Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119723, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599324

ABSTRACT

Viruses have evolved complex mechanisms to exploit host factors for replication and assembly. In response, host cells have developed strategies to block viruses, engaging in a continuous co-evolutionary battle. This dynamic interaction often revolves around the competition for essential resources necessary for both host cell and virus replication. Notably, iron, required for the biosynthesis of several cofactors, including iron­sulfur (FeS) clusters, represents a critical element in the ongoing competition for resources between infectious agents and host. Although several recent studies have identified FeS cofactors at the core of virus replication machineries, our understanding of their specific roles and the cellular processes responsible for their incorporation into viral proteins remains limited. This review aims to consolidate our current knowledge of viral components that have been characterized as FeS proteins and elucidate how viruses harness these versatile cofactors to their benefit. Its objective is also to propose that viruses may depend on incorporation of FeS cofactors more extensively than is currently known. This has the potential to revolutionize our understanding of viral replication, thereby carrying significant implications for the development of strategies to target infections.


Subject(s)
Iron-Sulfur Proteins , Viral Proteins , Virus Replication , Iron-Sulfur Proteins/metabolism , Iron-Sulfur Proteins/genetics , Humans , Viral Proteins/metabolism , Viral Proteins/genetics , Viruses/metabolism , Viruses/genetics , Virus Diseases/metabolism , Virus Diseases/virology , Iron/metabolism , Animals , Host-Pathogen Interactions
2.
Biochim Biophys Acta Mol Cell Res ; 1870(2): 119410, 2023 02.
Article in English | MEDLINE | ID: mdl-36503010

ABSTRACT

Mitosis is a complicated and ordered process with high energy demands and metabolite fluxes. Cytosolic creatine kinase (CK), an enzyme involved in ATP homeostasis, has been shown to be essential to chromosome movement during mitotic anaphase in sea urchin. However, it remains elusive for the molecular mechanism underlying the recruitment of cytosolic CK by the mitotic apparatus. In this study, Fam96b/MIP18, a component of the MMXD complex with a function in Fe/S cluster supply, was identified as a brain-type CK (CKB)-binding protein. The binding of Fam96b with CKB was independent of the presence of CKB substrates and did not interfere with CKB activity. Fam96b was prone to oligomerize via the formation of intermolecular disulfide bonds, while the binding of enzymatically active CKB could modulate Fam96b oligomerization. Oligomerized Fam96b recruited CKB and the MMXD complex to associate with the mitotic spindle. Depletion of Fam96b or CKB by siRNA in the HeLa cells led to mitotic defects, which further resulted in retarded cell proliferation, increased cell death and aberrant cell cycle progression. Rescue experiments indicated that both Fam96b oligomerization and CKB activity were essential to the proper formation of mitotic spindle. These findings suggest that Fam96b may act as a scaffold protein to coordinate the supply and homeostasis of ATP and Fe/S clusters during mitosis.


Subject(s)
Creatine Kinase , Spindle Apparatus , Humans , Adenosine Triphosphate , Brain/metabolism , Creatine Kinase/genetics , Creatine Kinase/metabolism , HeLa Cells , Spindle Apparatus/genetics , Spindle Apparatus/metabolism
3.
Life Sci ; 308: 120983, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36165859

ABSTRACT

AIMS: Family with sequence similarity 96 member A and B (FAM96A and FAM96B) are two highly conserved homologous proteins belonging to MIP18 family. Some studies have shown that FAM96A and FAM96B are significantly down-regulated in human gastrointestinal stromal tumors, colon cancer, and liver cancer. However, the molecular mechanisms of FAM96A/B in breast cancer are unknown. This work aims to explore the roles of FAM96A/B in breast cancer progression. MAIN METHODS: Specific siRNAs were used to down-regulate FAM96A/B expression, and recombinant plasmids were used to up-regulate FAM96A/B expression in breast cancer cells. Cell proliferation was measured using MTT and colony formation. Cell cycle and apoptosis were detected by flow cytometry. Cell migration and invasion were examined by wound healing and transwell assays. The relationships among FAM96A/B, EMT and Wnt/ß-catenin pathway were determined by analyzing expression changes of classical markers. KEY FINDINGS: We found that FAM96A/B expression was down-regulated in breast cancer. FAM96A/B overexpression suppressed breast cancer cell proliferation, invasion and migration, induced cell apoptosis and caused cell cycle arrest. Conversely, FAM96A/B knockdown exhibited the opposite effects. Moreover, our data demonstrated that FAM96A/B overexpression suppressed EMT and Wnt/ß-catenin pathway, while FAM96A/B knockdown showed the promoting effects on EMT and Wnt/ß-catenin pathway. Furthermore, a Wnt pathway inhibitor, XAV-939 reversed the promoting effects of FAM96A/B knockdown on breast cancer progression. SIGNIFICANCE: Our findings suggest that FAM96A/B may function as new tumor suppressor genes and inhibit breast cancer progression via modulating Wnt/ß-catenin pathway, which can provide the potential markers for breast cancer diagnosis and therapy.


Subject(s)
Breast Neoplasms , Wnt Signaling Pathway , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Genes, Tumor Suppressor , Humans , Neoplasm Invasiveness/genetics , Wnt Signaling Pathway/genetics , beta Catenin/genetics , beta Catenin/metabolism
4.
Trends Biochem Sci ; 45(5): 411-426, 2020 05.
Article in English | MEDLINE | ID: mdl-32311335

ABSTRACT

Iron-sulfur (Fe-S) clusters (ISCs) are ubiquitous cofactors essential to numerous fundamental cellular processes. Assembly of ISCs and their insertion into apoproteins involves the function of complex cellular machineries that operate in parallel in the mitochondrial and cytosolic/nuclear compartments of mammalian cells. The spectrum of diseases caused by inherited defects in genes that encode the Fe-S assembly proteins has recently expanded to include multiple rare human diseases, which manifest distinctive combinations and severities of global and tissue-specific impairments. In this review, we provide an overview of our understanding of ISC biogenesis in mammalian cells, discuss recent work that has shed light on the molecular interactions that govern ISC assembly, and focus on human diseases caused by failures of the biogenesis pathway.


Subject(s)
Iron-Sulfur Proteins/metabolism , Cytosol/metabolism , DNA/metabolism , Mitochondria/metabolism , RNA/metabolism
5.
Cell Biol Int ; 44(5): 1193-1203, 2020 May.
Article in English | MEDLINE | ID: mdl-32039527

ABSTRACT

Dental pulp stem cells (DPSCs) are considered a remarkable source for the regeneration of dental pulp tissues, but their therapeutic effectiveness remains limited, especially in elderly people. Previous studies found that senescence has a negative effect on the proliferation and differentiation potential of DPSCs. Moreover, numerous long non-coding RNA (lncRNA) and messenger RNA were significantly differentially regulated in DPSCs from young and elderly donors. However, the changes in DPSCs protein during senescence have not been addressed. In this study, differences in DPSC protein expression profiles and coexpression of protein and lncRNA were analyzed using proteomics and bioinformatics. The results showed 75 upregulated proteins and 69 downregulated proteins in DPSCs from elderly donors. Vasopressin-regulated water reabsorption, Parkinson's disease, Alzheimer's disease, and protein export were the top four functional pathways associated with DPSCs. High mobility group N1 (HMGN1), HMGN2, UCHL1, and the family with sequence similarity 96 member B homeobox gene (FAM96B) were associated with DPSCs senescence. Then, we investigated FAM96B function in DPSCs. After FAM96B depletion, telomerase reverse transcriptase (TERT) activity decreased, but the number of senescence-associated ß-galactosidase (SA-ß-gal) positive cells and the protein levels of p16, p53 were significantly increased. Gain-of-function assays suggested that FAM96B overexpression was positively correlated with TERT activity, but negatively correlated with the number of SA-ß-gal positive cells and the protein levels of P16 and P53. Moreover, after FAM96B overexpression, the results showed a significant increase in alkaline phosphatase activity and an enhanced mineralization ability of DPSCs. The reverse-transcription polymerase chain reaction results also showed that dentin sialophosphoprotein and osteocalcin were expressed at greater levels. The carboxyfluorescein succinimidyl ester (CFSE) results displayed that FAM96B increased the proliferation potential of DPSCs. Our study revealed candidate proteins that might be related to DPSCs senescence and provided information to elucidate the mechanism of the biological changes in DPSCs' aging. Moreover, FAM96B was demonstrated to play an important role in suppressing DPSCs senescence and promoting osteogenic differentiation and proliferation.


Subject(s)
Aging/metabolism , Cellular Senescence , Dental Pulp/cytology , Metalloproteins/metabolism , Nuclear Proteins/metabolism , Stem Cells/cytology , Adult , Aged , Cell Differentiation , Cell Proliferation , Cells, Cultured , Healthy Volunteers , Humans , Middle Aged , Osteogenesis , Young Adult
6.
Mol Cell ; 75(2): 382-393.e5, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31229404

ABSTRACT

The iron-sensing protein FBXL5 is the substrate adaptor for a SKP1-CUL1-RBX1 E3 ubiquitin ligase complex that regulates the degradation of iron regulatory proteins (IRPs). Here, we describe a mechanism of FBXL5 regulation involving its interaction with the cytosolic Fe-S cluster assembly (CIA) targeting complex composed of MMS19, FAM96B, and CIAO1. We demonstrate that the CIA-targeting complex promotes the ability of FBXL5 to degrade IRPs. In addition, the FBXL5-CIA-targeting complex interaction is regulated by oxygen (O2) tension displaying a robust association in 21% O2 that is severely diminished in 1% O2 and contributes to O2-dependent regulation of IRP degradation. Together, these data identify a novel oxygen-dependent signaling axis that links IRP-dependent iron homeostasis with the Fe-S cluster assembly machinery.


Subject(s)
Cell Cycle Proteins/genetics , F-Box Proteins/genetics , Molecular Chaperones/genetics , Multiprotein Complexes/genetics , Ubiquitin-Protein Ligase Complexes/genetics , Cell Cycle Proteins/chemistry , F-Box Proteins/chemistry , HeLa Cells , Homeostasis , Humans , Iron/metabolism , Iron-Regulatory Proteins/genetics , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/genetics , Molecular Chaperones/chemistry , Multiprotein Complexes/chemistry , Oxygen/metabolism , Proteolysis , Transcription Factors/genetics , Ubiquitin-Protein Ligase Complexes/chemistry
7.
Biochem Biophys Res Commun ; 512(1): 137-143, 2019 04 23.
Article in English | MEDLINE | ID: mdl-30876693

ABSTRACT

Selenoprotien W (SelW) plays a key role in brain development, although the exact biological function and mechanisms remain unclear. We performed a yeast two-hybrid screen on a human fetal brain cDNA library and identified FAM96B as a novel binding partner of SelW. FRET analyses confirmed the interaction between SelW' and FAM96B. The mutated SelW' construct was cloned and overexpressed in E. coli, and a pull-down assay verified a direct interaction between SelW' and FAM96B. Finally, Co-Immunoprecipitation on murine brain tissue proteins demonstrated an endogenous interaction between the two proteins in the brain. Taken together, our findings prove a direct interaction between SelW and FAM96B, which may provide new insights into the role of SelW in brain development and neurodegenerative diseases.


Subject(s)
Brain/metabolism , Metalloproteins/metabolism , Nuclear Proteins/metabolism , Selenoprotein W/metabolism , Animals , Female , Fetus/metabolism , Fluorescence Resonance Energy Transfer , Gene Library , HEK293 Cells , Humans , Metalloproteins/genetics , Mice , Mutation , Nerve Tissue Proteins/metabolism , Nuclear Proteins/genetics , Protein Binding , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Selenoprotein W/genetics , Two-Hybrid System Techniques
8.
Biochem Biophys Res Commun ; 440(1): 20-4, 2013 Oct 11.
Article in English | MEDLINE | ID: mdl-24041693

ABSTRACT

Prelamin A accumulation causes nuclear abnormalities, impairs nuclear functions, and eventually promotes cellular senescence. However, the underlying mechanism of how prelamin A promotes cellular senescence is still poorly understood. Here we carried out a yeast two-hybrid screen using a human skeletal muscle cDNA library to search for prelamin A binding partners, and identified FAM96B as a prelamin A binding partner. The interaction of FAM96B with prelamin A was confirmed by GST pull-down and co-immunoprecipitation experiments. Furthermore, co-localization experiments by fluorescent confocal microscopy revealed that FAM96B colocalized with prelamin A in HEK-293 cells. Taken together, our data demonstrated the physical interaction between FAM96B and prelamin A, which may provide some clues to the mechanisms of prelamin A in premature aging.


Subject(s)
Carrier Proteins/metabolism , Nuclear Proteins/metabolism , Protein Precursors/metabolism , Carrier Proteins/analysis , Cellular Senescence , HEK293 Cells , Humans , Lamin Type A , Metalloproteins , Nuclear Proteins/analysis , Progeria/metabolism , Protein Binding , Protein Interaction Maps , Protein Precursors/analysis , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL