Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.002
Filter
1.
Food Microbiol ; 122: 104556, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839235

ABSTRACT

Wickerhamomyces anomalus is one of the most important ester-producing strains in Chinese baijiu brewing. Ethanol and lactic acid are the main metabolites produced during baijiu brewing, but their synergistic influence on the growth and ester production of W. anomalus is unclear. Therefore, in this paper, based on the contents of ethanol and lactic acid during Te-flavor baijiu brewing, the effects of different ethanol concentrations (3, 6, and 9% (v/v)) combined with 1% lactic acid on the growth and ester production of W. anomalus NCUF307.1 were studied and their influence mechanisms were analyzed by transcriptomics. The results showed that the growth of W. anomalus NCUF307.1 under the induction of lactic acid was inhibited by ethanol. Although self-repair mechanism of W. anomalus NCUF307.1 induced by lactic acid was initiated at all concentrations of ethanol, resulting in significant up-regulation of genes related to the Genetic Information Processing pathway, such as cell cycle-yeast, meiosis-yeast, DNA replication and other pathways. However, the accumulation of reactive oxygen species and the inhibition of pathways associated with carbohydrate and amino acid metabolism may be the main reason for the inhibition of growth in W. anomalus NCUF307.1. In addition, 3% and 6% ethanol combined with 1% lactic acid could promote the ester production of W. anomalus NCUF307.1, which may be related to the up-regulation of EAT1, ADH5 and TGL5 genes, while the inhibition in 9% ethanol may be related to down-regulation of ATF2, EAT1, ADH2, ADH5, and TGL3 genes.


Subject(s)
Esters , Ethanol , Fermentation , Lactic Acid , Saccharomycetales , Ethanol/metabolism , Lactic Acid/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism , Saccharomycetales/drug effects , Saccharomycetales/growth & development , Esters/metabolism , Transcriptome , Gene Expression Regulation, Fungal/drug effects , Gene Expression Profiling
2.
Int J Nanomedicine ; 19: 4907-4921, 2024.
Article in English | MEDLINE | ID: mdl-38828197

ABSTRACT

Purpose: Pueraria lobata (P. lobata), a dual-purpose food and medicine, displays limited efficacy in alcohol detoxification and liver protection, with previous research primarily focused on puerarin in its dried roots. In this study, we investigated the potential effects and mechanisms of fresh P. lobata root-derived exosome-like nanovesicles (P-ELNs) for mitigating alcoholic intoxication, promoting alcohol metabolism effects and protecting the liver in C57BL/6J mice. Methods: We isolated P-ELNs from fresh P. lobata root using differential centrifugation and characterized them via transmission electron microscopy, nanoscale particle sizing, ζ potential analysis, and biochemical assays. In Acute Alcoholism (AAI) mice pre-treated with P-ELNs, we evaluated their effects on the timing and duration of the loss of the righting reflex (LORR), liver alcohol metabolism enzymes activity, liver and serum alcohol content, and ferroptosis-related markers. Results: P-ELNs, enriched in proteins, lipids, and small RNAs, exhibited an ideal size (150.7 ± 82.8 nm) and negative surface charge (-31 mV). Pre-treatment with 10 mg/(kg.bw) P-ELNs in both male and female mice significantly prolonged ebriety time, shortened sobriety time, enhanced acetaldehyde dehydrogenase (ALDH) activity while concurrently inhibited alcohol dehydrogenase (ADH) activity, and reduced alcohol content in the liver and serum. Notably, P-ELNs demonstrated more efficacy compared to P-ELNs supernatant fluid (abundant puerarin content), suggesting alternative active components beyond puerarin. Additionally, P-ELNs prevented ferroptosis by inhibiting the reduction of glutathione peroxidase 4 (GPX4) and reduced glutathione (GSH), and suppressing acyl-CoA synthetase long-chain family member 4 (ACSL4) elevation, thereby mitigating pathological liver lipid accumulation. Conclusion: P-ELNs exhibit distinct exosomal characteristics and effectively alleviate alcoholic intoxication, improve alcohol metabolism, suppress ferroptosis, and protect the liver from alcoholic injury. Consequently, P-ELNs hold promise as a therapeutic agent for detoxification, sobriety promotion, and prevention of alcoholic liver injury.


Subject(s)
Alcoholic Intoxication , Exosomes , Liver , Mice, Inbred C57BL , Plant Roots , Pueraria , Animals , Pueraria/chemistry , Exosomes/metabolism , Exosomes/drug effects , Exosomes/chemistry , Mice , Male , Alcoholic Intoxication/drug therapy , Plant Roots/chemistry , Liver/drug effects , Liver/metabolism , Ethanol/chemistry , Ethanol/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Alcoholism/drug therapy , Isoflavones
3.
Front Mol Neurosci ; 17: 1389100, 2024.
Article in English | MEDLINE | ID: mdl-38840776

ABSTRACT

Introduction: Binge drinking in adolescence can disrupt myelination and cause brain structural changes that persist into adulthood. Alcohol consumption at a younger age increases the susceptibility of these changes. Animal models to understand ethanol's actions on myelin and white matter show that adolescent binge ethanol can alter the developmental trajectory of oligodendrocytes, myelin structure, and myelin fiber density. Oligodendrocyte differentiation is epigenetically regulated by H3K9 trimethylation (H3K9me3). Prior studies have shown that adolescent binge ethanol dysregulates H3K9 methylation and decreases H3K9-related gene expression in the PFC. Methods: Here, we assessed ethanol-induced changes to H3K9me3 occupancy at genomic loci in the developing adolescent PFC. We further assessed ethanol-induced changes at the transcription level with qPCR time course approaches in oligodendrocyte-enriched cells to assess changes in oligodendrocyte progenitor and oligodendrocytes specifically. Results: Adolescent binge ethanol altered H3K9me3 regulation of synaptic-related genes and genes specific for glutamate and potassium channels in a sex-specific manner. In PFC tissue, we found an early change in gene expression in transcription factors associated with oligodendrocyte differentiation that may lead to the later significant decrease in myelin-related gene expression. This effect appeared stronger in males. Conclusion: Further exploration in oligodendrocyte cell enrichment time course and dose response studies could suggest lasting dysregulation of oligodendrocyte maturation at the transcriptional level. Overall, these studies suggest that binge ethanol may impede oligodendrocyte differentiation required for ongoing myelin development in the PFC by altering H3K9me3 occupancy at synaptic-related genes. We identify potential genes that may be contributing to adolescent binge ethanol-related myelin loss.

4.
Nat Prod Res ; : 1-6, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38824682

ABSTRACT

Fulvic acid (FA) is a kind of natural organic acids extracted from lignite, which is the active ingredient in Wujin oral liquid, a proprietary Chinese medicine used to treat gastric and duodenal ulcers. However, our understanding of the mechanisms of FA remains limited. Currently, the protection of FA and its mechanism were explored using the ethanol-induced gastric mucosal injury mouse model. The histopathological examinations showed FAs at three doses effectively reduced gastric congestion, oedema caused by ethanol, and prevented gastric epithelial cell fall-off. When compared to the model group, FAs reduced IL-1ß and IL-6 levels in serum, as well as IL-1ß, IL-6, TNF-α, and COX-2 expression levels in tissue. Furthermore, FAs significantly inhibited p65, P38 MAPK, and Erk1/2 phosphorylation in damaged gastric tissue. It was indicated FA has good protection against ethanol-induced gastric mucosa injuries in mice and this effect was related to NF-κB and MAPK signalling pathways.

5.
J Dairy Sci ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825143

ABSTRACT

The present work aims to evaluate the dissociation of casein micelles in diluted skim milk (SM) systems after undergoing solvent- or emulsifying salt-based dissociation coupled with ultra-high-pressure homogenization (UHPH). Specifically, Part I evaluated dilute SM solutions combined with varying ethanol concentrations (0- 60%) at varying temperatures (5 - 65°C) in combination with UHPH (100-300 MPa), and Part II evaluated dilute SM solutions combined with varying concentrations (0-100 mM) of either sodium hexametaphosphate (SHMP) or sodium citrate (SC) in combination with UHPH (100-300 MPa). In Part I, high concentrations of ethanol (40-60% vol/vol) at elevated temperatures (45-65°C) achieved extensive dissociation of casein micelles, especially in combination with UHPH at ≥200 MPa, as shown by an ca. 6-fold reduction in sample absorbance and an ca. 3-fold reduction in casein particle size compared with the control (ca. dilute SM, 65°C) under optimum conditions (dilute SM, 60% ethanol, 65°C, ≥ 200 MPa). In Part II, the level of casein micelle dissociation using emulsifying salts (ES) was dependent on the ES type and concentration. Considerable casein micelle dissociation in dilute SM systems was achieved with SHMP concentrations ≥1 mM and SC concentrations ≥10 mM, resulting in decreased sample absorbance (>6-fold decrease in absorbance), bimodal casein size distributions, and increased hydrophobicity (ca. 2-fold increase in intrinsic fluorescence) compared with the control (dilute SM). This dissociation was further enhanced with UHPH (≥200 MPa). These results indicate that both solvent- and ES-based casein dissociation techniques can be optimized when used in combination with UHPH. Together, these processing techniques can be used to extensively dissociate casein micelles with the potential to use these altered systems for value-added applications such as functional ingredients or encapsulation agents.

6.
Article in English | MEDLINE | ID: mdl-38837803

ABSTRACT

BACKGROUND: Selection of central venous catheter (CVC) lock solution impacts catheter mechanical complications and central line-associated bloodstream infections (CLABSIs) in pediatric patients with intestinal failure. Disadvantages of the current clinical standards, heparin and ethanol lock therapy (ELT), led to the discovery of new lock solutions. High-risk pediatric patients with intestinal failure who lost access to ELT during a recent shortage were offered enrollment in a compassionate use trial with 4% tetrasodium EDTA (T-EDTA), a lock solution with antimicrobial, antibiofilm, and antithrombotic properties. METHODS: We performed a descriptive cohort study including 14 high-risk pediatric patients with intestinal failure receiving 4% T-EDTA as a daily catheter lock solution. CVC complications were documented (repairs, occlusions, replacements, and CLABSIs). Complication rates on 4% T-EDTA were compared with baseline rates, during which patients were receiving either heparin or ELT (designated as heparin/ELT). RESULTS: Patients initiated 4% T-EDTA at the time they were enrolled in the compassionate use protocol. Use of 4% T-EDTA resulted in a 50% reduction in CVC complications, compared with baseline rates on heparin/ELT (incidence rate ratio: 0.50; 95% CI, 0.25-1.004; P = 0.051). CONCLUSION: In a compassionate use protocol for high-risk pediatric patients with intestinal failure, the use of 4% T-EDTA reduced composite catheter complications, including those leading to emergency department visits, hospital admissions, additional procedures, and mortality. This outcome suggests 4% T-EDTA has benefits over currently available lock solutions.

7.
Drug Alcohol Depend ; 260: 111338, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38838478

ABSTRACT

BACKGROUND: Binge drinking at adolescence is a risk factor for problematic alcohol (ethanol) consumption later in life, yet the murine studies that modelled this phenomenon via ethanol self-administration have provided mixed findings. Antagonism of the sigma-1 receptor (S1-R) system at adolescence modulates ethanol's motivational effects and intake. It is still unknown, however, whether this antagonism would protect against enhanced ethanol intake at adulthood after adolescent binge ethanol exposure. METHODS: Exp. 1 and 2 tested adults male or female Wistar rats -exposed or not to ethanol self-administration at adolescence (postnatal days 31-49; nine 2-hour sessions of access to 8-10% ethanol)- for ethanol intake using 24-h two-bottle choice test (Exp. 1) or time restricted, single-bottle, tests (Exp. 2). Experiments 2-5 evaluated, in adolescent or adult rats, the effects of the S1-R antagonist S1RA on ethanol intake and on ethanol-induced conditioned taste or place aversion. Ancillary tests (e.g., novel object recognition, ethanol-induced locomotor activity) were also conducted. RESULTS: Adolescent ethanol exposure promoted ethanol consumption at both the restricted, single-bottle, and at the two-bottle choice tests conducted at adulthood. S1RA administration reduced ethanol intake at adulthood and facilitated the development of ethanol-induced taste (but not place) aversion. CONCLUSIONS: S1RA holds promise for lessening ethanol intake after chronic and substantial ethanol exposure in adolescence that results in heightened ethanol exposure at adulthood. This putative protective effect of S1-R antagonism may relate to S1RA exacerbating the aversive effects of this drug.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124584, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38838600

ABSTRACT

Saccharomyces cerevisiae is the most common microbe used for the industrial production of bioethanol, and it encounters various stresses that inhibit cell growth and metabolism during fermentation. However, little is currently known about the physiological changes that occur in individual yeast cells during ethanol fermentation. Therefore, in this work, Raman spectroscopy and chemometric techniques were employed to monitor the metabolic changes of individual yeast cells at distinct stages during high gravity ethanol fermentation. Raman tweezers was used to acquire the Raman spectra of individual yeast cells. Multivariate curve resolution-alternating least squares (MCR-ALS) and principal component analysis were employed to analyze the Raman spectra dataset. MCR-ALS extracted the spectra of proteins, phospholipids, and triacylglycerols and their relative contents in individual cells. Changes in intracellular biomolecules showed that yeast cells undergo three distinct physiological stages during fermentation. In addition, heterogeneity among yeast cells significantly increased in the late fermentation period, and different yeast cells may respond to ethanol stress via different mechanisms. Our findings suggest that the combination of Raman tweezers and chemometrics approaches allows for characterizing the dynamics of molecular components within individual cells. This approach can serve as a valuable tool in investigating the resistance mechanism and metabolic heterogeneity of yeast cells during ethanol fermentation.

9.
Angew Chem Int Ed Engl ; : e202408894, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830120

ABSTRACT

Developing a desirable ethanol dehydrogenation process necessitates a highly efficient and selective catalyst with low cost. Herein, we show that the "complex active site" consisting of atomically dispersed Au atoms with the neighboring oxygen vacancies (Vo) and undercoordinated cation on oxide supports can be prepared and display unique catalytic properties for ethanol dehydrogenation. The "complex active site" Au-Vo-Zr3+ on Au1/ZrO2 exhibits the highest H2 production rate, with above 37,964 mol H2 per mol Au per hour (385 g H2 g-1 Au h-1) at 350 oC, which is 3.32, 2.94 and 15 times higher than Au1/CeO2, Au1/TiO2, and Au1/Al2O3, respectively. Combining experimental and theoretical studies, we demonstrate the structural sensitivity of these complex sites by assessing their selectivity and activity in ethanol dehydrogenation. Our study sheds new light on the design and development of cost-effective and highly efficient catalysts for ethanol dehydrogenation. Fundamentally, atomic-level catalyst design by colocalizing catalytically active metal atoms forming a structure-sensitive "complex site", is a crucial way to advance from heterogeneous catalysis to molecular catalysis. Our study advanced the understanding of the structure sensitivity of the active site in atomically dispersed catalysts.

10.
BMC Complement Med Ther ; 24(1): 212, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831394

ABSTRACT

BACKGROUND: Cervical cancer is one of the most common gynecological malignancies. Previous studies have shown that the ethanol extract of Sophora moorcroftiana seeds (EESMS) possesses an antiproliferative effect on several tumors in vitro. Therefore, in this study, we assessed the impact of EESMS on human cervical carcinoma (HeLa) cell proliferation. METHODS: The proliferation and apoptotic effects of HeLa cells treated with EESMS were evaluated using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay, dual acridine orange/ethidium bromide double staining, flow cytometry, and western blotting. Single-cell level atomic force microscopy (AFM) was conducted to detect the mechanical properties of HeLa cells, and proteomics and bioinformatics methods were used to elucidate the molecular mechanisms of EESMS. RESULTS: EESMS treatment inhibited HeLa cell proliferation by blocking the G0/G1 phase, increasing the expression of Caspase-3 and affecting its mechanical properties, and the EESMS indicated no significant inhibitory effect on mouse fibroblasts L929 cell line. In total, 218 differentially expressed proteins were identified using two-dimensional electrophoresis, and eight differentially expressed proteins were successfully identified using matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. The differentially expressed proteins were involved in various cellular and biological processes. CONCLUSION: This study provides a perspective on how cells change through biomechanics and a further theoretical foundation for the future application of Sophora moorcroftiana as a novel low-toxicity chemotherapy medication for treating human cervical cancer.


Subject(s)
Cell Proliferation , Plant Extracts , Sophora , Uterine Cervical Neoplasms , Humans , Sophora/chemistry , HeLa Cells , Uterine Cervical Neoplasms/drug therapy , Female , Cell Proliferation/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Apoptosis/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Mice , Ethanol/chemistry
11.
Nano Lett ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856118

ABSTRACT

Copper-based catalysts have been attracting increasing attention for CO2 electroreduction into value-added multicarbon chemicals. However, most Cu-based catalysts are designed for ethylene production, while ethanol production with high Faradaic efficiency at high current density still remains a great challenge. Herein, Cu clusters supported on single-atom Cu dispersed nitrogen-doped carbon (Cux/Cu-N/C) show ethanol Faradaic efficiency of ∼40% and partial current density of ∼350 mA cm-2. Quasi in situ X-ray photoelectron spectroscopy and operando X-ray absorption spectroscopy results suggest the generation of surface asymmetrical sites of Cu+ and Cu0 as well as Cu clusters by electrochemical reduction and reconstruction during the CO2 electroreduction process. Density functional theory calculations indicate that the interaction between Cu clusters and the Cu-N/C support enhances *CO adsorption, facilitates the C-C coupling step, and favors the hydrogenation rather than dehydroxylation of the critical intermediate *CHCOH toward ethanol in the bifurcation.

12.
Neurotox Res ; 42(3): 29, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856796

ABSTRACT

Ethanol (EtOH) intake and noise exposure are particularly concerning among human adolescents because the potential to harm brain. Unfortunately, putative underlying mechanisms remain to be elucidated. Moreover, implementing non-pharmacological strategies, such as enriched environments (EE), would be pertinent in the field of neuroprotection. This study aims to explore possible underlying triggering mechanism of hippocampus-dependent behaviors in adolescent animals of both sexes following ethanol intake, noise exposure, or a combination of both, as well as the impact of EE. Adolescent Wistar rats of both sexes were subjected to an intermittent voluntary EtOH intake paradigm for one week. A subgroup of animals was exposed to white noise for two hours after the last session of EtOH intake. Some animals of both groups were housed in EE cages. Hippocampal-dependent behavioral assessment and hippocampal oxidative state evaluation were performed. Results show that different hippocampal-dependent behavioral alterations might be induced in animals of both sexes after EtOH intake and sequential noise exposure, that in some cases are sex-specific. Moreover, hippocampal oxidative imbalance seems to be one of the potential underlying mechanisms. Additionally, most behavioral and oxidative alterations were prevented by EE. These findings suggest that two frequently found environmental agents may impact behavior and oxidative pathways in both sexes in an animal model. In addition, EE resulted a partially effective neuroprotective strategy. Therefore, it could be suggested that the implementation of a non-pharmacological approach might also potentially provide neuroprotective advantages against other challenges. Finally, considering its potential for translational human benefit might be worth.


Subject(s)
Ethanol , Hippocampus , Noise , Rats, Wistar , Animals , Hippocampus/drug effects , Male , Female , Ethanol/administration & dosage , Ethanol/toxicity , Noise/adverse effects , Rats , Alcohol Drinking , Sex Characteristics , Oxidative Stress/drug effects , Oxidative Stress/physiology
13.
Curr Res Food Sci ; 8: 100776, 2024.
Article in English | MEDLINE | ID: mdl-38846016

ABSTRACT

In recent years, climate change has led to higher grape must sugar content and, consequently, increased alcohol by volume. Evaporative or pertraction is a common method for post-fermentation ethanol removal from wines, but it selectively removes some less polar volatile compounds along with ethanol. To mitigate volatile substance loss, this study investigates blending of the red wine (Marzemino-Cabernet blend) with obtained dealcoholized samples from it by industrial evaporative pertraction system, while maintaining the final product within a two-percentage-point reduction in ethanol. Thus MIX 1 and MIX 2 blends were prepared, reducing the ABV of the initial wine (12.5% alcohol by volume) to 10.5% and 9.5%. Chemical analyses highlighted that most alcohols, acetates, and ethyl esters of fatty acids decreased with alcohol by volume reduction. However, compounds with polar groups (acetoin and acetovanillone), C13-norisoprenoids, and certain lactones showed increasing trends. Sensory analysis indicated high scores for sweetness and smoothness in the blended wines, with a decrease in acidic taste. Floral scents notably increased, particularly in MIX 2, closely resembling the initial wine's sensory profile. The blending of initial wine with appropriately dealcoholized wine samples has proven to be an effective strategy for preserving bouquet and color of dealcoholized wines. This approach broadens the consumer base by catering to people who prefer low-alcohol options, have dietary restrictions, or are health-conscious, but who still wish to savor wines with aromatic quality rather than a flat taste. This strategy is crucial in the wine industry as it successfully addresses technical challenges and ensures economic viability.

14.
Article in English | MEDLINE | ID: mdl-38850072

ABSTRACT

BACKGROUND: Fetal alcohol spectrum disorder (FASD) is one of the leading causes of neurodevelopmental disorder for which there is a pressing need for an effective treatment. Recent studies have investigated the essential nutrient choline as a postnatal treatment option. Supplementation with choline has produced improvements in behavioral tasks related to learning and memory and reverted changes in methylation signature following third-trimester equivalent ethanol exposure. We examined whether there are related improvements in hippocampal synaptic plasticity in vivo. METHODS: Sprague-Dawley offspring were administered binge-levels of ethanol from postnatal day (PND) 4 to 9, then treated with choline chloride (100 mg/kg/day) from PND 10 to 30. In vivo electrophysiology was performed on male and female offspring from PND 55 to 70. Long-term potentiation (LTP) was induced in the medial perforant pathway of the dentate gyrus using a theta-burst stimulation (TBS) protocol, and field-evoked postsynaptic potentials (EPSPs) were evoked for 60 min following the conditioning stimulus. RESULTS: Developmental ethanol exposure caused long-lasting deficits in LTP of the slope of the evoked responses and in the amplitude of the population spike potentiation. Neither deficit was rescued by postnatal choline supplementation. CONCLUSIONS: In contrast to our prior findings that choline can improve hippocampal plasticity (Nutrients, 2022, 14, 2004), here we found that deficits in hippocampal synaptic plasticity due to developmental ethanol exposure persisted into adulthood despite adolescent choline supplementation. Future research should examine more subtle changes in synaptic plasticity to identify synaptic changes that mirror behavioral improvements.

15.
Bioresour Technol ; 406: 130937, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38852892

ABSTRACT

Thermal hydrolyzed sludge (THS) exhibits considerable promise in generating medium-chain fatty acids (MCFAs) through chain elongation (CE) technology. This study developed a novel continuous CE process using THS as the substrate, achieving an optimal ethanol loading rate (5.8 g COD/L/d) and stable MCFA production at 10.9 g COD/L, with a rate of 3.6 g COD/L/d. The MCFAs primarily comprised n-caproate and n-caprylate, representing 41.5 % and 54.3 % of the total MCFAs, respectively. Utilization efficiencies for ethanol and acetate were nearly complete at 100 % and 92.8 %, respectively. Key microbial taxa identified under these optimal conditions included Alcaligenes, SRB2, Sporanaerobacter, and Kurthia, which were instrumental in critical pathways such as the generation of acetyl-CoA, the initial carboxylation of acetyl-CoA, the fatty acid biosynthesis cycle, and energy metabolism. This research provides a theoretical and technical blueprint for converting waste sludge into valuable MCFAs, promoting sustainable waste-to-resource strategies.

16.
Acta Ortop Bras ; 32(spe1): e271878, 2024.
Article in English | MEDLINE | ID: mdl-38716467

ABSTRACT

Objective: To evaluate the correlation between blood alcohol levels and the severity of injuries assessed by the Injury Severity Score (ISS) in patients who were victims of traffic accidents admitted to the Hospital das Clínicas of the Faculty of Medicine of the University of São Paulo (HCFMUSP). Methods: Cross-sectional study carried out between July 2018 and June 2019, at the Central Emergency Room of the Hospital das Clínicas of the Faculty of Medicine of the University of São Paulo (PSC-HCFMUSP). A total of 172 hospitalized patients victims of traffic accidents were included in this study. Blood samples were analyzed by the FMUSP Toxicology Laboratory. Results: 36 patients (20.9%) had positive BAC (≥ 0.2 g/L) with a mean of 1.21 g/L. Overall, patients had a mean age of 37.2 years old, and 136 (79.1%) were men. The ISS of the total casuistry was 15.6; regarding the external cause, the motorcycle was ranked first with 100 cases (58.1%), and drivers were the majority with 57.4% of the sample. Conclusion: There was no correlation between the severity of the injuries and the blood alcohol levels of traffic accident victims admitted to a reference hospital. Level of Evidence II, Cross-Sectional Study.


Objetivo: Avaliar a correlação entre a alcoolemia e a gravidade das lesões avaliadas pelo Índice de Gravidade da Lesão ( Injury Severity Score* ­ ISS) em vítimas de acidentes de trânsito internadas no Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP). Método: Estudo transversal realizado entre julho de 2018 e junho de 2019, no Pronto Socorro Central do HC-FMUSP. Foram incluídas 172 vítimas de acidentes de trânsito. Amostras de sangue foram analisadas pelo Laboratório de Toxicologia da FMUSP. Resultados: 36 pacientes (20,9%) apresentaram alcoolemia positiva (≥ 0,2 g/L), com valor médio de 1,21 g/L. No geral, os pacientes tinham uma idade média de 37,2 anos, e 136 (79,1%) eram homens. O ISS da casuística total foi 15,6; quanto à causa externa, a motocicleta ficou em primeiro lugar com 100 casos (58,1%); e os condutores foram prevalentes entre as vítimas (57,4%). Conclusão: Não houve correlação entre a gravidade das lesões e a alcoolemia das vítimas de acidente de trânsito internadas em um hospital de referência. Nível de Evidência II, Estudo de Corte Transversal.

17.
Chemphyschem ; : e202400359, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721776

ABSTRACT

The interaction between organic molecules and oxidized catalyst surfaces has been used to study the fuel crossover from the anode to the cathode in direct liquid fuel cells. In such experiments, the oxidized surface is put in contact with the fuel under open circuit conditions, and the potential is registered. The open circuit potential (OCP) can then inform on the reactivity of the fuel with the oxidized surface and provide valuable information. Herein we present an experimental investigation of the OC interaction between ethanol or 2-propanol with oxidized platinum surfaces. Besides the OCP, we have also employed cyclic voltammetry and fast oxide reduction sweep in the presence of the alcohols. Comparable reaction currents are obtained in the voltammogram, but the electro-oxidation of 2-propanol sets in at considerably lower overpotentials than that of ethanol. At the high potential region, both the magnitude and the potential of the current peak are nearly identical in both cases. Under open circuit conditions, the interaction of ethanol with the oxidized platinum surface is more pronounced than that found for 2-propanol, and these results are corroborated by the facile reduction of the platinum oxides along the fast backward sweep for the latter.

18.
Chemphyschem ; : e202400164, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714531

ABSTRACT

Molecules, which were predicted to be produced by C-C or C-O bond formation between ethanol molecules induced by a laser-driven shock wave, were identified by gas chromatography-mass spectrometry. Moreover, the laser irradiation of a methanol-ethanol mixture revealed the formation of C-C and C-O bonds between both components. Particularly, four hemiacetals (methoxymethanol, 1-methoxyethanol, ethoxymethanol, and 1-ethoxyethanol) were identified in the Ar-saturated alcohol samples, whereas acetalization dominated sufficiently in the CO2-saturated samples, significantly reducing the hemiacetals. It was verified that some molecules were produced by the dropout of an ethanol part during the C-C or C-O bond formation, supporting the contribution of laser-driven shock waves.

19.
BMC Plant Biol ; 24(1): 385, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724918

ABSTRACT

Waterlogging stress is one of the major abiotic stresses affecting the productivity and quality of many crops worldwide. However, the mechanisms of waterlogging tolerance are still elusive in barley. In this study, we identify key differentially expressed genes (DEGs) and differential metabolites (DM) that mediate distinct waterlogging tolerance strategies in leaf and root of two barley varieties with contrasting waterlogging tolerance under different waterlogging treatments. Transcriptome profiling revealed that the response of roots was more distinct than that of leaves in both varieties, in which the number of downregulated genes in roots was 7.41-fold higher than that in leaves of waterlogging sensitive variety after 72 h of waterlogging stress. We also found the number of waterlogging stress-induced upregulated DEGs in the waterlogging tolerant variety was higher than that of the waterlogging sensitive variety in both leaves and roots in 1 h and 72 h treatment. This suggested the waterlogging tolerant variety may respond more quickly to waterlogging stress. Meanwhile, phenylpropanoid biosynthesis pathway was identified to play critical roles in waterlogging tolerant variety by improving cell wall biogenesis and peroxidase activity through DEGs such as Peroxidase (PERs) and Cinnamoyl-CoA reductases (CCRs) to improve resistance to waterlogging. Based on metabolomic and transcriptomic analysis, we found the waterlogging tolerant variety can better alleviate the energy deficiency via higher sugar content, reduced lactate accumulation, and improved ethanol fermentation activity compared to the waterlogging sensitive variety. In summary, our results provide waterlogging tolerance strategies in barley to guide the development of elite genetic resources towards waterlogging-tolerant crop varieties.


Subject(s)
Gene Expression Profiling , Hordeum , Metabolome , Stress, Physiological , Transcriptome , Hordeum/genetics , Hordeum/physiology , Hordeum/metabolism , Stress, Physiological/genetics , Water/metabolism , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/metabolism , Plant Roots/genetics , Plant Roots/physiology , Plant Roots/metabolism , Gene Expression Regulation, Plant
20.
Microb Cell Fact ; 23(1): 123, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724968

ABSTRACT

BACKGROUND: Saccharomyces cerevisiae is an important microorganism in ethanol synthesis, and with sugarcane molasses as the feedstock, ethanol is being synthesized sustainably to meet growing demands. However, high-concentration ethanol fermentation based on high-concentration sugarcane molasses-which is needed for reduced energy consumption of ethanol distillation at industrial scale-is yet to be achieved. RESULTS: In the present study, to identify the main limiting factors of this process, adaptive laboratory evolution and high-throughput screening (Py-Fe3+) based on ARTP (atmospheric and room-temperature plasma) mutagenesis were applied. We identified high osmotic pressure, high temperature, high alcohol levels, and high concentrations of K+, Ca2+, K+ and Ca2+ (K+&Ca2+), and sugarcane molasses as the main limiting factors. The robust S. cerevisiae strains of NGT-F1, NGW-F1, NGC-F1, NGK+, NGCa2+ NGK+&Ca2+-F1, and NGTM-F1 exhibited high tolerance to the respective limiting factor and exhibited increased yield. Subsequently, ethanol synthesis, cell morphology, comparative genomics, and gene ontology (GO) enrichment analysis were performed in a molasses broth containing 250 g/L total fermentable sugars (TFS). Additionally, S. cerevisiae NGTM-F1 was used with 250 g/L (TFS) sugarcane molasses to synthesize ethanol in a 5-L fermenter, giving a yield of 111.65 g/L, the conversion of sugar to alcohol reached 95.53%. It is the highest level of physical mutagenesis yield at present. CONCLUSION: Our results showed that K+ and Ca2+ ions primarily limited the efficient production of ethanol. Then, subsequent comparative transcriptomic GO and pathway analyses showed that the co-presence of K+ and Ca2+ exerted the most prominent limitation on efficient ethanol production. The results of this study might prove useful by promoting the development and utilization of green fuel bio-manufactured from molasses.


Subject(s)
Calcium , Ethanol , Fermentation , Molasses , Potassium , Saccharomyces cerevisiae , Saccharum , Ethanol/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharum/metabolism , Calcium/metabolism , Potassium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...