Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
J Environ Sci (China) ; 147: 404-413, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003058

ABSTRACT

Salinity was considered to have effects on the characteristics, performance microbial communities of aerobic granular sludge. This study investigated granulation process with gradual increase of salt under different gradients. Two identical sequencing batch reactors were operated, while the influent of Ra and Rb was subjected to stepwise increments of NaCl concentrations (0-4 g/L and 0-10 g/L). The presence of filamentous bacteria may contribute to granules formed under lower salinity conditions, potentially leading to granules fragmentation. Excellent removal efficiency achieved in both reactors although there was a small accumulation of nitrite in Rb at later stages. The removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in Ra were 95.31%, 93.70% and 88.66%, while the corresponding removal efficiencies in Rb were 94.19%, 89.79% and 80.74%. Salinity stimulated extracellular polymeric substances (EPS) secretion and enriched EPS producing bacteria to help maintain the integrity and stability of the aerobic granules. Heterotrophic nitrifying bacteria were responsible for NH4+-N and NO2--N oxidation of salinity systems and large number of denitrifying bacteria were detected, which ensure the high removal efficiency of TN in the systems.


Subject(s)
Bioreactors , Nitrogen , Sewage , Waste Disposal, Fluid , Waste Disposal, Fluid/methods , Bioreactors/microbiology , Sewage/microbiology , Phosphorus/metabolism , Salinity , Sodium Chloride , Bacteria/metabolism , Microbiota , Biological Oxygen Demand Analysis
2.
Water Res ; 265: 122211, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39137456

ABSTRACT

As a significant structure in activated sludge, extracellular polymeric substances (EPS) hold considerable value regarding resource recovery and applications. The present study aimed to elucidate the relationship between the microbial community and the composition and properties of EPS. A biological nutrient removal (BNR) reactor was set up in the laboratory and controlled under different solid retention times (SRT), altering microbial species within the system. Then EPS was extracted from activated and analyzed by chemical and spectroscopic methods. High-throughput sequencing and metagenomic approaches were employed to investigate bacterial community and metabolic pathways. The results showed that lower SRT with a higher abundance of the family-level Proteobacteria (27.7%-53.5%) favored EPS synthesis, while another dominant group Bacteroidetes (20.0%-32.6%) may not significantly affect EPS synthesis. Furthermore, the abundance of alginates-producing bacteria including Pseudomonas spp. and Azotobacter vinelandii was only 2.53%-6.76% and 1.98%-6.34%, respectively. The alginate synthesis pathway genes Alg8 and Alg44 were also present at very low levels (0.05‱-0.11‱, 0.01‱-0.02‱, respectively). Another important gene related to alginates operons, AlgK, was absent across all the SRT-operated reactors. These findings suggest an impossible and incomplete alginate synthesis pathway within sludge. In light of these results, it can be concluded that EPS does not necessarily contain alginate components.

3.
J Environ Manage ; 368: 122090, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39126848

ABSTRACT

The saline wastewater produced in industrial activities and seawater use would flow into wastewater treatment plants and affect the characteristic of extracellular polymeric substance (EPS) of activated sludge, which could potentially impact the removal of antibiotics via adsorption. Nonetheless, the effect of salinity on trimethoprim adsorption by activated sludge extracellular polymeric substances at trace concentration and the underlying mechanism remain largely unknown. In this study, the effect of salinity on the adsorption removal of a typical antibiotic, i.e., trimethoprim (TMP) at trace concentration (25.0 µg/L) was evaluated. The results showed the content of EPS was decreased significantly from 56.36 to 21.70 mg/g VSS when the salinity was increased from 0 to 10 g/L. Protein fractions occupied the predominant component of EPS, whose concentration was decreased from 38.17 to 12.83 mg/g VSS. The equilibrium adsorption capacity of activated sludge for TMP was decreased by 49.70% (from 4.97 to 2.50 µg/g VSS). The fluorescence quenching results indicated the fluorescence intensity of tryptophan-like substances was decreased by 30% and the adsorption sites of EPS were decreased from 0.51 to 0.21 when the salinity was increased. The infrared spectrum and XPS results showed that the nitrogen-containing groups from protein were decreased significantly. The circular dichroic analysis showed α helix structure of protein in EPS was decreased with the increase of salinity, which was responsible for the decrease of adsorption capacity for TMP.

4.
Braz J Microbiol ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008244

ABSTRACT

At the end of 2019, the world witnessed the beginning of the COVID-19 pandemic. As an aggressive viral infection, the entire world remained attentive to new discoveries about the SARS-CoV-2 virus and its effects in the human body. The search for new antivirals capable of preventing and/or controlling the infection became one of the main goals of research during this time. New biocompounds from marine sources, especially microalgae and cyanobacteria, with pharmacological benefits, such as anticoagulant, anti-inflammatory and antiviral attracted particular interest. Polysaccharides (PS) and extracellular polymeric substances (EPS), especially those containing sulfated groups in their structure, have potential antiviral activity against several types of viruses including HIV-1, herpes simplex virus type 1, and SARS-CoV-2. We review the main characteristics of PS and EPS with antiviral activity, the mechanisms of action, and the different extraction methodologies from microalgae and cyanobacteria biomass.

5.
J Environ Sci (China) ; 146: 55-66, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38969462

ABSTRACT

The effects of cast iron pipe corrosion on water quality risk and microbial ecology in drinking water distribution systems (DWDSs) were investigated. It was found that trihalomethane (THMs) concentration and antibiotic resistance genes (ARGs) increased sharply in the old DWDSs. Under the same residual chlorine concentration conditions, the adenosine triphosphate concentration in the effluent of old DWDSs (Eff-old) was significantly higher than that in the effluent of new DWDSs. Moreover, stronger bioflocculation ability and weaker hydrophobicity coexisted in the extracellular polymeric substances of Eff-old, meanwhile, iron particles could be well inserted into the structure of the biofilms to enhance the mechanical strength and stability of the biofilms, hence enhancing the formation of THMs. Old DWDSs significantly influenced the microbial community of bulk water and triggered stronger microbial antioxidant systems response, resulting in higher ARGs abundance. Corroded cast iron pipes induced a unique interaction system of biofilms, chlorine, and corrosion products. Therefore, as the age of cast iron pipes increases, the fluctuation of water quality and microbial ecology should be paid more attention to maintain the safety of tap water.


Subject(s)
Biofilms , Iron , Water Quality , Water Supply , Corrosion , Water Microbiology , Drinking Water/microbiology , Drinking Water/chemistry , Drug Resistance, Microbial/genetics , Environmental Monitoring , Water Pollutants, Chemical/analysis , Trihalomethanes/analysis
6.
J Environ Manage ; 365: 121523, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38901321

ABSTRACT

Anaerobic oxidation of methane (AOM) is a microbial process of importance in the global carbon cycle. AOM is predominantly mediated by anaerobic methanotrophic archaea (ANME), the physiology of which is still poorly understood. Here we present a new addition to the current physiological understanding of ANME by examining, for the first time, the biochemical and redox-active properties of the extracellular polymeric substances (EPS) of an ANME enrichment culture. Using a 'Candidatus Methanoperedens nitroreducens'-dominated methanotrophic consortium as the representative, we found it can produce an EPS matrix featuring a high protein-to-polysaccharide ratio of ∼8. Characterization of EPS using FTIR revealed the dominance of protein-associated amide I and amide II bands in the EPS. XPS characterization revealed the functional group of C-(O/N) from proteins accounted for 63.7% of total carbon. Heme-reactive staining and spectroscopic characterization confirmed the distribution of c-type cytochromes in this protein-dominated EPS, which potentially enabled its electroactive characteristic. Redox-active c-type cytochromes in EPS mediated the EET of 'Ca. M. nitroreducens' for the reduction of Ag+ to metallic Ag, which was confirmed by both ex-situ experiments with extracted soluble EPS and in-situ experiments with pristine EPS matrix surrounding cells. The formation of nanoparticles in the EPS matrix during in-situ extracellular Ag + reduction resulted in a relatively lower intracellular Ag distribution fraction, beneficial for alleviating the Ag toxicity to cells. The results of this study provide the first biochemical information on EPS of anaerobic methanotrophic consortia and a new insight into its physiological role in AOM process.


