Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.473
Filter
1.
Neuroscience ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964373

ABSTRACT

The neurovascular unit (NVU) is assembled by endothelial cells (ECs) and pericytes, and encased by a basement membrane (BM) surveilled by microglia and surrounded by perivascular astrocytes (PVA), which in turn are in contact with synapses. Cerebral ischemia induces the rapid release of the serine proteinase tissue-type plasminogen activator (tPA) from endothelial cells, perivascular astrocytes, microglia and neurons. Owning to its ability to catalyze the conversion of plasminogen into plasmin, in the intravascular space tPA functions as a fibrinolytic enzyme. In contrast, the release of astrocytic, microglial and neuronal tPA have a plethora of effects that not always require the generation of plasmin. In the ischemic brain tPA increases the permeability of the NVU, induces microglial activation, participates in the recycling of glutamate, and has various effects on neuronal survival. These effects are mediated by different receptors, notably subunits of the N-methyl-D-aspartate receptor (NMDAR) and the low-density lipoprotein receptor-related protein-1 (LRP-1). Here we review data on the role of tPA in the NVU under non-ischemic and ischemic conditions, and analyze how this knowledge may lead to the development of potential strategies for the treatment of acute ischemic stroke patients.

2.
Neurotox Res ; 42(4): 32, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38949693

ABSTRACT

Nonketotic hyperglycinemia (NKH) is an inherited disorder of amino acid metabolism biochemically characterized by the accumulation of glycine (Gly) predominantly in the brain. Affected patients usually manifest with neurological symptoms including hypotonia, seizures, epilepsy, lethargy, and coma, the pathophysiology of which is still not completely understood. Treatment is limited and based on lowering Gly levels aiming to reduce overstimulation of N-methyl-D-aspartate (NMDA) receptors. Mounting in vitro and in vivo animal and human evidence have recently suggested that excitotoxicity, oxidative stress, and bioenergetics disruption induced by Gly are relevant mechanisms involved in the neuropathology of NKH. This brief review gives emphasis to the deleterious effects of Gly in the brain of patients and animal models of NKH that may offer perspectives for the development of novel adjuvant treatments for this disorder.


Subject(s)
Energy Metabolism , Glycine , Hyperglycinemia, Nonketotic , Oxidative Stress , Hyperglycinemia, Nonketotic/pathology , Hyperglycinemia, Nonketotic/metabolism , Animals , Humans , Oxidative Stress/physiology , Energy Metabolism/physiology , Glycine/metabolism , Brain/metabolism , Brain/pathology
3.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1079-1087, 2024 Jun 20.
Article in Chinese | MEDLINE | ID: mdl-38977337

ABSTRACT

OBJECTIVE: To investigate the protective effect of exogenous leptin against focal cerebral ischemia-reperfusion (I/R) injury in mice and explore the underlying mechanism. METHODS: A total of 100 C57BL/6 mice were randomly divided into 5 groups, including a sham-operated group, cerebral I/R model group, and 3 leptin treatment groups with intraperitoneal injections of 0.5, 1.0 or 2.0 leptin immediately after occlusion of the internal carotid artery. At 24 h after reperfusion, neurological function scores of the mice were assessed, and TTC staining was used to determine the area of cerebral infarction. The pathological changes in the cortical brain tissue of the mice were observed using HE staining, and degenerative damage of the cortical neurons were assessed with Fluoro-Jade C staining. The expression of glial fibrillary acidic protein in cortical brain tissues was detected using immunohistochemistry and Western blotting. In another 45 C57BL/6 mice with sham operation, I/R modeling, or leptin (1 mg/kg) treatment, glutamic acid in the cortical brain tissue was detected using glutamate assay, and cortical glutamate-aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) protein expressions were detected using immunohistochemistry. RESULTS: Compared with the I/R model mice, the leptin-treated mice had significantly lower neurological deficit scores, smaller cerebral infarct area, milder pathologies in the cortical brain tissue, and lessened cortical neuronal damage with normal morphology and less excessive proliferation of the astrocytes. Leptin treatment significantly up-regulated the expressions of GLT-1 and GLAST and lowered the content of glutamic acid in the brain tissue of the I/R mice. CONCLUSION: Exogenous leptin has obvious neuroprotective effect against cerebral I/R injury in mice, mediated probably by controlling excessive astrocyte proliferation and up-regulating cortical GLT-1 and GLAST expressions to reduce glutamate-mediated excitotoxic injury of the astrocytes.


Subject(s)
Astrocytes , Brain Ischemia , Excitatory Amino Acid Transporter 1 , Excitatory Amino Acid Transporter 2 , Glutamic Acid , Leptin , Mice, Inbred C57BL , Reperfusion Injury , Animals , Astrocytes/metabolism , Astrocytes/drug effects , Leptin/metabolism , Mice , Reperfusion Injury/metabolism , Excitatory Amino Acid Transporter 2/metabolism , Glutamic Acid/metabolism , Brain Ischemia/metabolism , Excitatory Amino Acid Transporter 1/metabolism , Glial Fibrillary Acidic Protein/metabolism , Up-Regulation , Male , Disease Models, Animal , Neuroprotective Agents/pharmacology , Neurons/metabolism
4.
Adv Sci (Weinh) ; : e2401085, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39056405

ABSTRACT

Cytotoxic neuronal swelling and glutamate excitotoxicity are two hallmarks of ischemic stroke. However, the underlying molecular mechanisms are not well understood. Here, it is reported that SWELL1, the essential subunit of the volume-regulated anion channel (VRAC), plays a dual role in ischemic injury by promoting neuronal swelling and glutamate excitotoxicity. SWELL1 expression is upregulated in neurons and astrocytes after experimental stroke in mice. The neuronal SWELL1 channel is activated by intracellular hypertonicity, leading to Cl- influx-dependent cytotoxic neuronal swelling and subsequent cell death. Additionally, the SWELL1 channel in astrocytes mediates pathological glutamate release, indicated by increases in neuronal slow inward current frequency and tonic NMDAR current. Pharmacologically, targeting VRAC with a new inhibitor, an FDA-approved drug Dicumarol, attenuated cytotoxic neuronal swelling and cell death, reduced astrocytic glutamate release, and provided significant neuroprotection in mice when administered either before or after ischemia. Therefore, these findings uncover the pleiotropic effects of the SWELL1 channel in neurons and astrocytes in the pathogenesis of ischemic stroke and provide proof of concept for therapeutically targeting it in this disease.

5.
J Pharmacol Exp Ther ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060163

ABSTRACT

HIV-associated neurocognitive disorder (HAND) affects nearly half of the 39 million people living with HIV. HAND symptoms range from subclinical cognitive impairment to dementia; the mechanisms that underlie HAND remain unclear and there is no treatment. The HIV-protein transactivator of transcription (TAT) is thought to contribute to HAND because it persists in the CNS and elicits neurotoxicity in animal models. Network hyperexcitability is associated with accelerated cognitive decline in neurodegenerative disorders. Here, we show that the antiepileptic drug levetiracetam (LEV) attenuated aberrant excitatory synaptic transmission, protected synaptic plasticity, reduced seizure susceptibility, and preserved cognition in inducible TAT (iTAT) transgenic male mice. iTAT mice had an increased frequency of spontaneous excitatory postsynaptic currents in hippocampal slice recordings and impaired long-term potentiation, a form of synaptic plasticity that underlies learning and memory. Two-week administration of LEV by osmotic minipump prevented both impairments. Kainic acid administered to iTAT mice induced a higher maximum behavioral seizure score, longer seizure duration, and a shorter latency to first seizure, consistent with a lower seizure threshold. LEV treatment prevented these in vivo signs of hyperexcitability. Lastly, in the Barnes maze, iTAT mice required more time to reach the goal, committed more errors, and received lower cognitive scores relative to iTAT mice treated with LEV. Thus, TAT expression drives functional deficits, suggesting a causative role in HAND. As LEV not only prevented aberrant synaptic activity in iTAT mice, but also prevented cognitive dysfunction, it may provide a promising pharmacological approach to the treatment of HAND. Significance Statement Around half of people living with HIV also suffer from HIV-associated neurocognitive disorder (HAND), for which there is no treatment. The HIV protein TAT causes toxicity that is thought to contribute to HAND. Here, we show that an antiepileptic drug, levetiracetam (LEV), prevented synaptic and cognitive impairments that develop in a TAT-expressing mouse. LEV is widely used to treat seizures and is well-tolerated in humans, including those with HIV. This study supports further investigation of LEV-treatment for neuroprotection in HAND.

6.
Neuroscience ; 553: 145-159, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992567

ABSTRACT

Glutamate excitotoxicity is involved in retinal ganglion cell (RGC) death in various retinal degenerative diseases, including ischemia-reperfusion injury and glaucoma. Excitotoxic RGC death is caused by both direct damage to RGCs and indirect damage through neuroinflammation of retinal glial cells. Omidenepag (OMD), a novel E prostanoid receptor 2 (EP2) agonist, is a recently approved intraocular pressure-lowering drug. The second messenger of EP2 is cyclic adenosine monophosphate (cAMP), which activates protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac). In this study, we investigated the neuroprotective effects of OMD on excitotoxic RGC death by focusing on differences in cAMP downstream signaling from the perspective of glia-neuron interactions. We established a glutamate excitotoxicity model in vitro and NMDA intravitreal injection model in vivo. In vitro, rat primary RGCs were used in an RGC survival rate assay. MG5 cells (mouse microglial cell line) and A1 cells (astrocyte cell line) were used for immunocytochemistry and Western blotting to evaluate the expressions of COX-1/2, PKA, Epac1/2, pCREB, cleaved caspase-3, inflammatory cytokines, and neurotrophic factors. Mouse retinal specimens underwent hematoxylin and eosin staining, flat-mounted retina examination, and immunohistochemistry. OMD significantly suppressed excitotoxic RGC death, cleaved caspase-3 expression, and activated glia both in vitro and in vivo. Moreover, it inhibited Epac1 and inflammatory cytokine expression and promoted COX-2, pCREB, and neurotrophic factor expression. OMD may have neuroprotective effects through inhibition of the Epac pathway and promotion of the COX-2-EP2-cAMP-PKA pathway by modulating glia-neuron interaction.

7.
Surg Neurol Int ; 15: 171, 2024.
Article in English | MEDLINE | ID: mdl-38840623

ABSTRACT

Much has been learned about the neurotoxicity of aluminum over the past several decades in terms of its ability to disrupt cellular function, result in slow accumulation, and the difficulty of its removal from cells. Newer evidence suggests a central pathophysiological mechanism may be responsible for much of the toxicity of aluminum and aluminofluoride compounds on the brain and spinal cord. This mechanism involves activation of the brain's innate immune system, primarily the microglia, astrocytes, and macrophages, with a release of neurotoxic concentrations of excitotoxins and proinflammatory cytokines, chemokines, and immune mediators. Many studies suggest that excitotoxicity plays a significant role in the neurotoxic action of several metals, including aluminum. Recently, researchers have found that while most of the chronic pathology involved in the observed neurodegenerative effects of these metals are secondary to prolonged inflammation, it is the enhancement of excitotoxicity by the immune mediators that are responsible for most of the metal's toxicity. This enhancement occurs through a crosstalk between cytokines and glutamate-related mechanisms. The author coined the name immunoexcitotoxicity to describe this process. This paper reviews the evidence linking immunoexcitotoxicity to aluminum's neurotoxic effects and that a slow accumulation of aluminum may be the cause of neurodevelopmental defects as well as neurodegeneration in the adult.

8.
Front Neurosci ; 18: 1401706, 2024.
Article in English | MEDLINE | ID: mdl-38846716

ABSTRACT

Amyotrophic lateral sclerosis (ALS) continues to pose a significant challenge due to the disease complexity and heterogeneous manifestations. Despite recent drug approvals, there remains a critical need for the development of more effective therapies. This review explores the underlying mechanisms involved; including neuroinflammation, glutamate mediated excitotoxicity, mitochondrial dysfunction, and hypermetabolism, and how researchers are trying to develop novel drugs to target these pathways. While progress has been made, the unmet need of ALS patients highlights the urgency for continued research and resource allocation in the pursuit of effective treatments.

9.
Cells ; 13(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38920637

ABSTRACT

Excessive levels of glutamate activity could potentially damage and kill neurons. Glutamate excitotoxicity is thought to play a critical role in many CNS and retinal diseases. Accordingly, glutamate excitotoxicity has been used as a model to study neuronal diseases. Immune proteins, such as major histocompatibility complex (MHC) class I molecules and their receptors, play important roles in many neuronal diseases, while T-cell receptors (TCR) are the primary receptors of MHCI. We previously showed that a critical component of TCR, CD3ζ, is expressed by mouse retinal ganglion cells (RGCs). The mutation of CD3ζ or MHCI molecules compromises the development of RGC structure and function. In this study, we investigated whether CD3ζ-mediated molecular signaling regulates RGC death in glutamate excitotoxicity. We show that mutation of CD3ζ significantly increased RGC survival in NMDA-induced excitotoxicity. In addition, we found that several downstream molecules of TCR, including Src (proto-oncogene tyrosine-protein kinase) family kinases (SFKs) and spleen tyrosine kinase (Syk), are expressed by RGCs. Selective inhibition of an SFK member, Hck, or Syk members, Syk or Zap70, significantly increased RGC survival in NMDA-induced excitotoxicity. These results provide direct evidence to reveal the underlying molecular mechanisms that control RGC death under disease conditions.


Subject(s)
CD3 Complex , Glutamic Acid , Retinal Ganglion Cells , Signal Transduction , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/pathology , Animals , Glutamic Acid/metabolism , Signal Transduction/drug effects , CD3 Complex/metabolism , Mice , Mice, Inbred C57BL , N-Methylaspartate/toxicity , Cell Survival/drug effects , Retina/metabolism , Retina/pathology , src-Family Kinases/metabolism , Syk Kinase/metabolism
10.
Int J Mol Sci ; 25(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928227

ABSTRACT

Glutamate is the main excitatory neurotransmitter in the brain wherein it controls cognitive functional domains and mood. Indeed, brain areas involved in memory formation and consolidation as well as in fear and emotional processing, such as the hippocampus, prefrontal cortex, and amygdala, are predominantly glutamatergic. To ensure the physiological activity of the brain, glutamatergic transmission is finely tuned at synaptic sites. Disruption of the mechanisms responsible for glutamate homeostasis may result in the accumulation of excessive glutamate levels, which in turn leads to increased calcium levels, mitochondrial abnormalities, oxidative stress, and eventually cell atrophy and death. This condition is known as glutamate-induced excitotoxicity and is considered as a pathogenic mechanism in several diseases of the central nervous system, including neurodevelopmental, substance abuse, and psychiatric disorders. On the other hand, these disorders share neuroplasticity impairments in glutamatergic brain areas, which are accompanied by structural remodeling of glutamatergic neurons. In the current narrative review, we will summarize the role of glutamate-induced excitotoxicity in both the pathophysiology and therapeutic interventions of neurodevelopmental and adult mental diseases with a focus on autism spectrum disorders, substance abuse, and psychiatric disorders. Indeed, glutamatergic drugs are under preclinical and clinical development for the treatment of different mental diseases that share glutamatergic neuroplasticity dysfunctions. Although clinical evidence is still limited and more studies are required, the regulation of glutamate homeostasis is attracting attention as a potential crucial target for the control of brain diseases.


Subject(s)
Glutamic Acid , Mental Disorders , Humans , Glutamic Acid/metabolism , Mental Disorders/metabolism , Mental Disorders/drug therapy , Mental Disorders/etiology , Animals , Neurodevelopmental Disorders/metabolism , Neurodevelopmental Disorders/etiology , Neuronal Plasticity , Brain/metabolism , Brain/pathology , Adult , Substance-Related Disorders/metabolism , Autism Spectrum Disorder/metabolism
11.
Brain Sci ; 14(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38928576

ABSTRACT

BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social interaction and restricted and repetitive behaviors. Oxidative stress may be a critical link between mitochondrial dysfunction and ASD as reactive oxygen species (ROS) generated from pro-oxidant environmental toxicants and activated immune cells can result in mitochondrial failure. Recently, mitochondrial dysfunction, autoimmunity, and abnormal lipid mediators have been identified in multiple investigations as an acknowledged etiological mechanism of ASD that can be targeted for therapeutic intervention. METHODS: The relationship between lipid mediator markers linked to inflammation induction, such as phospholipase A2/cyclooxygenase-2 (PLA2/Cox-2), and the mitochondrial dysfunction marker anti-mitochondrial antibodies (AMA-M2), and anti-histone autoantibodies in the etiology of ASD was investigated in this study using combined receiver operating characteristic (ROC) curve analyses. This study also sought to identify the linear combination for a given set of markers that optimizes the partial area under ROC curves. This study included 40 age- and sex-matched controls and 40 ASD youngsters. The plasma of both groups was tested for PLA2/COX-2, AMA-M2, and anti-histone autoantibodies' levels using ELISA kits. ROC curves and logistic regression models were used in the statistical analysis. RESULTS: Using the integrated ROC curve analysis, a notable rise in the area under the curve was noticed. Additionally, the combined markers had markedly improved specificity and sensitivity. CONCLUSIONS: The current study suggested that measuring the predictive value of selected biomarkers related to mitochondrial dysfunction, autoimmunity, and lipid metabolism in children with ASD using a ROC curve analysis could lead to a better understanding of the etiological mechanism of ASD as well as its relationship with metabolism.

12.
ACS Chem Neurosci ; 15(14): 2612-2622, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38925635

ABSTRACT

Numerous insults, both endogenous (e.g., glutamate) and exogenous (e.g., pesticides), compromise the function of the nervous system and pose risk factors for damage or later disease. In previous reports, limonoids such as fraxinellone showed significant neuroprotective activity against glutamate (Glu) excitotoxicity and reactive oxygen species (ROS) production in vitro, albeit with minimal mechanistic information provided. Given these findings, a library of novel fraxinellone analogs (including analogs 1 and 2 described here) was synthesized with the goal of identifying compounds exhibiting neuroprotection against insults. Analog 2 was found to be protective against Glu-mediated excitotoxicity with a measured EC50 of 44 and 39 nM for in vitro assays using PC12 and SH-SY5Y cells, respectively. Pretreatment with analog 2 yielded rapid induction of antioxidant genes, namely, Gpx4, Sod1, and Nqo1, as measured via qPCR. Analog 2 mitigated Glu-mediated ROS. Cytoprotection could be replicated using sulforaphane (SFN), a Nrf2 activator, and inhibited via ML-385, which inhibits Nrf2 binding to regulatory DNA sequences, thereby blocking downstream gene expression. Nrf2 DNA-binding activity was demonstrated using a Nrf2 ELISA-based transcription factor assay. In addition, we found that pretreatment with the thiol N-acetyl Cys completely mitigated SFN-mediated induction of antioxidant genes but had no effect on the activity of analog 2, suggesting thiol modification is not critical for its mechanism of action. In summary, our data demonstrate a fraxinellone analog to be a novel, potent, and rapid activator of the Nrf2-mediated antioxidant defense system, providing robust protection against insults.


Subject(s)
Glutamic Acid , Neuroprotective Agents , Reactive Oxygen Species , Neuroprotective Agents/pharmacology , Humans , Animals , Reactive Oxygen Species/metabolism , Rats , PC12 Cells , Glutamic Acid/metabolism , NF-E2-Related Factor 2/metabolism , Antioxidants/pharmacology , Cell Line, Tumor , Isothiocyanates/pharmacology , Dioxolanes/pharmacology , Benzofurans , Sulfoxides
13.
Cell ; 187(15): 4043-4060.e30, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38878778

ABSTRACT

Inflammation-induced neurodegeneration is a defining feature of multiple sclerosis (MS), yet the underlying mechanisms remain unclear. By dissecting the neuronal inflammatory stress response, we discovered that neurons in MS and its mouse model induce the stimulator of interferon genes (STING). However, activation of neuronal STING requires its detachment from the stromal interaction molecule 1 (STIM1), a process triggered by glutamate excitotoxicity. This detachment initiates non-canonical STING signaling, which leads to autophagic degradation of glutathione peroxidase 4 (GPX4), essential for neuronal redox homeostasis and thereby inducing ferroptosis. Both genetic and pharmacological interventions that target STING in neurons protect against inflammation-induced neurodegeneration. Our findings position STING as a central regulator of the detrimental neuronal inflammatory stress response, integrating inflammation with glutamate signaling to cause neuronal cell death, and present it as a tractable target for treating neurodegeneration in MS.


Subject(s)
Inflammation , Membrane Proteins , Multiple Sclerosis , Neurons , Animals , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Membrane Proteins/metabolism , Neurons/metabolism , Neurons/pathology , Mice , Humans , Inflammation/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Signal Transduction , Autophagy , Mice, Inbred C57BL , Glutamic Acid/metabolism , Ferroptosis , Disease Models, Animal , Female , Male
14.
Neurosci Res ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897234

ABSTRACT

We investigated whether soticlestat (TAK-935), a newly discovered cholesterol 24-hydroxylase (CH24H) inhibitor now in phase 3 clinical trials for Dravet and Lennox-Gastaut syndromes, has effects on neurodegeneration in both chronic and acute animal models associated with glutamate hyperexcitation. Soticlestat was administered at doses that approximately halve 24S-hydroxycholesterol in both experiments. In the kainic acid (KA)-induced acute hippocampal degeneration model, soticlestat ameliorated inflammatory cytokine expression, hippocampal degeneration, and memory impairment. We ruled out the possibility that soticlestat directly interferes with KA binding to the KA receptor, or that 24S-hydroxycholesterol modulates KA receptor signaling, by conducting receptor binding and cell death assays. In the PS19 chronic degeneration model of tauopathy, treatment effects were observed in neurodegeneration markers. Notably, there was a significant correlation between the levels of brain 24S-hydroxycholesterol and a proinflammatory cytokine, tumor necrosis factor-α, which is implicated in cognitive decline and lowering of seizure threshold. This is the first study demonstrating that CH24H inhibition can alleviate neurodegeneration concomitant with neuroinflammation. Herein, we discuss the interplay among 24S-hydroxycholesterol production, neuroinflammation, and excitotoxicity. Effects on neurodegeneration and neuroinflammation demonstrated in two preclinical models suggest that soticlestat is effective in ameliorating seizures and addressing cognitive dysfunction in seizure disorders.

15.
Int J Mol Sci ; 25(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891774

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disorder. While there are five FDA-approved drugs for treating this disease, each has only modest benefits. To design new and more effective therapies for ALS, particularly for sporadic ALS of unknown and diverse etiologies, we must identify key, convergent mechanisms of disease pathogenesis. This review focuses on the origin and effects of glutamate-mediated excitotoxicity in ALS (the cortical hyperexcitability hypothesis), in which increased glutamatergic signaling causes motor neurons to become hyperexcitable and eventually die. We characterize both primary and secondary contributions to excitotoxicity, referring to processes taking place at the synapse and within the cell, respectively. 'Primary pathways' include upregulation of calcium-permeable AMPA receptors, dysfunction of the EAAT2 astrocytic glutamate transporter, increased release of glutamate from the presynaptic terminal, and reduced inhibition by cortical interneurons-all of which have been observed in ALS patients and model systems. 'Secondary pathways' include changes to mitochondrial morphology and function, increased production of reactive oxygen species, and endoplasmic reticulum (ER) stress. By identifying key targets in the excitotoxicity cascade, we emphasize the importance of this pathway in the pathogenesis of ALS and suggest that intervening in this pathway could be effective for developing therapies for this disease.


Subject(s)
Amyotrophic Lateral Sclerosis , Glutamic Acid , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Humans , Glutamic Acid/metabolism , Animals , Motor Neurons/metabolism , Motor Neurons/pathology , Aging/metabolism , Receptors, AMPA/metabolism , Endoplasmic Reticulum Stress , Mitochondria/metabolism , Excitatory Amino Acid Transporter 2/metabolism , Astrocytes/metabolism , Reactive Oxygen Species/metabolism
16.
Mol Neurobiol ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829514

ABSTRACT

Stroke, a severe medical condition arising from abnormalities in the coagulation-fibrinolysis cycle and metabolic processes, results in brain cell impairment and injury due to blood flow obstruction within the brain. Prompt and efficient therapeutic approaches are imperative to control and preserve brain functions. Conventional stroke medications, including fibrinolytic agents, play a crucial role in facilitating reperfusion to the ischemic brain. However, their clinical efficacy is hampered by short plasma half-lives, limited brain tissue distribution attributed to the blood-brain barrier (BBB), and lack of targeted drug delivery to the ischemic region. To address these challenges, diverse nanomedicine strategies, such as vesicular systems, polymeric nanoparticles, dendrimers, exosomes, inorganic nanoparticles, and biomimetic nanoparticles, have emerged. These platforms enhance drug pharmacokinetics by facilitating targeted drug accumulation at the ischemic site. By leveraging nanocarriers, engineered drug delivery systems hold the potential to overcome challenges associated with conventional stroke medications. This comprehensive review explores the pathophysiological mechanism underlying stroke and BBB disruption in stroke. Additionally, this review investigates the utilization of nanocarriers for current therapeutic and diagnostic interventions in stroke management. By addressing these aspects, the review aims to provide insight into potential strategies for improving stroke treatment and diagnosis through a nanomedicine approach.

17.
Wien Klin Wochenschr ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748062

ABSTRACT

Traumatic brain injuries cause enormous individual and socioeconomic burdens. Survivors frequently struggle with motor handicaps as well as impaired cognition and emotion. In addition to the primary mechanical brain damage, complex secondary mechanisms are the main drivers of functional impairment. Many of these pathophysiological mechanisms are now well known: excitotoxic amino acids, breakdown of the blood-brain barrier, neuroinflammation with subsequent damage to cell organelles and membranes, cerebral edema, and apoptotic processes triggering neuronal death; however, paracrine resilience factors may counteract these processes. Specific neuroprotective and neuroregenerative intensive care therapies are few. This review highlights medical approaches aimed at mitigating secondary damage and promoting neurotrophic processes in severe traumatic brain injury. Some pharmacologic attempts that appeared very promising in experimental settings have had disappointing clinical results (progesterone, cyclosporine A, ronopterin, erythropoietin, dexanabinol). Thus, the search for drugs that can effectively limit ongoing posttraumatic neurological damage is ongoing. Some medications appear to be beneficial: N­methyl-D-aspartate receptor (NMDA) antagonists (esketamine, amantadine, Mg++) reduce excitotoxicity and statins and cerebrolysin are known to counteract neuroinflammation. By supporting the impaired mitochondrial energy supply, oxidative processes are inhibited and neuroregenerative processes, such as neurogenesis, angiogenesis and synaptogenesis are promoted by citicoline and cerebrolysin. First clinical evidence shows an improvement in cognitive and thymopsychic outcomes, underlined by own clinical experience combining different therapeutic approaches. Accordingly, adjuvant treatment with neuroprotective substances appears to be a promising option, although more randomized prospective studies are still needed.

18.
Hum Mol Genet ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776957

ABSTRACT

Huntington's disease (HD) is a neurodegenerative genetic disorder caused by an expansion in the CAG repeat tract of the huntingtin (HTT) gene resulting in behavioural, cognitive, and motor defects. Current knowledge of disease pathogenesis remains incomplete, and no disease course-modifying interventions are in clinical use. We have previously reported the development and characterisation of the OVT73 transgenic sheep model of HD. The 73 polyglutamine repeat is somatically stable and therefore likely captures a prodromal phase of the disease with an absence of motor symptomatology even at 5-years of age and no detectable striatal cell loss. To better understand the disease-initiating events we have undertaken a single nuclei transcriptome study of the striatum of an extensively studied cohort of 5-year-old OVT73 HD sheep and age matched wild-type controls. We have identified transcriptional upregulation of genes encoding N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors in medium spiny neurons, the cell type preferentially lost early in HD. Further, we observed an upregulation of astrocytic glutamate uptake transporters and medium spiny neuron GABAA receptors, which may maintain glutamate homeostasis. Taken together, these observations support the glutamate excitotoxicity hypothesis as an early neurodegeneration cascade-initiating process but the threshold of toxicity may be regulated by several protective mechanisms. Addressing this biochemical defect early may prevent neuronal loss and avoid the more complex secondary consequences precipitated by cell death.

19.
Curr Pharm Des ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38778603

ABSTRACT

BACKGROUND: It was previously found that 3'-Daidzein Sulfonate Sodium (DSS) exhibits protective effects on Cerebral Ischemia-Reperfusion Injury (CI/RI). AIM: This study aimed to explore the underlying molecular mechanisms involved in the neuroprotective effects of DSS against ischemic stroke. METHODS: In this study, rats with transient middle cerebral artery occlusion (tMCAO) were used as an in vivo model, whereas PC12 cells treated with glutamate alone and rat primary cortical neurons treated with the combination of glutamate and glycine were used as in vitro models. Cell viability and lactate dehydrogenase (LDH) release were used to evaluate cell injury. Cell apoptosis was determined by flow cytometry. Quantitative polymerase chain reaction (qPCR), Western blotting, and immunofluorescent staining methods were used to determine the mRNA expressions and protein levels and location. RESULTS: It was found that DSS significantly suppressed the impaired viability of PC12 cells induced by glutamate. DSS also increased cell viability while reducing the LDH release and apoptosis in primary cortical neurons injured by glutamate and glycine. In addition, DSS decreased GluN2B subunit expression while enhancing the expressions of GluN2A subunit and PSD95 in tMCAO rats' brains. CONCLUSION: This study demonstrated that DSS protects against excitotoxic damage in neurons by regulating the expression of NMDA receptors and PSD95 in the brain with cerebral ischemia-reperfusion injury. Our findings provide experimental evidence for the potential clinical administration of DSS in ischemic stroke.

20.
Front Neurol ; 15: 1350848, 2024.
Article in English | MEDLINE | ID: mdl-38756214

ABSTRACT

Objective: To investigate the association between blood-brain barrier permeability, brain metabolites, microstructural integrity of the white matter, and cognitive impairment (CI) in post-acute sequelae of SARS-COV-2 infection (PASC). Methods: In this multimodal longitudinal MRI study 14 PASC participants with CI and 10 healthy controls were enrolled. All completed investigations at 3 months following acute infection (3 months ± 2 weeks SD), and 10 PASC participants completed at 12 months ± 2.22 SD weeks. The assessments included a standard neurological assessment, a cognitive screen using the brief CogState battery and multi-modal MRI derived metrics from Dynamic contrast enhanced (DCE) perfusion Imaging, Diffusion Tensor Imaging (DTI), and single voxel proton Magnetic Resonance Spectroscopy. These measures were compared between patients and controls and correlated with cognitive scores. Results: At baseline, and relative to controls, PASC participants had higher K-Trans and Myo-inositol, and lower levels of Glutamate/Glutamine in the frontal white matter (FWM) (p < 0.01) as well as in brain stem (p < 0.05), and higher FA and lower MD in the FWM (p < 0.05). In PASC participants, FA and MD decreased in the FWM at 12 months compared to baseline (p < 0.05). K-Trans and metabolite concentrations did not change significantly over time. Neurocognitive scores did not correlation with the increased permeability (K trans). Interpretation: PASC with CI is associated with BBB impairment, loss of WM integrity, and inflammation at 3 months which significantly but not uniformly improved at 12 months. The loss of WM integrity is possibly mediated by BBB impairment and associated glutamatergic excitotoxicity.

SELECTION OF CITATIONS
SEARCH DETAIL