling or anticorrosion coatings typically serve a sole purpose and exhibit limited degradability upon failure, rendering them inadequate for current demands. Herein, a novel imine-functionalized command-degradable bio-based epoxy coating (SAHPEP-DDM) with enhanced integrated antifouling and anticorrosion performances was synthesized utilizing 1,3-bis (3-aminopropyl)-1,1,3,3-tetramethyldisiloxane and syringaldehyde. Compared with commercial epoxy resins (E51-DDM) and polydimethylsiloxanes (PDMS), the SAHPEP-DDM coating exhibits superior antifouling and anticorrosion properties due to the existence of -C=N- and Si-O-Si chain segments in the cross-linking network. The coating shows promising resistance against bacteria, algae and proteins, as well as excellent corrosion resistance in artificial seawater. The coating also exhibits excellent chemical resistance in organic solvents as well as neutral and alkaline environments. Moreover, its controlled degradation after failure can be achieved in acid aqueous solutions through temperature and acidity adjustments, facilitated by the presence of -C=N-. This work presents a novel degradable coating successfully coupled the dual functions of antifouling and anticorrosion coatings, avoiding the employment of intermediate coat, indicating vast potential for application in marine engineering fields.

19.
Heliyon ; 10(17): e37333, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39296032

ABSTRACT

Casing wear is a persistent issue in oil and gas drilling facilities that call for innovative more wear-resistant materials to mitigate casing failures. The present work examines the tribological performance of a novel composite lining comprised of Kevlar honeycomb in a matrix of epoxy reinforced with Zirconia particles against hardband drillpipe tooljoint (DP-TJ). Three side loads (1000, 1200, and 1400 N) and three DP-TJ speeds (0.43, 0.76, and 1.02 m/s) were considered under dry sliding conditions. The results showed that the specific wear rate (K) increased with speed at all side loads. However, K value was found to reach a maximum, reaching 20.3*10-8 MPa-1 at 1200 N before dropping to about 8.5*10-8 MPa-1 when the load is increased to 1400 N. This decline in specific wear rate at the load of 1400 N was attributed to the growth of a double transfer layer through the alignment of zirconia particles in the lining. The scanning electron microscope (SEM) images of worn surfaces revealed that higher K values are associated with more adhesion, delamination, and fiber breakage. Energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) analysis of the worn surface and the debris collected after the wear test reveals minimal wear of DP-TJ. The epoxy/Kevlar-honeycomb composite lining demonstrated appreciable wear resistance even under dry sliding conditions.

20.
Int J Biol Macromol ; 278(Pt 3): 134421, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39227276

ABSTRACT

In this study, significant improvements in mechanical properties have been seen through the efficient inclusion of Oil Palm Cellulose Nanofibrils (CNF) as nano-fillers into green polymer matrices produced from biomass with a 28 % carbon content. The goal of the research was to make green epoxy nanocomposites utilizing solution blending process with acetone as the solvent with the different CNF loadings (0.1, 0.25, and 0.5 wt%). An ultrasonic bath was used in conjunction with mechanical stirring to guarantee that CNF was effectively dispersed throughout the green epoxy. The resultant nanocomposites underwent thorough evaluation, comparing them to unfilled green epoxy and evaluating their morphological, mechanical, and thermal behavior using a variety of instruments. Field-emission scanning electron microscopy (FE-SEM) was used to validate findings, which showed that the CNF were dispersed optimally inside the nanocomposites. The thermal degradation temperature (Td) of the nanocomposites showed a marginal decrement of 0.8 % in temperatures (from 348 °C to 345 °C), between unfilled green epoxy (neat) and 0.1 wt% of CNF loading. The mechanical test results, which showed a 13.3 % improvement in hardness and a 6.45 % rise in tensile strength when compared to unfilled green epoxy, were in line with previously published research. Overall, the outcomes showed that green nanocomposites have significantly improved in performance.


Subject(s)
Cellulose , Nanocomposites , Nanofibers , Nanocomposites/chemistry , Cellulose/chemistry , Nanofibers/chemistry , Temperature , Epoxy Resins/chemistry , Tensile Strength , Green Chemistry Technology/methods , Palm Oil/chemistry , Mechanical Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL