Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 622
Filter
1.
Article in English | MEDLINE | ID: mdl-39088759

ABSTRACT

Chronic kidney disease (CKD) is associated with systemic phosphate elevations, called hyperphosphatemia. Translational studies have shown that hyperphosphatemia contributes to CKD-associated inflammation and injury in various tissues, including the kidney, heart, liver, and parathyroid gland. Mechanisms underlying pathologic actions of elevated phosphate on cells are not well understood but seem to involve uptake of phosphate through sodium-phosphate cotransporters and phosphate-induced signaling via fibroblast growth factor receptor (FGFR) 1. Clinical studies indicate CKD patients are more likely to develop inflammatory and restrictive lung diseases, such as fibrotic interstitial lung diseases, and here we aimed to determine whether hyperphosphatemia can cause lung injury. We found that a mouse model of CKD and hyperphosphatemia, induced by an adenine-rich diet, develops lung fibrosis and inflammation. Elevation of systemic phosphate levels by administration of a high-phosphate diet in a mouse model of primary lung inflammation and fibrosis, induced by bleomycin, exacerbated lung injury in the absence of kidney damage. Our in vitro studies identified increases of proinflammatory cytokines in human lung fibroblasts exposed to phosphate elevations. Phosphate activated extracellular signal related kinase (ERK) 1/2 and protein kinase B (PKB/AKT) signaling, and pharmacological inhibition of ERK, AKT, FGFR1, or sodium-phosphate cotransporters prevented phosphate-induced proinflammatory cytokine upregulation. Additionally, inhibition of FGFR1 or sodium-phosphate cotransporters decreased the phosphate-induced activation of ERK and AKT. Our study suggests that phosphate can directly target lung fibroblasts and induce an inflammatory response and that hyperphosphatemia in CKD and non-CKD models contributes to lung injury. Phosphate-lowering strategies might protect from CKD-associated lung injury.

2.
Bioorg Chem ; 152: 107728, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39178704

ABSTRACT

In the current study, a new series of benzenesulfonamides 6a-r was designed and synthesized as dual VEGFR-2 and FGFR1 kinase inhibitors with anti-cancer activity. The 4-trifluoromethyl benzenesulfonamide 6l exhibited the highest dual VEGFR-2/FGFR1 inhibitory activity with IC50 values of 0.025 and 0.026 µM, respectively. It showed a higher activity than sorafenib and staurosporine by 1.8- and 1.3-fold, respectively. Furthermore, compound 6l was further tested on EGFR and PDGFR-ß kinases showing IC50 values of 0.106 and 0.077 µM, respectively. The target compounds were tested for their anticancer activity against NCI-60 panel of cancer cell lines at 10 µM concentration, where compound 6l displayed the highest mean growth inhibition percent % (GI%) of 60.38%. Compounds 6a, 6b, 6e, 6f, 6h-l, and 6n-r revealed promising GI% on breast cancer cell lines (MCF-7, T-47D, and MDA-MB-231), and were subjected to IC50 determination on these cell lines. The tested compounds showed a higher activity on T-47D and MCF-7 cell lines over MDA-MB-231 cell line compared to the used reference standard; sorafenib. Compounds 6e, 6h-j, 6l and 6o revealed IC50 values ≤ 20 µM against T-47D cell line, furthermore, they were found to be non-cytotoxic on Vero normal cell line. Furthermore, the effect of the most active compounds 6i, and 6l in T-47D cells on cell cycle analysis progression, cell apoptosis, and apoptosis markers was investigated. Both compounds arrested cell cycle progression at G1 phase, furthermore, they enhanced early and late apoptosis, as well as necrosis. The capability of compounds 6i, and 6l to induce apoptosis was further confirmed by their ability to raise BAX/BCl-2 ratio and caspase-3 level in the treated cells. Cell migration assay revealed that both compounds 6i and 6l have anti-migratory effects compared to control T-47D cells after 24, and 48 h. Molecular docking studies for compounds 6a-r on VEGFR-2 and FGFR1 binding sites showed that they exhibit an analogous binding mode in both target kinases which agrees with that of type II kinase inhibitors.

3.
Drug Dev Res ; 85(6): e22249, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39180323

ABSTRACT

Molecular hybridization between diphenyl urea and benzylidene acetohydrazide was adopted for the design of a new series of FGFR-1 targeting cancer. The designed series was synthesized and submitted to NCI-USA to be screened for their growth inhibitory activity on NCI cancer cell lines. Some of the synthesized hybrids displayed promising growth inhibitory activity on NCI cancer cell lines with a mean GI% between 70.39% and a lethal effect. Compounds 9a, 9i, 9j, and 9n-p were further selected for a five-dose assay and all the tested candidates showed promising antiproliferative activity with GI50 reaching the submicromolar range. Encouraged by the potent activity of 9a on colon cancer on the one hand and the well-known overexpression of FGFR-1 in it on the other hand, it was further selected as a representative example to be evaluated for its mechanism on the cell cycle and apoptosis of HCT116 cell line. Interestingly, 9a was found to pause the cell cycle of the HCT116 cell line at the G1 phase and induced late apoptosis. In parallel, all the synthesized hybrids 9a-p were examined for their potential to inhibit FGFR-1 at 10 µM. Compounds 9a, 9g, 9h, and 9p were found to have potent inhibitory activity with % inhibition = 63.04%, 58.31%, 60.87% and 79.84%, respectively. Molecular docking simulation of 9a in the binding pocket of FGFR-1 confirms its capability to achieve the characteristic interactions of the type II FGFR-1 inhibitors. Exploration of the ADME properties of 9a-p by SwissADME web tool proved their satisfactory physicochemical properties for the discovery of new anticancer hits.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Hydrazines , Receptor, Fibroblast Growth Factor, Type 1 , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Benzylidene Compounds/pharmacology , Benzylidene Compounds/chemistry , Benzylidene Compounds/chemical synthesis , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , HCT116 Cells , Hydrazines/pharmacology , Hydrazines/chemistry , Hydrazines/chemical synthesis , Molecular Docking Simulation , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Structure-Activity Relationship
4.
J Endocr Soc ; 8(8): bvae118, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38957656

ABSTRACT

Context: Activation of fibroblast growth factor receptor 1 (FGFR1) signaling improves the metabolic health of animals and humans, while inactivation leads to diabetes in mice. Direct human genetic evidence for the role of FGFR1 signaling in human metabolic health has not been fully established. Objective: We hypothesized that individuals with naturally occurring FGFR1 variants ("experiments of nature") will display glucose dysregulation. Methods: Participants with rare FGFR1 variants and noncarrier controls. Using a recall-by-genotype approach, we examined the ß-cell function and insulin sensitivity of 9 individuals with rare FGFR1 deleterious variants compared to 27 noncarrier controls, during a frequently sampled intravenous glucose tolerance test at the Reproductive Endocrine Unit and the Harvard Center for Reproductive Medicine, Massachusetts General Hospital. FGFR1-mutation carriers displayed higher ß-cell function in the face of lower insulin sensitivity compared to controls. Conclusion: These findings suggest that impaired FGFR1 signaling may contribute to an early insulin resistance phase of diabetes pathogenesis and support the candidacy of the FGFR1 signaling pathway as a therapeutic target for improving the human metabolic health.

5.
Pediatr Dermatol ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967954

ABSTRACT

Cutaneous pyogenic granulomas (PGs) are common, benign vascular tumors of uncertain pathogenesis; however, a growing body of literature suggests that the formation of PGs may be secondary to genetic alterations in both the Ras/Raf/MAPK and PI3K/Akt/mTOR pathways. We present three cases of spontaneous multifocal PGs that first presented in infancy, were not associated with other vascular anomalies or discernable etiology, harbored somatic genetic variants in the Ras/Raf/MAPK pathway (NRAS n = 2, FGFR1 n = 1), were refractory to treatment with beta-blockers and mTOR inhibitors, and responded best to pulsed dye laser. We propose the term "spontaneous multifocal PGs" to describe this entity.

