Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Front Oncol ; 14: 1344852, 2024.
Article in English | MEDLINE | ID: mdl-38699639

ABSTRACT

Non-small cell lung cancer (NSCLC) caused more deaths in 2017 than breast cancer, prostate, and brain cancers combined. This is primarily due to their aggressive metastatic nature, leading to more fatal rates of cancer patients. Despite this condition, there are no clinically approved drugs that can target metastasis. The NSCLC with EGFR T790M-overexpressing HER2 shows the resistance to osimertinib and trastuzumab starting 10-18 months after the therapy, and thus prospects are grim to these patients. To target the recalcitrant ERBB2 driver oncogene, we developed two engineered destabilizing 3'UTR ERBB2 constructs that degrade the endogenous ERBB2 transcript and proteins by overwriting the encoded endogenous ERBB2 mRNA with the destabilizing message. When iron oxide nanocages (IO nanocages) were used as vehicles to deliver them to tumors and whole tissues in mice bearing tumors, it was well tolerated and safe and caused no genome rearrangement whereas they were integrated into genome deserts (non-coding regions). We achieved significant reduction of the primary tumor volume with desARE3'UTRERBB2-30, achieving 50% complete tumor lysis and inhibiting 60%-80% of liver metastasis, hepatomegaly, and 90% of lung metastasis, through ERBB2 downregulation. These constructs were distributed robustly into tumors, livers, lungs, kidneys, and spleen and mildly in the brain and not in the heart. They caused no abnormality in both short- and long-term administrations as well as in healthy mice. In summary, we accomplished significant breakthrough for the therapeutics of intractable lung cancer patients whose cancers become resistant and metastasize.

2.
Cureus ; 16(2): e54859, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38533139

ABSTRACT

Background The pre-malignant tendency of the normal, non-affected portion of the pancreas is not as well explored as the multicentricity documented in pancreatic cancer cases. In order to ascertain the expression of inflammatory markers and Erythroblastic Oncogene B (ErbB2) in the non-affected pancreas in patients with pancreatic cancer, a case-control study was carried out. Materials and methods In patients who underwent pancreatoduodenectomy for pancreatic cancer (PC), pro-inflammatory genes and a tumor marker, erythroblastic oncogene 2 (ErbB2) in the epidermal growth factor receptor family were analyzed in the pancreatic tissue at the cut surface of the normal pancreas using qRT-PCR. Twenty patients diagnosed with Chronic pancreatitis (CP) after Frey's surgical procedure were selected, and their pancreatic tissues were analyzed as controls. The HPLC-purified primers were designed using National Center for Biotechnology Information (NCBI) software. The primer's specificity was verified for gene expression analysis using the Basic Local Alignment Search Tool (BLAST). The genes under study were normalized using ß-actin as the housekeeping gene, and the 2-ddct method was used to compute the fold change compared to the control sample. Results Patients with margin-positive were not included. Pro-inflammatory genes (TNF-α, NF-kß, and COX-2) had significantly lower foldchange in PC patients compared to the CP group. The CP control group had higher levels of IL-6 gene expression than the PC group. Patients with pancreatic cancer had a considerably higher expression of the ErbB2 gene than patients with CP. Conclusion The upregulated ErbB2 gene in the unaffected pancreatic tissue of pancreatic cancer patients, when compared to controls, indicates that the remaining pancreas may have the capacity to cause cancer. Proto-oncogene may play a role in the pathophysiologic process in patients with pancreatic cancer.

3.
Mod Pathol ; 37(3): 100424, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38219954

ABSTRACT

The micropapillary subtype of urothelial carcinoma (MPUC) of the bladder is a very aggressive histological variant of urothelial bladder cancer (UBC). A high frequency of MPUC contains activating mutations in the extracellular domain (ECD) of ERBB2. We sought to further characterize ERBB2 ECD-mutated MPUC to identify additional genomic alterations that have been associated with tumor progression and therapeutic response. In total, 5,485 cases of archived formalin-fixed, paraffin-embedded UBC underwent comprehensive genomic profiling to identify ERBB2 ECD-mutated MPUC and evaluate the frequencies of genomic co-alterations. We identified 219 cases of UBC with ERBB2 ECD mutations (74% S310F and 26% S310Y), of which 63 (28.8%) were MPUC. Genomic analysis revealed that TERT, TP53, and ARID1A were the most common co-altered genes in ERBB2-mutant MPUC (82.5%, 58.7%, and 39.7%, respectively) and did not differ from ERBB2-mutant non-MPUC (86.5%, 51.9%, and 35.3%). The main differences between ERBB2 ECD-mutated MPUC compared with non-MPUC were KMT2D, RB1, and MTAP alterations. KMT2D and RB1 are tumor-suppressor genes. KMT2D frequency was significantly decreased in ERBB2 ECD-mutated MPUC (6.3%) in contrast to non-MPUC (27.6%; P < .001). RB1 mutations were more frequent in ERBB2 ECD-mutated MPUC (33.3%) than in non-MPUC (17.3%; P = .012). Finally, MTAP loss, an emerging biomarker for new synthetic lethality-based anticancer drugs, was less frequent in ERBB2 ECD-mutated MPUC (11.1%) than in non-MPUC (26.9%; P = .018). Characterizing the genomic landscape of MPUC may not only improve our fundamental knowledge about this aggressive morphological variant of UBC but also has the potential to identify possible prognostic and predictive biomarkers that may drive tumor progression and dictate treatment response to therapeutic approaches.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Carcinoma, Transitional Cell/genetics , Carcinoma, Transitional Cell/pathology , Urinary Bladder/pathology , Mutation , Genomics , Biomarkers, Tumor/genetics , Receptor, ErbB-2/genetics
4.
Front Immunol ; 14: 1254821, 2023.
Article in English | MEDLINE | ID: mdl-37885894

ABSTRACT

Natural killer (NK) cells are attractive effectors for adoptive immunotherapy of cancer. Results from first-in-human studies using chimeric antigen receptor (CAR)-engineered primary NK cells and NK-92 cells are encouraging in terms of efficacy and safety. In order to further improve treatment strategies and to test the efficacy of CAR-NK cells in a personalized manner, preclinical screening assays using patient-derived tumor samples are needed. Zebrafish (Danio rerio) embryos and larvae represent an attractive xenograft model to study growth and dissemination of patient-derived tumor cells because of their superb live cell imaging properties. Injection into the organism's circulation allows investigation of metastasis, cancer cell-to-immune cell-interactions and studies of the tumor cell response to anti-cancer drugs. Here, we established a zebrafish larval xenograft model to test the efficacy of CAR-NK cells against metastatic breast cancer in vivo by injecting metastatic breast cancer cells followed by CAR-NK cell injection into the Duct of Cuvier (DoC). We validated the functionality of the system with two different CAR-NK cell lines specific for PD-L1 and ErbB2 (PD-L1.CAR NK-92 and ErbB2.CAR NK-92 cells) against the PD-L1-expressing MDA-MB-231 and ErbB2-expressing MDA-MB-453 breast cancer cell lines. Injected cancer cells were viable and populated peripheral regions of the larvae, including the caudal hematopoietic tissue (CHT), simulating homing of cancer cells to blood forming sites. CAR-NK cells injected 2.5 hours later migrated to the CHT and rapidly eliminated individual cancer cells throughout the organism. Unmodified NK-92 also demonstrated minor in vivo cytotoxicity. Confocal live-cell imaging demonstrated intravascular migration and real-time interaction of CAR-NK cells with MDA-MB-231 cells, explaining the rapid and effective in vivo cytotoxicity. Thus, our data suggest that zebrafish larvae can be used for rapid and cost-effective in vivo assessment of CAR-NK cell potency and to predict patient response to therapy.


Subject(s)
Breast Neoplasms , Receptors, Chimeric Antigen , Animals , Humans , Female , Zebrafish , B7-H1 Antigen/metabolism , Heterografts , Cell Line, Tumor , Killer Cells, Natural
5.
Front Immunol ; 14: 1228894, 2023.
Article in English | MEDLINE | ID: mdl-37662907

ABSTRACT

Introduction: Metastatic rhabdomyosarcoma (RMS) is a challenging tumor entity that evades conventional treatments and endogenous antitumor immune responses, highlighting the need for novel therapeutic strategies. Applying chimeric antigen receptor (CAR) technology to natural killer (NK) cells may offer safe, effective, and affordable therapies that enhance cancer immune surveillance. Methods: Here, we assess the efficacy of clinically usable CAR-engineered NK cell line NK-92/5.28.z against ErbB2-positive RMS in vitro and in a metastatic xenograft mouse model. Results: Our results show that NK-92/5.28.z cells effectively kill RMS cells in vitro and significantly prolong survival and inhibit tumor progression in mice. The persistence of NK-92/5.28.z cells at tumor sites demonstrates efficient antitumor response, which could help overcome current obstacles in the treatment of solid tumors. Discussion: These findings encourage further development of NK-92/5.28.z cells as off-the-shelf immunotherapy for the treatment of metastatic RMS.


Subject(s)
Neoplasms, Second Primary , Receptors, Chimeric Antigen , Rhabdomyosarcoma, Alveolar , Rhabdomyosarcoma , Humans , Animals , Mice , Rhabdomyosarcoma, Alveolar/therapy , Receptors, Chimeric Antigen/genetics , Immunotherapy , Rhabdomyosarcoma/therapy , Disease Models, Animal , Killer Cells, Natural
6.
Front Genet ; 14: 1184600, 2023.
Article in English | MEDLINE | ID: mdl-37359373

ABSTRACT

Breast, lung, and colorectal cancer resistance to molecular targeted therapy is a major challenge that unfavorably impacts clinical outcomes leading to hundreds of thousands of deaths annually. In ERBB2+ cancers regardless of the tissue of origin, many ERBB2+ cancers are resistant to ERBB2-targeted therapy. We discovered that ERBB2+ cancer cells are enriched with poly U sequences on their 3'UTR which are mRNA-stabilizing sequences. We developed a novel technology, in which we engineered these ERBB2 mRNA-stabilizing sequences to unstable forms that successfully overwrote and outcompeted the endogenous ERBB2 mRNA-encoded message and degraded ERBB2 transcripts which led to the loss of the protein across multiple cancer cell types both in the wildtype and drug-resistance settings in vitro and in vivo, offering a unique safe novel modality to control ERBB2 mRNA and other pervasive oncogenic signals where current targeted therapies fail.

7.
Biochem Biophys Res Commun ; 651: 39-46, 2023 04 09.
Article in English | MEDLINE | ID: mdl-36791497

ABSTRACT

Mutations in the epidermal growth factor receptor (EGFR) have been found in more than 10% of non-small cell lung cancer (NSCLC) patients in North America. The vast majority of these differences are L858R point mutations in Exon 21. Currently, monoclonal antibodies directed against the extracellular domain of EGFR or small molecule/tyrosine kinase inhibitors (TKI) are the stalwarts of NSCLC therapy. Resistance, however, gradually develops because of the T790 mutation towards first and second generation TKIs. The third generation TKI AZD9291 (Osimertinib) has a high affinity for both activating and the acquired resistant mutation (T790 M) in EGFR, with a low affinity towards wild-type EGFR. Recent research, however, suggests that the EGFR (C797S) mutation in the tyrosine kinase domain is a likely cause of resistance to AZD9291. Another significant transformation mechanism associated with this resistance is erbB2 amplification. Our laboratory has developed a small kinase inhibitor, ER121 (MW: ∼500), that inhibits the erbB2/HER2 tyrosine kinases in addition to the EGFR C797S mutations. We have identified a TKI, ER121 targeting the mutant EGFR(T790 M). Using in vitro and in vivo models, examined the efficacy of ER121 on mutant EGFR cell lines. This has enabled us to establish that ER121 is well tolerated when administered orally and produces significant inhibitory activity against human cancers generated by mutant EGFR and amplified ErbB2.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Female , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Protein Kinase Inhibitors/therapeutic use , Lung Neoplasms/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , Antineoplastic Agents/therapeutic use , Mutation , Receptor, ErbB-2/genetics , ErbB Receptors/genetics , ErbB Receptors/pharmacology
8.
Cells ; 12(2)2023 01 07.
Article in English | MEDLINE | ID: mdl-36672182

ABSTRACT

The efficacy of CD19-specific CAR T cells in the treatment of leukemia/lymphoma relies, at least in part, on the unique properties of the particular CAR and the presence of healthy B cells that enhance the target cell lysis and cytokine secretion through repetitive stimulation. Here, we report to apply the same CAR to target solid tumors, such as ErbB2+ carcinoma. CD19 CAR T cells are redirected towards the ErbB2+ cells by a fusion protein that is composed of the herceptin-derived anti-ErbB2 scFv 4D5 linked to the CD19 exodomain. The CD19-4D5scFv engager enabled CD19 CAR T cells to recognize the ErbB2+ cancer cells and to suppress the ErbB2+ tumor growth. The primary killing capacity by the ErbB2-redirected CD19 CAR T cells was as efficient as by the ErbB2 CAR T cells, however, adding CD19+ B cells furthermore reinforced the activation of the CD19 CAR T cells, thereby improving the anti-tumor activities. The ErbB2-redirected CD19 CAR T cells, moreover, showed a 100-fold superior selectivity in targeting cancer cells versus healthy fibroblasts, which was not the case for the ErbB2 CAR T cells. The data demonstrate that the CD19 CAR T cells can be high-jacked by a CD19-scFv engager protein to attack specifically solid cancer, thereby expanding their application beyond the B cell malignancies.


Subject(s)
Neoplasms , Humans , Neoplasms/therapy , Trastuzumab , B-Lymphocytes , Adaptor Proteins, Signal Transducing , T-Lymphocytes , Receptor, ErbB-2
9.
Front Oncol ; 12: 831105, 2022.
Article in English | MEDLINE | ID: mdl-35664762

ABSTRACT

ERBB4 is a tyrosine kinase receptor reported to exert both oncogenic and tumor suppressor activities. These paradoxical effects were suggested to stem from different ERBB4 homo-/hetero-dimers and/or isoforms. By stratifying breast cancer patients for clinical and molecular subtypes and ERBB4 mRNA abundance, we here report that higher ERBB4 levels correlate with longer relapse-free survival in breast cancer patients of HER2-enriched and luminal A molecular subtypes, proposing a cancer-protecting role for this receptor in these specific subgroups. We also observed that HER2-enriched breast cancers express intermediate ERBB4 mRNA levels compared to luminal and triple-negative/basal-like subgroups, which displayed the highest and the lowest levels, respectively. Inspired by these clinical data, we tested the activation of ERBB4 by Neuregulins as a potential anticancer strategy for HER2+ breast cancers. To this end, we employed two HER2+ breast cancer cellular models (BT474 and SKBR3), which express intermediate/high and low ERBB4 levels, respectively. Cell proliferation and motility were evaluated on these cellular models following treatments with Neuregulin 1 (NRG1), which activates both ERBB3 and ERBB4, or Neuregulin 4 (NRG4), which specifically activates ERBB4. Both NRG1 and NRG4 were used alone or in combination with anti-ERBB2 neutralizing antibodies, namely trastuzumab and pertuzumab. In vitro treatment with NRG1 on BT474 cells restrained cell growth and reduced the anti-proliferative efficacy of trastuzumab. In contrast, treatment with NRG1 on SKBR3 cells increased cell proliferation and migration, and partially or completely impaired the anti-proliferative/anti-migratory action of trastuzumab and/or pertuzumab. Importantly, in both the cell lines, treatment with NRG4 robustly potentiated the anti-proliferative action of trastuzumab and pertuzumab. Collectively, our data in HER2+ breast cancer cells highlight that NRG1 may exert both pro- and anti-proliferative effects, and may reduce the efficacy of anti-HER2 agents, whereas NRG4 may boost the anti-proliferative effects of anti-ERBB2 agents. We propose a provocative paradigm shift in the field of growth factors in cancer progression, suggesting the administration of ERBB4 ligands, such as Neuregulin 4, as a strategy to improve the efficacy of anti-ERBB2 agents.

10.
Mini Rev Med Chem ; 22(22): 2831-2846, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-35549881

ABSTRACT

Cancer is one of the deadliest diseases involving dysregulated cell proliferation and has been the leading cause of death worldwide. The chemotherapeutic drugs currently used for treating cancer have serious drawbacks of non-specific toxicity and drug resistance. The four members of the human epidermal growth factor receptor (EGFR), namely, ErbB1/HER1, ErbB2/HER2/neu, ErbB3/HER3 and ErbB4/HER4, the trans-membrane family of tyrosine kinase receptors, are overexpressed in many types of cancers. These receptors play an important role in cell proliferation, differentiation, invasion, metastasis and angiogenesis and unregulated activation of cancer cells. Overexpression of ErbB1 and ErbB2 occurs in several types of cancers and is associated with a poor prognosis leading to resistance to ErbB1 directed therapies. Heterodimerization with ErbB2/HER2 is a potent activator of Epidermal Growth Factor Receptor-Tyrosine kinase (EGFRTK) complex than EGFR alone. Though ErbB3/HER3 can bind to a ligand, its kinase domain is devoid of catalytic activity and hence relies on its partner (ErbB2/HER2) for initiation of signals, thus, ErbB2 is involved in the activation of ErbB3. However, recent evidence reveals that ErbB1 and ErbB2 are the most important targets for cancer therapy. By inhibiting these two important kinases, the cancer cell signaling transduction pathways can be inhibited. Lapatinib and monoclonal antibodies like trastuzumab have been used for the dual inhibition of ErbB1 and ErbB2 in the treatment of various cancers. Resistance, however, develops soon. The present report reviews the investigations that have been carried out by earlier workers for targeting ErbB1, ErbB2, and both using small molecules and novel peptides that could help/facilitate researchers to design and develop better cancer chemotherapy.


Subject(s)
Neoplasms , Humans , Antibodies, Monoclonal , ErbB Receptors/metabolism , Lapatinib/pharmacology , Ligands , Neoplasms/drug therapy , Neoplasms/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Receptor, ErbB-2/metabolism , Signal Transduction , Trastuzumab
11.
J Cancer Res Clin Oncol ; 148(8): 1879-1892, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35486183

ABSTRACT

PURPOSE: The expression of cytochrome B561 (CYB561) and its role in breast cancer (BC) prognosis remain unclear. We analyzed the differential expression and prognostic value of CYB561 using online databases and a clinical cohort through bioinformatics and immunohistochemistry. METHODS: The differential expression of CYB561 and its association with BC were analyzed using the tumor immune estimation resource (TIMER), gene expression profiling interaction analysis2 (GEPIA2), Human Protein Atlas, Cancer Cell Line Encyclopedia, and Kaplan-Meier Plotter website. Important pathways of CYB561 enrichment were explored using gene set enrichment analysis. Immunohistochemistry detected CYB561 expression in normal breast, breast hyperplasia, ductal carcinoma in situ (DCIS), para-cancer, and invasive BC groups. Association between CYB561 expression and BC prognosis was analyzed using Kaplan-Meier and Cox regression analyses. RESULTS: CYB561 mRNA expression was higher in GEPIA and TIMER BC patients than in para-cancer tissues. CYB561 was expressed in the glandular epithelium and myoepithelium, with positive localization in the cytoplasm and cell membrane. CYB561 protein expression significantly differed among the groups. CYB561 expression was correlated with ERBB2/HER2 and infiltrating CD4+ T cells in GEPIA and TIMER BC patients and associated with HER2 status, histological grade, and molecular subtypes in the clinical cohort but not related to tumor-infiltrating lymphocytes. CYB561 mRNA overexpression predicted reduced recurrence-free survival and overall survival in BC. Patients with CYB561 expression had significantly reduced overall survival and increased risk of death. CONCLUSION: CYB561 can serve as an effective clinical prognostic biomarker for BC.


Subject(s)
Breast Neoplasms , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Breast Neoplasms/pathology , Cytochrome b Group , Female , Humans , Kaplan-Meier Estimate , Prognosis , RNA, Messenger/genetics
12.
Cancers (Basel) ; 14(5)2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35267592

ABSTRACT

Small bowel adenocarcinoma (SBA) is a rare malignancy, with lower incidence, later stage at diagnosis, and poor overall prognosis compared to other cancers of the gastrointestinal tract. Owing to the rarity of the disease along with the paucity of high-quality tissue samples and preclinical models, little is known about the molecular alterations characteristic of SBA. This is reflected by the fact that the clinical management of SBA is primarily extrapolated from colorectal cancer (CRC). Recent advances in genomic profiling have highlighted key differences between these tumors, establishing SBA as a molecularly unique intestinal cancer. Moreover, comprehensive molecular analysis has identified a relatively high incidence of potentially targetable genomic alterations in SBA, predictive of response to targeted and immunotherapies. Further advances in our knowledge of the mutational and transcriptomic landscape of SBA, guided by an increased understanding of the molecular drivers of SBA, will provide opportunities to develop novel diagnostic tools and personalized therapeutic strategies.

13.
Vaccines (Basel) ; 9(9)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34579275

ABSTRACT

Preferred methods for generating mouse dendritic cells (DC) would encompass qualities of consistency, high yield, and potent function. Serum-free culture is also highly desirable, since this is the standard for cell-based therapies used in humans. We report here a serum-free modification of a culture method generating mature, activated DCs from bone marrow precursors. This is achieved through a two-stage culture comprised of 6-day expansion in Flt3 ligand and IL-6 followed by brief differentiation in a medium containing GM-CSF and IL-4, with subsequent activation using TLR ligands ODN1826 and LPS. The serum-free DCs achieve yields and surface phenotype including IL-12p70 secretion similar to standard serum-replete cultures, display a capacity to sensitize in vivo against both MHC class I- and Class II-restricted antigens, and exhibit some aspects of "killer DC" function against tumor cells. We used these DCs to help identify novel CD4pos Th epitopes on the rat ErbB2/HER-2 protein and demonstrated a subset of these as effective immunogens in a DC-based therapeutic model of HER-2pos breast cancer in Balb/c mice, where they induced powerful Th1-polarized immune responses. This method represents a useful way to efficiently produce large numbers of murine dendritic cells with excellent in vivo function well-suited for use in experimental vaccine studies.

14.
Saudi Pharm J ; 29(7): 656-669, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34400859

ABSTRACT

Breast cancer arises as a result of multiple interactions between environmental and genetic factors. Conventionally, breast cancer is treated based on histopathological and clinical features. DNA technologies like the human genome microarray are now partially integrated into clinical practice and are used for developing new "personalized medicines" and "pharmacogenetics" for improving the efficiency and safety of cancer medications. We investigated the effects of four established therapies-for ER+ ductal breast cancer-on the differential gene expression. The therapies included single agent tamoxifen, two-agent docetaxel and capecitabine, or combined three-agents CAF (cyclophosphamide, doxorubicin, and fluorouracil) and CMF (cyclophosphamide, methotrexate, and fluorouracil). Genevestigator 8.1.0 was used to compare five datasets from patients with infiltrating ductal carcinoma, untreated or treated with selected drugs, to those from the healthy control. We identified 74 differentially expressed genes involved in three pathways, i.e., apoptosis (extrinsic and intrinsic), oxidative signaling, and PI3K/Akt signaling. The treatments affected the expression of apoptotic genes (TNFRSF10B [TRAIL], FAS, CASP3/6/7/8, PMAIP1 [NOXA], BNIP3L, BNIP3, BCL2A1, and BCL2), the oxidative stress-related genes (NOX4, XDH, MAOA, GSR, GPX3, and SOD3), and the PI3K/Akt pathway gene (ERBB2 [HER2]). Breast cancer treatments are complex with varying drug responses and efficacy among patients. This necessitates identifying novel biomarkers for predicting the drug response, using available data and new technologies. GSR, NOX4, CASP3, and ERBB2 are potential biomarkers for predicting the treatment response in primary ER+ ductal breast carcinoma.

15.
Breast Cancer Res ; 23(1): 73, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34266469

ABSTRACT

BACKGROUND: The acquisition of oncogenic drivers is a critical feature of cancer progression. For some carcinomas, it is clear that certain genetic drivers occur early in neoplasia and others late. Why these drivers are selected and how these changes alter the neoplasia's fitness is less understood. METHODS: Here we use spatially oriented genomic approaches to identify transcriptomic and genetic changes at the single-duct level within precursor neoplasia associated with invasive breast cancer. We study HER2 amplification in ductal carcinoma in situ (DCIS) as an event that can be both quantified and spatially located via fluorescence in situ hybridization (FISH) and immunohistochemistry on fixed paraffin-embedded tissue. RESULTS: By combining the HER2-FISH with the laser capture microdissection (LCM) Smart-3SEQ method, we found that HER2 amplification in DCIS alters the transcriptomic profiles and increases diversity of copy number variations (CNVs). Particularly, interferon signaling pathway is activated by HER2 amplification in DCIS, which may provide a prolonged interferon signaling activation in HER2-positive breast cancer. Multiple subclones of HER2-amplified DCIS with distinct CNV profiles are observed, suggesting that multiple events occurred for the acquisition of HER2 amplification. Notably, DCIS acquires key transcriptomic changes and CNV events prior to HER2 amplification, suggesting that pre-amplified DCIS may create a cellular state primed to gain HER2 amplification for growth advantage. CONCLUSION: By using genomic methods that are spatially oriented, this study identifies several features that appear to generate insights into neoplastic progression in precancer lesions at a single-duct level.


Subject(s)
Breast Neoplasms/genetics , Carcinoma, Intraductal, Noninfiltrating/genetics , Genome, Human/genetics , Receptor, ErbB-2/genetics , Transcriptome/genetics , Breast Neoplasms/pathology , Carcinoma, Intraductal, Noninfiltrating/pathology , DNA Copy Number Variations , Evolution, Molecular , Extracellular Matrix/genetics , Female , Gene Amplification , Humans , In Situ Hybridization, Fluorescence , Interferons/metabolism , Oncogenes/genetics , Signal Transduction/genetics
16.
Cancers (Basel) ; 13(5)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33801244

ABSTRACT

The epidermal growth factor receptor (EGFR) family member erb-b2 receptor tyrosine kinase 2 (ERBB2) is overexpressed in many types of cancers leading to (radio- and chemotherapy) treatment resistance, whereas the underlying mechanisms are still unclear. Autophagy is known to contribute to cancer treatment resistance. In this study, we demonstrate that ERBB2 increases the expression of different autophagy genes including ATG12 (autophagy-related 12) and promotes ATG12-dependent autophagy. We clarify that lapatinib, a dual inhibitor for EGFR and ERBB2, promoted autophagy in cells expressing only EGFR but inhibited autophagy in cells expressing only ERBB2. Furthermore, breast cancer database analysis of 35 genes in the canonical autophagy pathway shows that the upregulation of ATG12 and MAP1LC3B is associated with a low relapse-free survival probability of patients with ERBB2-positive breast tumors following treatments. Downregulation of ERBB2 or ATG12 increased cell death induced by chemotherapy drugs in ERBB2-positive breast cancer cells, whereas upregulation of ERBB2 or ATG12 decreased the cell death in ERBB2-negative breast cancer cells. Finally, ERBB2 antibody treatment led to reduced expression of ATG12 and autophagy inhibition increasing drug or starvation-induced cell death in ERBB2-positive breast cancer cells. Taken together, this study provides a novel approach for the treatment of ERBB2-positive breast cancer by targeting ATG12-dependent autophagy.

17.
Breast Cancer Res Treat ; 187(3): 743-758, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33728523

ABSTRACT

PURPOSE: Patients with ErbB2/Her2 oncoprotein-positive breast cancers often receive neoadjuvant therapies (NATs) containing the anti-ErbB2 antibody trastuzumab. Tumors that are still present after NATs are resected, and patients continue receiving trastuzumab. These cancers are associated with high relapse risk. Whether relapse will occur cannot be presently reliably predicted. The ability to make such predictions could improve disease management. We found previously that ErbB2 blocks breast tumor cell anoikis, apoptosis induced by cell detachment from the extracellular matrix, by downregulating the pro-apoptotic protein Irf6 and upregulating the anti-apoptotic protein Epidermal Growth Factor Receptor (EGFR) in the cells and, thus, promotes their three-dimensional growth. We now tested whether tumor levels of these proteins before and after NATs correlate with patients' relapse-free survival (RFS) and overall survival (OS). METHODS: We selected archival breast tumor samples collected from 37 women with ErbB2-positive stages II and III breast cancer before and after NATs. We used immunohistochemistry to test whether levels of the indicated proteins in respective tumors correlate with RFS and OS. RESULTS: We observed that the presence of high Irf6 levels in the tumors following NATs correlated with reduced RFS and OS. Perhaps not by coincidence, we noticed that trastuzumab-sensitive ErbB2-positive breast cancer cells selected for the ability to overproduce exogenous Irf6 in culture acquired trastuzumab resistance. Finally, EGFR presence in patients' tumors before or after NATs was associated with decreased RFS and OS. CONCLUSIONS: This study could help identify patients with ErbB2-positive tumors that are at increased risk of disease relapse following NATs.


Subject(s)
Breast Neoplasms , Anoikis , Breast/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Female , Humans , Interferon Regulatory Factors , Neoplasm Recurrence, Local/drug therapy , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Trastuzumab
18.
Front Immunol ; 11: 581468, 2020.
Article in English | MEDLINE | ID: mdl-33193388

ABSTRACT

High-risk rhabdomyosarcoma (RMS) occurring in childhood to young adulthood is associated with a poor prognosis; especially children above the age of 10 with advanced stage alveolar RMS still succumb to the disease within a median of 2 years. The advent of chimeric antigen receptor (CAR)-engineered T cells marked significant progress in the treatment of refractory B cell malignancies, but experience for solid tumors has proven challenging. We speculate that this is at least in part due to the poor quality of the patient's own T cells and therefore propose using CAR-modified cytokine-induced killer (CIK) cells as effector cells. CIK cells are a heterogeneous population of polyclonal T cells that acquire phenotypic and cytotoxic properties of natural killer (NK) cells through the cultivation process, becoming so-called T-NK cells. CIK cells can be genetically modified to express CARs. They are minimally alloreactive and can therefore be acquired from haploidentical first-degree relatives. Here, we explored the potential of ERBB2-CAR-modified random-donor CIK cells as a treatment for RMS in xenotolerant mice bearing disseminated high-risk RMS tumors. In otherwise untreated mice, RMS tumors engrafted 13-35 days after intravenous tumor cell injection, as shown by in vivo bioluminescence imaging, immunohistochemistry, and polymerase chain reaction for human gDNA, and mice died shortly thereafter (median/range: 62/56-66 days, n = 5). Wild-type (WT) CIK cells given at an early stage delayed and eliminated RMS engraftment in 4 of 6 (67%) mice, while ERBB2-CAR CIK cells inhibited initial tumor load in 8 of 8 (100%) mice. WT CIK cells were detectable but not as active as CAR CIK cells at distant tumor sites. CIK cell therapies during advanced RMS delayed but did not inhibit tumor progression compared to untreated controls. ERBB2-CAR CIK cell therapy also supported innate immunity as evidenced by selective accumulation of NK and T-NK cell subpopulations in disseminated RMS tumors, which was not observed for WT CIK cells. Our data underscore the power of heterogenous immune cell populations (T, NK, and T-NK cells) to control solid tumors, which can be further enhanced with CARs, suggesting ERBB2-CAR CIK cells as a potential treatment for high-risk RMS.


Subject(s)
Cytokine-Induced Killer Cells/immunology , Immunity, Innate/immunology , Killer Cells, Natural/immunology , Receptor, ErbB-2/immunology , Receptors, Chimeric Antigen/immunology , Rhabdomyosarcoma/immunology , Adolescent , Animals , Cell Line, Tumor , Humans , Immunotherapy, Adoptive/methods , Male , Mice , Mice, Inbred NOD , Mice, SCID , Natural Killer T-Cells/immunology , Receptors, Antigen, T-Cell/immunology , Xenograft Model Antitumor Assays
19.
ACS Nano ; 14(1): 372-383, 2020 01 28.
Article in English | MEDLINE | ID: mdl-31899613

ABSTRACT

Multivalent nanoparticles that target a cell surface receptor that is overexpressed by cancer cells are a promising delivery system for cancer therapy. However, the impact of the receptor density and nanoparticle ligand valency on the cell uptake has not been studied in a system where both variables can be systematically tuned over a wide range. To address this lacuna, we report cell-uptake studies on a genetically engineered breast cancer cell line with tunable ErbB2 expression by a polypeptide micelle with tunable ligand valency. We examined the uptake of ErbB2-targeting micelles at 5 ligand densities and 11 receptor densities. We identified a matching pattern between receptors and ligands in which a receptor-to-ligand density ratio of 0.7-4.5 and a minimum of ∼1.6 bonds are required to initiate receptor-mediated endocytosis. Lower and upper limits of receptor density in the cell-uptake profile suggested a standard by which to categorize breast cancer patients as ErbB2-low, ErbB2-medium, and ErbB2-high, with each group expected to respond differently to multivalent therapeutic nanoparticles. At ErbB2-medium and ErbB2-high levels, increasing the ligand valency to 40-valent ErbB2-targeting peptides for a 20 nm radius nanoparticle accelerated the cell uptake, suggesting that the use of nanoparticles with high ligand valency for drug delivery will greatly benefit patients in these two groups. This study advances our understanding of how to rationally optimize nanotechnology for targeted drug delivery.


Subject(s)
Breast Neoplasms/drug therapy , Nanoparticles/chemistry , Peptides/pharmacology , Receptor, ErbB-2/antagonists & inhibitors , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Doxycycline , Drug Carriers/chemistry , Drug Delivery Systems , Humans , Ligands , MCF-7 Cells , Micelles , Particle Size , Peptides/chemistry , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Surface Properties
20.
Cell Rep ; 29(2): 249-257.e8, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31597089

ABSTRACT

Monoclonal antibodies (mAbs) targeting the oncogenic receptor tyrosine kinase ERBB2/HER2, such as Trastuzumab, are the standard of care therapy for breast cancers driven by ERBB2 overexpression and activation. However, a substantial proportion of patients exhibit de novo resistance. Here, by comparing matched Trastuzumab-naive and post-treatment patient samples from a neoadjuvant trial, we link resistance with elevation of H3K27me3, a repressive histone modification catalyzed by polycomb repressor complex 2 (PRC2). In ErbB2+ breast cancer models, PRC2 silences endogenous retroviruses (ERVs) to suppress anti-tumor type-I interferon (IFN) responses. In patients, elevated H3K27me3 in tumor cells following Trastuzumab treatment correlates with suppression of interferon-driven viral defense gene expression signatures and poor response. Using an immunocompetent model, we provide evidence that EZH2 inhibitors promote interferon-driven immune responses that enhance the efficacy of anti-ErbB2 mAbs, suggesting the potential clinical benefit of epigenomic reprogramming by H3K27me3 depletion in Trastuzumab-resistant disease.


Subject(s)
Histones/metabolism , Lysine/metabolism , Molecular Targeted Therapy , Receptor, ErbB-2/metabolism , Adult , Animals , Breast Neoplasms/drug therapy , Cell Line, Tumor , Drug Resistance, Neoplasm , Enhancer of Zeste Homolog 2 Protein/metabolism , Female , Humans , Interferon Type I/metabolism , Methylation , Mice , Models, Biological , Polycomb Repressive Complex 2/metabolism , Retroelements/genetics , Trastuzumab/therapeutic use , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...