Subject(s)
Extracellular Polymeric Substance Matrix , Methane , Oxidation-Reduction , Methane/metabolism , Extracellular Polymeric Substance Matrix/metabolism , Anaerobiosis , Archaea/metabolism
7.
Bioresour Technol ; 406: 131054, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944317

ABSTRACT

Microalgae extracellular polymeric substances (EPS) are complex high-molecular-weight polymers and the physicochemical properties of EPS strongly affect the core features of microalgae cultivation and resource utilization. Revealing the key roles of EPS in microalgae life-cycle processes in an interesting and novelty topic to achieve energy-efficient practical application of microalgae. This review found that EPS showed positive effect in non-gas uptake, extracellular electron transfer, toxicity resistance and heterotrophic symbiosis, but negative impact in gas transfer and light utilization during microalgae cultivation. For biomass harvesting, EPS favored biomass flocculation and large-size cell self-flocculation, but unfavored small size microalgae self-flocculation, membrane filtration, charge neutralization and biomass dewatering. During bioproducts extraction, EPS exhibited positive impact in extractant uptake, but the opposite effect in cellular membrane permeability and cell rupture. Future research on microalgal EPS were also identified, which offer suggestions for comprehensive understanding of microalgal EPS roles in various scenarios.


Subject(s)
Biomass , Extracellular Polymeric Substance Matrix , Microalgae , Microalgae/metabolism , Microalgae/growth & development , Extracellular Polymeric Substance Matrix/metabolism , Flocculation
8.
Water Res ; 257: 121697, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728787

ABSTRACT

Quorum sensing (QS)-based manipulations emerge as a promising solution for biofilm reactors to overcome challenges from inefficient biofilm formation and lengthy start-ups. However, the ecological mechanisms underlying how QS regulates microbial behaviors and community assembly remain elusive. Herein, by introducing different levels of N-acyl-homoserine lactones, we manipulated the strength of QS during the start-up of moving bed biofilm reactors and compared the dynamics of bacterial communities. We found that enhanced QS elevated the fitness of fast-growing bacteria with high ribosomal RNA operon (rrn) copy numbers in their genomes in both the sludge and biofilm communities. This led to notably increased extracellular substance production, as evidenced by strong positive correlations between community-level rrn copy numbers and extracellular proteins and polysaccharides (Pearson's r = 0.529-0.830, P < 0.001). Network analyses demonstrated that enhanced QS significantly promoted the ecological interactions among taxa, particularly cooperative interactions. Bacterial taxa with higher network degrees were more strongly correlated with extracellular substances, suggesting their crucial roles as public goods in regulating bacterial interactions and shaping network structures. However, the assembly of more cooperative communities in QS-enhanced reactors came at the cost of decreased network stability and modularity. Null model and dissimilarity-overlap curve analysis revealed that enhanced QS strengthened stochastic processes in community assembly and rendered the universal population dynamics more convergent. Additionally, these shaping effects were consistent for both the sludge and biofilm communities, underpinning the planktonic-to-biofilm transition. This work highlights that QS manipulations efficiently drive community assembly and confer specialized functional traits to communities by recruiting taxa with specific life strategies and regulating interspecific interactions. These ecological insights deepen our understanding of the rules governing microbial societies and provide guidance for managing engineering ecosystems.


Subject(s)
Biofilms , Bioreactors , Quorum Sensing , Sewage , Sewage/microbiology , Acyl-Butyrolactones/metabolism , Bacteria/genetics , Bacteria/metabolism
9.
Talanta ; 276: 126231, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38788376

ABSTRACT

Extracellular polymeric substances (EPS), which were an important fraction of natural organic matter (NOM), played an important role in various environmental processes. However, the heterogeneity, complexity, and dynamics of EPS make their interactions with antibiotics elusive. Using advanced multispectral technology, this study examined how EPS interacts with different concentrations of tetracycline (TC) in the soil system. Our results demonstrated that protein-like (C1), fulvic-like (C2), and humic-like (C3) fractions were identified from EPS. Two-dimensional synchronous correlation spectroscopy (2D-SF-COS) indicated that the protein-like fraction gave faster responses than the fulvic-like fraction during the TC binding process. The sequence of structural changes in EPS due to TC binding was revealed by two-dimensional Fourier Transformation Infrared correlation spectroscopy (2D-FTIR-COS) as follows: 1550 > 1660 > 1395 > 1240 > 1087 cm-1. It is noteworthy that the sensitivity of the amide group to TC has been preserved, with its intensity gradually increasing to become the primary binding site for TC. The integration of hetero-2DCOS maps with moving window 2D correlation spectroscopy (MW2DCOS) provided a unique insight into understanding the correlation between EPS fractions and functional groups during the TC binding process. Moreover, molecular docking (MD) discovered that the extracellular proteins would provide plenty of binding sites with TC through salt bridges, hydrogen bonds, and π-π base-stacking forces. With these results, systematic investigations of the dynamic changes in EPS components under different concentrations of antibiotic exposure demonstrated the advanced capabilities of multispectral technology in examining intricate interactions with EPS in the soil environment.


Subject(s)
Escherichia coli , Extracellular Polymeric Substance Matrix , Molecular Docking Simulation , Tetracycline , Tetracycline/chemistry , Tetracycline/metabolism , Escherichia coli/metabolism , Escherichia coli/drug effects , Extracellular Polymeric Substance Matrix/metabolism , Extracellular Polymeric Substance Matrix/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Binding Sites , Spectroscopy, Fourier Transform Infrared
10.
J Pharm Anal ; 14(4): 100906, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38634060

ABSTRACT

Extracellular polymeric substances (EPS) constitutes crucial elements within bacterial biofilms, facilitating accelerated antimicrobial resistance and conferring defense against the host's immune cells. Developing precise and effective antibiofilm approaches and strategies, tailored to the specific characteristics of EPS composition, can offer valuable insights for the creation of novel antimicrobial drugs. This, in turn, holds the potential to mitigate the alarming issue of bacterial drug resistance. Current analysis of EPS compositions relies heavily on colorimetric approaches with a significant bias, which is likely due to the selection of a standard compound and the cross-interference of various EPS compounds. Considering the pivotal role of EPS in biofilm functionality, it is imperative for EPS research to delve deeper into the analysis of intricate compositions, moving beyond the current focus on polymeric materials. This necessitates a shift from heavy reliance on colorimetric analytic methods to more comprehensive and nuanced analytical approaches. In this study, we have provided a comprehensive summary of existing analytical methods utilized in the characterization of EPS compositions. Additionally, novel strategies aimed at targeting EPS to enhance biofilm penetration were explored, with a specific focus on highlighting the limitations associated with colorimetric methods. Furthermore, we have outlined the challenges faced in identifying additional components of EPS and propose a prospective research plan to address these challenges. This review has the potential to guide future researchers in the search for novel compounds capable of suppressing EPS, thereby inhibiting biofilm formation. This insight opens up a new avenue for exploration within this research domain.

11.
Environ Sci Technol ; 58(15): 6552-6563, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38571383

ABSTRACT

Extracellular polymeric substances (EPS) ubiquitously encapsulate microbes and play crucial roles in various environmental processes. However, understanding their complex interactions with dynamic bacterial behaviors, especially during the disinfection process, remains very limited. In this work, we investigated the impact of EPS on bacterial disinfection kinetics by developing a permanent EPS removal strategy. We genetically disrupted the synthesis of exopolysaccharides, the structural components of EPS, in Pseudomonas aeruginosa, a well-known EPS-producing opportunistic pathogen found in diverse environments, creating an EPS-deficient strain. This method ensured a lasting absence of EPS while maintaining bacterial integrity and viability, allowing for real-time in situ investigations of the roles of EPS in disinfection. Our findings indicate that removing EPS from bacteria substantially lowered their susceptibility threshold to disinfectants such as ozone, chloramine B, and free chlorine. This removal also substantially accelerated disinfection kinetics, shortened the resistance time, and increased disinfection efficiency, thereby enhancing the overall bactericidal effect. The absence of EPS was found to enhance bacterial motility and increase bacterial cell vulnerability to disinfectants, resulting in greater membrane damage and intensified reactive oxygen species (ROS) production upon exposure to disinfectants. These insights highlight the central role of EPS in bacterial defenses and offer promising implications for developing more effective disinfection strategies.


Subject(s)
Disinfectants , Disinfection , Disinfection/methods , Extracellular Polymeric Substance Matrix , Disinfectants/pharmacology , Chlorine/pharmacology , Kinetics
12.
Sci Total Environ ; 928: 172207, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38583621

ABSTRACT

A mathematical model was developed to predict the formation of both the autotrophic and heterotrophic extracellular polymeric substances (EPS) in the aerobic membrane bioreactor (MBR). Batch experimental results and 45-day operation data on a pilot MBR at a sludge retention time (SRT) of 20 d were used to calibrate and validate the model. Simulated MBR setup results demonstrated the key role of the influent COD and NH4+-N in governing the composition of heterotrophic and autotrophic EPS in the MBR. These results also revealed that the autotrophic EPS process was non-ignorable in the system. According to the autotrophic EPS simulation in the MBR, the EPS yield increased with increasing influent COD/NH4+-N ratio towards a constant level. The EPS yield was significantly influenced by the SRT, attributed to the autotrophic process's impact on EPS. Simulation results revealed a slight increase in EPS yield with an SRT of up to 5 days, followed by a rapid decrease beyond that threshold.


Subject(s)
Autotrophic Processes , Bioreactors , Extracellular Polymeric Substance Matrix , Membranes, Artificial , Waste Disposal, Fluid , Waste Disposal, Fluid/methods , Models, Theoretical , Aerobiosis , Sewage
13.
Chemosphere ; 358: 142110, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657688

ABSTRACT

Biofouling is inevitable in the membrane process, particularly in membrane bioreactors (MBR) combined with activated sludge processes. Regulating microbial signaling systems with diffusible signal factors such as cis-2-Decenoic acid (CDA) can control biofilm formation without microbial death or growth inhibition. This study assessed the effectiveness of CDA in controlling biofouling in membrane bioreactors (MBRs), essential for wastewater treatment. By modulating microbial signaling, CDA mitigated biofilm formation without hindering microbial growth. Analysis using Confocal Laser Scanning Microscopy (CLSM) revealed structural alterations in the biofilm, reducing biomass and thickness upon CDA application. Moreover, examination of extracellular polymeric substances (EPS) highlighted a decrease in total EPS, particularly effective polysaccharides. In addition, the possibility of shifting from high molecular weight EPS to low molecular weight EPS was revealed through the change in dispersion activity. The 56% extension of MBR operational lifespan resulting from the reduction in EPS is anticipated to offer potential cost savings and improved performance. Despite these results, further investigation is crucial to validate any potential environmental risks associated with CDA and to comprehend its long-term effects at various conditions.


Subject(s)
Biofilms , Biofouling , Bioreactors , Fatty Acids, Monounsaturated , Membranes, Artificial , Wastewater , Biofouling/prevention & control , Biofilms/drug effects , Wastewater/chemistry , Waste Disposal, Fluid/methods , Extracellular Polymeric Substance Matrix , Sewage/chemistry
14.
Environ Sci Ecotechnol ; 21: 100397, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38434491

ABSTRACT

Recovering extracellular polymeric substances (EPS) from waste granular sludge offers a cost-effective and sustainable approach for transforming wastewater resources into industrially valuable products. Yet, the application potential of these EPS in real-world scenarios, particularly in paper manufacturing, remains underexplored. Here we show the feasibility of EPS-based biomaterials, derived from anaerobic granular sludges, as novel coating agents in paper production. We systematically characterised the rheological properties of various EPS-based suspensions. When applied as surface sizing agents, these EPS-based biomaterials formed a distinct, ultra-thin layer on paper, as evidenced by scanning electron microscopy. A comprehensive evaluation of water and oil penetration, along with barrier properties, revealed that EPS-enhanced coatings markedly diminished water absorption while significantly bolstering oil and grease resistance. Optimal performance was observed in EPS variants with elevated protein and hydrophobic contents, correlating with their superior rheological characteristics. The enhanced water-barrier and grease resistance of EPS-coated paper can be attributed to its non-porous, fine surface structure and the functional groups in EPS, particularly the high protein content and hydrophobic humic-like substances. This research marks the first demonstration of utilizing EPS from anaerobic granular sludge as paper-coating biomaterials, bridging a critical knowledge gap in the sustainable use of biopolymers in industrial applications.

15.
Chemosphere ; 355: 141764, 2024 May.
Article in English | MEDLINE | ID: mdl-38521108

ABSTRACT

Anode modification is an effective strategy for enhancing the electrochemical performance of microbial fuel cell (MFC). However, the impacts of the modified materials on anode biofilm development during MFC operation have been less studied. We prepared a novel PDA-Fe3O4-CF composite anode by coating original carbon felt anode (CF) with polydopamine (PDA) and Fe3O4 nanoparticles. The composite anode material was characterized by excellent hydrophilicity and electrical conductivity, and the anodic biofilm exhibited fast start-up, higher biomass, and more uniform biofilm layer after MFC operation. The MFC reactor assembled with the composite anode achieved a maximum power density of 608 mW m-2 and an output voltage of 586 mV, which were 316.4% and 72.4% higher than the MFC with the original CF anode, respectively. Microbial community analysis indicated that the modified anode biofilm had a higher relative abundance of exoelectrogen species in comparison to the unmodified anode. The PICRUSt data revealed that the anodic materials may affect the bioelectrochemical performance of the biofilm by influencing the expression levels of key enzyme genes involved in biofilm extracellular polymer (EPS) secretion and extracellular electron transfer (EET). The growth of the anodic biofilm would exert positive or negative influences on the efficiency of electricity production and electron transfer of the MFCs at different operating stages. This work expands the knowledge of the role that anodic materials play in the development and electrochemical performance of anodic biofilm in MFCs.


Subject(s)
Bioelectric Energy Sources , Indoles , Polymers , Carbon/chemistry , Carbon Fiber , Electricity , Electrodes , Biofilms
16.
Microbiol Res ; 283: 127674, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38461572

ABSTRACT

The role of lactic acid bacteria, including Lactiplantibacillus plantarum, in food spoilage is well recognized, while the behavior of these non-motile bacteria on wet surfaces, such as those encountered in food processing environments has gained relatively little attention. Here, we observed a fast colony spreading of non-motile L. plantarum spoilage isolates on wet surfaces via passive sliding using solid BHI agar media as a model. We investigated the effect of physical properties of agar hydrogel substrate on the surface spreading of six L. plantarum food isolates FBR1-6 and a model strain WCFS1, using increasing concentrations of agar from 0.25 up to 1.5% (w/v). Our results revealed that L. plantarum strain FBR2 spreads significantly on low agar concentration plates compared to the other strains studied here (with a factor of 50-60 folds higher surface coverage), due to the formation of very soft biofilms with high water content that can float on the surface. The fast-spreading of FBR2 colonies is accompanied by an increased number of cells, elongated cell morphology, and a higher amount of extracellular components. Our finding highlights colonization dynamics and the spreading capacity of non-motile bacteria on surfaces that are relatively wet, thereby revealing an additional hitherto unnoticed parameter for non-motile bacteria that may contribute to contamination of foods by fast surface spreading of these bacteria in food processing environments.


Subject(s)
Food Microbiology , Lactobacillus plantarum , Agar , Food Handling , Biofilms , Bacteria
17.
Environ Sci Pollut Res Int ; 31(14): 21578-21590, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38393566

ABSTRACT

The impediment of sludge resource utilization stems from the presence of heavy metals within the sludge matrix. To optimize heavy metal removal techniques from undried sludge, it is essential to study the distribution of heavy metals in the sludge flocs structure and the changes in morphology in the sludge cells after different treatments. In this study, the sludge was subjected to chemical treatments using citric acid (CA), EDTA, and saponin, as well as electrokinetic treatment at 2 V/cm. The distribution and migration of Cu, Ni, and Zn in sludge flocs after various treatment methods were analyzed. The heavy metals were found to migrate from intracellular to extracellular polymeric substances (EPS) without causing extensive sludge cell lysis. They gradually diffused outward with the dispersion of the EPS layer. The migration efficiency of the three heavy metals in the sludge flocs was Zn, Ni, and Cu. This was mainly related to the initial distribution and morphology of the heavy metals. Under the influence of chemicals and an electric field, the acid-soluble and reducible heavy metals in the cells partially migrated to the EPS, while the stable heavy metals transformed into an unstable state. Furthermore, the order of chemical reagents in terms of their effect on the migration efficiency of heavy metals was CA > EDTA > Saponin, owing to the varying binding strengths of heavy metals and their impact on the degree of loosening of the EPS. Especially after CA treatment a greater proportion of Cu, Ni, and Zn were transferred from the cells to the EPS. The acidification effect near the anode during electrokinetic treatment intensifies the migration of heavy metals. This study provides basic research for subsequent engineering optimization aimed at removing heavy metals from sludge.


Subject(s)
Metals, Heavy , Saponins , Water Pollutants, Chemical , Sewage/chemistry , Extracellular Polymeric Substance Matrix/chemistry , Edetic Acid , Water Pollutants, Chemical/analysis , Metals, Heavy/chemistry
18.
Environ Pollut ; 345: 123561, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38355081

ABSTRACT

Tire wear particles (TWPs), abundant in the aquatic environment, pose potential ecological risks, yet their implications have not been extensively studied. Rolling friction TWPs, sliding friction TWPs (S-TWPs) and cryogenically milled tire treads were used as research objects to study the ecotoxicity and difference of the above materials before and after aging in natural water (AS-TWPs) to the periphytic biofilm. The results showed that there were significant differences in the microstructure, surface elements, size, functional groups and environmentally persistent free radicals (EPFRs) of the three TWPs. After aging in natural water, the properties of the three TWPs mentioned above showed homogenization, but the EPFRs and reactive oxygen species (ROS) yield were different. After exposure to TWPs (10 mg L-1), total organic carbon and adenosine triphosphate decreased significantly (p < 0.05), and the production of extracellular polymeric substances (EPS) in the periphytic biofilm increased, in which the content of humic-like substance and proteins (tryptophan protein and humic acid-like substances) increased obviously. The increment of TB-EPS was higher than that of LB-EPS, and S-TWPs and AS-TWPs had the strongest promoting effect on EPS secretion. In addition, 10 mg L-1 TWPs caused massive cell death in the periphytic biofilm, which was more obvious in the S-TWPs and AS-TWPs exposure group. The toxic mechanism of TWPs promotes intracellular ROS accumulation and leads to the release of lactate dehydrogenase, which was attributed to the formation of EPFRs on the surface of TWPs and an increase in EPFRs intensity after aging in natural water. TWPs at environmentally relevant concentrations (0.1 mg L-1) had no biological toxicity to periphytic biofilms. This study fills the gap in the study of the surface structure characteristics of TWPs on the toxicity of periphytic biofilms, and is of great significance to the study of the aquatic toxicity mechanism of TWPs.


Subject(s)
Biofilms , Water , Reactive Oxygen Species , Extracellular Polymeric Substance Matrix
19.
Water Res ; 253: 121312, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38367383

ABSTRACT

Two iron-electrolysis assisted anammox/denitrification (EAD) systems, including the suspended sludge reactor (ESR) and biofilm reactor (EMR) were constructed for mainstream wastewater treatment, achieving 84.51±4.38 % and 87.23±3.31 % of TN removal efficiencies, respectively. Sludge extracellular polymeric substances (EPS) analysis, cell apoptosis detection and microbial analysis demonstrated that the strengthened cell lysate/apoptosis and EPS production acted as supplemental carbon sources to provide new ecological niches for heterotrophic bacteria. Therefore, NO3--N accumulated intrinsically during anammox reaction was reduced. The rising cell lysis and apoptosis in the ESR induced the decline of anammox and enzyme activities. In contrast, this inhibition was scavenged in EMR because of the more favorable environment and the significant increase in EPS. Moreover, ESR and EMR achieved efficient phosphorus removal (96.98±5.24 % and 96.98±4.35 %) due to the continued release of Fe2+ by the in-situ corrosion of iron anodes. The X-ray diffraction (XRD) indicated that vivianite was the dominant P recovery product in EAD systems. The anaerobic microenvironment and the abundant EPS in the biofilm system showed essential benefits in the mineralization of vivianite.


Subject(s)
Ferrous Compounds , Nitrates , Phosphates , Sewage , Wastewater , Denitrification , Phosphorus , Iron , Anaerobic Ammonia Oxidation , Electrolysis , Bioreactors/microbiology , Nitrogen , Oxidation-Reduction
20.
J Oral Biosci ; 66(1): 119-125, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38246421

ABSTRACT

OBJECTIVES: Klebsiella spp., an opportunistic infectious organism, is commensal in the nasal and oral cavities of humans. Recently, it has been reported that oral Klebsiella spp. ectopically colonize the intestinal tract and induce the accumulation of intestinal Th1 cells. For oral bacteria to colonize the intestinal tract, they need to compete for nutrients with indigenous intestinal bacteria. Therefore, we focused on mannose, a mucus-derived sugar, and the mannose phosphotransferase system (PTS) (ManXYZ), a mechanism for mannose uptake, in terms of their effects on intestinal colonization and immune responses to Klebsiella spp. METHODS: We generated a Klebsiella manXYZ-deficient strain and investigated whether the utilization of intestinal mucus-derived sugars is associated with the growth. Furthermore, we examine the virulence of this organism in the mouse intestinal tract, especially the ability to colonize the host using competition assay. RESULTS: We found that Klebsiella ManXYZ is a PTS that specifically takes up mannose and glucosamine. Through ManXYZ, mannose was used for bacterial growth and the upregulated production of extracellular polymeric substances. In vivo competition assays showed that mannose metabolism promoted intestinal colonization. However, ManXYZ was not involved in Th1 and Th17 induction in the intestinal tract. CONCLUSION: The fundamental roles of ManXYZ were to ensure that mannose, which is present in the host, is made available for bacterial growth, to promote the production of extracellular polymeric substances, thus facilitating bacterial adaptation to the host environment.


Subject(s)
Klebsiella , Mannose , Humans , Animals , Mice , Extracellular Polymeric Substance Matrix , Phosphotransferases , Cell Proliferation
SELECTION OF CITATIONS
SEARCH DETAIL