6.
Article in English | MEDLINE | ID: mdl-39023401

ABSTRACT

Objective: [68Ga]Ga-DOTA-FGFR1-peptide is a novel positron emission tomography (PET) radiotracer targeting fibroblast growth factor receptor 1 (FGFR1). This study aimed to evaluate the safety, biodistribution, radiation dosimetry, and imaging potential of [68Ga]Ga-DOTA-FGFR1-peptide. Methods: The FGFR1-targeting peptide DOTA-(PEG2)-KAEWKSLGEEAWHSK was synthesized by manual solid-phase peptide synthesis and high-performance liquid chromatography purification, and labeled with 68Ga with DOTA as chelating agent. We recruited 14 participants and calculated the radiation dose of 4 of these pathologically confirmed nontumor subjects using OLINDA/EXM 2.2.0 software. At the same time, the imaging potential in 10 of these lung cancer patients was evaluated. Results: The biodistribution of [68Ga]Ga-DOTA-FGFR1-peptide in 4 subjects showed the highest uptake in the bladder and kidney. Dosimetry analysis indicated that the bladder wall received the highest effective dose (3.73E-02 mSv/MBq), followed by the lungs (2.36E-03 mSv/MBq) and red bone marrow (2.09E-03 mSv/MBq). No normal organs were found to have excess specific absorbed doses. The average systemic effective dose was 4.97E-02 mSv/MBq. The primary and metastatic tumor lesions were clearly visible on PET/computed tomography (CT) images in 10 patients. Conclusion: Our results indicate that [68Ga]Ga-DOTA-FGFR1-peptide has a good dosimetry profile and can be used safely in humans, and it has significant potential value for clinical PET/CT imaging.

7.
Free Radic Biol Med ; 222: 552-568, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38971541

ABSTRACT

Uveal melanoma (UM) is a rare yet lethal primary intraocular malignancy affecting adults. Analysis of data from The Cancer Genome Atlas (TCGA) database revealed that FGFR1 expression was increased in UM tumor tissues and was linked to aggressive behavior and a poor prognosis. This study assessed the anti-tumor effects of Erdafitinib, a selective pan-FGFR inhibitor, in both in vitro and in vivo UM models. Erdafitinib exhibited a robust anti-cancer activity in UM through inducing ferroptosis in the FGFR1-dependent manner. Transcriptomic data revealed that Erdafitinib mediated its anti-cancer effects via modulating the ferritinophagy/lysosome biogenesis. Subsequent research revealed that Erdafitinib exerted its effects by reducing the expression of FGFR1 and inhibiting the activity of mTORC1 in UM cells. Concurrently, it enhanced the dephosphorylation, nuclear translocation, and transcriptional activity of TFEB. The aggregation of TFEB in nucleus triggered FTH1-dependent ferritinophagy, leading to lysosomal activation and iron overload. Conversely, the overexpression of FGFR1 served to mitigate the effects of Erdafitinib on ferritinophagy, lysosome biogenesis, and the activation of the mTORC1/TFEB signaling pathway. In vivo experiments have convincingly shown that Erdafitinib markedly curtails tumor growth in an UM xenograft mouse model, an effect that is closely correlated with a decrease in FGFR1 expression levels. The present study is the first to demonstrate that Erdafitinib powerfully induces ferroptosis in UM by orchestrating the ferritinophagy and lysosome biogenesis via modulating the FGFR1/mTORC1/TFEB signaling. Consequently, Erdafitinib emerges as a strong candidate for clinical trial investigation, and FGFR1 emerges as a novel and promising therapeutic target in the treatment of UM.


Subject(s)
Ferroptosis , Lysosomes , Mechanistic Target of Rapamycin Complex 1 , Melanoma , Quinoxalines , Receptor, Fibroblast Growth Factor, Type 1 , Signal Transduction , Uveal Neoplasms , Humans , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Animals , Lysosomes/metabolism , Lysosomes/drug effects , Mice , Ferroptosis/drug effects , Ferroptosis/genetics , Melanoma/drug therapy , Melanoma/metabolism , Melanoma/pathology , Melanoma/genetics , Signal Transduction/drug effects , Quinoxalines/pharmacology , Uveal Neoplasms/drug therapy , Uveal Neoplasms/metabolism , Uveal Neoplasms/pathology , Uveal Neoplasms/genetics , Pyrazoles/pharmacology , Cell Line, Tumor , Xenograft Model Antitumor Assays , Gene Expression Regulation, Neoplastic/drug effects , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Cell Proliferation/drug effects , Mice, Nude
8.
Cancer Lett ; 598: 217124, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39059573

ABSTRACT

We previously reported that combined therapy with epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) osimertinib and AXL inhibitor ONO-7475 is effective in preventing the survival of drug-tolerant cells in high-AXL-expressing EGFR-mutated non-small cell lung cancer (NSCLC) cells. Nevertheless, certain residual cells are anticipated to eventually develop acquired resistance to this combination therapy. In this study, we attempted to establish a multidrug combination therapy from the first-line setting to overcome resistance to this combination therapy in high-AXL-expressing EGFR-mutated NSCLC. siRNA screening assay showed that fibroblast growth factor receptor 1 (FGFR1) knockdown induced pronounced inhibition of cell viability in the presence of the osimertinib-ONO-7475 combination, which activates FGFR1 by upregulating FGF2 via the c-Myc pathway. Cell-based assays showed that triple therapy with osimertinib, ONO-7475, and the FGFR inhibitor BGJ398 significantly increased apoptosis by increasing expression of proapoptotic factor Bim and reduced cell viability compared with that observed for the osimertinib-ONO-7475 therapy. Xenograft models showed that triple therapy considerably suppressed tumor regrowth. A novel therapeutic strategy of additional initial FGFR1 inhibition may be highly effective in suppressing the emergence of osimertinib- and ONO-7475-resistant cells.


Subject(s)
Acrylamides , Aniline Compounds , Antineoplastic Combined Chemotherapy Protocols , Axl Receptor Tyrosine Kinase , Carcinoma, Non-Small-Cell Lung , ErbB Receptors , Lung Neoplasms , Proto-Oncogene Proteins , Pyrimidines , Receptor Protein-Tyrosine Kinases , Receptor, Fibroblast Growth Factor, Type 1 , Animals , Female , Humans , Mice , Acrylamides/pharmacology , Aniline Compounds/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Benzocycloheptenes , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Survival/drug effects , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Indoles , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice, Inbred BALB C , Mice, Nude , Mutation , Phenylurea Compounds/pharmacology , Phenylurea Compounds/administration & dosage , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Pyrimidines/pharmacology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/genetics , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Triazoles , Xenograft Model Antitumor Assays
9.
Neurooncol Adv ; 6(1): vdae074, 2024.
Article in English | MEDLINE | ID: mdl-38903142

ABSTRACT

Background: Fibroblast growth factor receptor 1 (FGFR1) mutations have been associated with poorer prognoses in pediatric central nervous system tumor patients. A recent study highlighted a link between FGFR1 mutations and spontaneous intracranial hemorrhage (ICH), demonstrating that all patients with an FGFR1 alteration experienced hemorrhage at some point during their course of treatment. Methods: The current study examined 50 out of 67 pediatric patients with low-grade gliomas (LGGs) who had genomic testing between 2011 and 2022 at our institution to determine whether a correlation exists between FGFR1 mutations and spontaneous ICH. Results: We found that of the 50 patients with genomic data, 7 (14%) experienced ICH, and an additional spontaneous hemorrhage was recorded; however, no genomic testing was performed for this case. Five of the seven patients (71.4%) had an FGFR1 modification. In our patient population, 6 expressed a detectable FGFR1 mutation (66.7% [4/6] had N546K alteration, 16.7% [1/6] FGFR1 exons duplication, and 16.7% [1/6] had a variant of unknown significance [VUS]). The patient with the FGFR1 VUS had no reported spontaneous hemorrhage. Statistical analysis found a significant association between FGFR1 and spontaneous intracranial hemorrhage (P-value = < .0001). In the patient population, all cases of PTPN11 alterations (n = 3) co-occurred with FGFR1 mutations. Conclusions: Our case series highlights this link between the FGFR1 mutation and spontaneous intracranial hemorrhage in pediatric LGGs.

10.
Dev Cell ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38942017

ABSTRACT

Recent advances in human genetics have shed light on the genetic factors contributing to inflammatory diseases, particularly Crohn's disease (CD), a prominent form of inflammatory bowel disease. Certain risk genes associated with CD directly influence cytokine biology and cell-specific communication networks. Current CD therapies primarily rely on anti-inflammatory drugs, which are inconsistently effective and lack strategies for promoting epithelial restoration and mucosal balance. To understand CD's underlying mechanisms, we investigated the link between CD and the FGFR1OP gene, which encodes a centrosome protein. FGFR1OP deletion in mouse intestinal epithelial cells disrupted crypt architecture, resulting in crypt loss, inflammation, and fatality. FGFR1OP insufficiency hindered epithelial resilience during colitis. FGFR1OP was crucial for preserving non-muscle myosin II activity, ensuring the integrity of the actomyosin cytoskeleton and crypt cell adhesion. This role of FGFR1OP suggests that its deficiency in genetically predisposed individuals may reduce epithelial renewal capacity, heightening susceptibility to inflammation and disease.

11.
Front Cell Dev Biol ; 12: 1358583, 2024.
Article in English | MEDLINE | ID: mdl-38827528

ABSTRACT

Breast cancer metastases exhibit many different genetic alterations, including copy number amplifications (CNA). CNA are genetic alterations that are increasingly becoming relevant to breast oncology clinical practice. Here we identify CNA in metastatic breast tumor samples using publicly available datasets and characterize their expression and function using a metastatic mouse model of breast cancer. Our findings demonstrate that our organoid generation can be implemented to study clinically relevant features that reflect the genetic heterogeneity of individual tumors.

12.
Bioorg Chem ; 150: 107553, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38901279

ABSTRACT

The overexpression of FGFR1 is thought to significantly contribute to the progression of triple-negative breast cancer (TNBC), impacting aspects such as tumorigenesis, growth, metastasis, and drug resistance. Consequently, the pursuit of effective inhibitors for FGFR1 is a key area of research interest. In response to this need, our study developed a hybrid virtual screening method. Utilizing KarmaDock, an innovative algorithm that blends deep learning with molecular docking, alongside Schrödinger's Residue Scanning. This strategy led us to identify compound 6, which demonstrated promising FGFR1 inhibitory activity, evidenced by an IC50 value of approximately 0.24 nM in the HTRF bioassay. Further evaluation revealed that this compound also inhibits the FGFR1 V561M variant with an IC50 value around 1.24 nM. Our subsequent investigations demonstrate that Compound 6 robustly suppresses the migration and invasion capacities of TNBC cell lines, through the downregulation of p-FGFR1 and modulation of EMT markers, highlighting its promise as a potent anti-metastatic therapeutic agent. Additionally, our use of molecular dynamics simulations provided a deeper understanding of the compound's specific binding interactions with FGFR1.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Molecular Dynamics Simulation , Protein Kinase Inhibitors , Receptor, Fibroblast Growth Factor, Type 1 , Triple Negative Breast Neoplasms , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Cell Proliferation/drug effects , Drug Discovery , Cell Movement/drug effects , Molecular Docking Simulation , Cell Line, Tumor , Drug Evaluation, Preclinical
13.
Phytomedicine ; 132: 155780, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38885580

ABSTRACT

BACKGROUND: The suppression of the fibroblast growth factor 21/fibroblast growth factor receptor 1 (FGF21/FGFR1) signaling pathway is considered as a vital factor in the type 2 diabetes mellitus (T2DM) progression. Our previous study showed that gentiopicroside (GPS), the main active compound present in Gentiana macrophylla Pall., has the capacity to control disorders related to glucose and lipid metabolism in individuals with T2DM. Nevertheless, the specific mechanism remains unclear. PURPOSE: In light of the fact that the PharmMapper database suggests FGFR1 as the target of GPS, our investigation aims to determine if GPS can enhance glucose and lipid metabolism issues in T2DM by modulating the FGF21/FGFR1 signaling pathway. METHODS: In this study, we used palmitic acid (PA)-induced HepG2 cells and db/db mice to investigate the function and mechanism of GPS in the FGF21/FGFR1 signaling pathway. To examine the interaction between GPS and FGFR1, researchers performed Cellular Thermal Shift Assay (CETSA) and Surface Plasmon Resonance (SPR) analysis. RESULTS: The results suggest that GPS activates the traditional metabolic pathways, including PI3K/AKT and AMPK, which are the subsequent stages of the FGF21/FGFR1 pathway. This activation leads to the enhancement of glucose and lipid metabolism issues in PA-treated HepG2 cells and db/db mice. Furthermore, the depletion of FGFR1 has been noticed to oppose the stimulation of PI3K/AKT and AMPK pathways by GPS in HepG2 cells subjected to PA. Notability, our research affirms that GPS binds directly to FGFR1, hindering the ubiquitinated degradation of FGFR1 by neural precursor cells expressing developmentally decreased protein 4 (NEDD4) and ultimately promoting FGF21 signal transduction. CONCLUSION: This study demonstrates that GPS targeting FGFR1 activates the PI3K/AKT and AMPK pathways, which is an important mechanism for its treatment of T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Fibroblast Growth Factors , Iridoid Glucosides , Lipid Metabolism , Receptor, Fibroblast Growth Factor, Type 1 , Signal Transduction , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Animals , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Fibroblast Growth Factors/metabolism , Signal Transduction/drug effects , Hep G2 Cells , Iridoid Glucosides/pharmacology , Lipid Metabolism/drug effects , Mice , Male , Glucose/metabolism , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism
14.
Curr Med Chem ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38847254

ABSTRACT

BACKGROUP: Bis-chalcone compounds with symmetrical structures, either isolated from natural products or chemically synthesized, have multiple pharmacological activities. Asymmetric Bis-chalcone compounds have not been reported before, which might be attributed to the synthetic challenges involved, and it remains unknown whether these compounds possess any potential pharmacological activities. AIMS: The aim of this study is to investigate the synthesis route of asymmetric bis-chalcone compounds and identify potential candidates with efficient anti-tumor activity. METHOD: The two-step structural optimization of the bis-chalcone compounds was carried out sequentially, guided by the screening of the compounds for their growth inhibitory activity against gastric cancer cells by MTT assay. The QSAR model of compounds was established through random forest (RF) algorithm. The activities of the optimal compound J3 on growth inhibition, apoptosis, and apoptosis-inducing protein expression in gastric cancer cells were investigated sequentially by colony formation assay, flow cytometry, and western blotting. Further, the inhibitory effects of J3 on the FGFR1 signaling pathway were explored by Wester Blotting, siRNA, and MTT assays. Finally, the in vivo anti-tumor activity and mechanism of J3 were studied through nude mouse xenograft assay, western blotting. RESULT: 27 asymmetric bis-chalcone compounds, including two types (N and J) were sequentially designed and synthesized. Some N-class compounds have good inhibitory activity on the growth of gastric cancer cells. The vast majority of J-class compounds optimized on the basis of N3 exhibit excellent inhibitory activity on gastric cancer cell growth. We established a QSAR model (R2 = 0.851627) by applying random forest algorithms. The optimal compound J3, which has better activity, concentration-dependently inhibited the formation of gastric cancer cell colonies and led to cell apoptosis by inducing the expression of the pro-apoptotic protein cleaved PARP. J3 may exert anti-gastric cancer effects by inhibiting the activation of FGFR1/ERK pathway. Moreover, at a dose of 10 mg/kg/day, J3 inhibited tumor growth in nude mice by nearly 70% in vivo with no significant toxic effect on body weight and organs. CONCLUSION: In summary, this study outlines a viable method for the synthesis of novel asymmetric bischalcone compounds. Furthermore, the compound J3 demonstrates substantial promise as a potential candidate for an anti-tumor drug.

15.
Cardiovasc Res ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842387

ABSTRACT

BACKGROUND: Atherosclerosis is a leading cause of cardiovascular morbidity and mortality. Atherosclerotic lesions show increased levels of proteins associated with the fibroblast growth factor receptor (FGFR) pathway. However, the functional significance and mechanisms governed by FGFR signaling in atherosclerosis are not known. In the present study, we investigated FGFR1 signaling in atherosclerosis development and progression. METHODS AND RESULTS: Examination of human atherosclerotic lesions and aortas of Apoe-/- mice fed a high-fat diet (HFD) showed increased levels of FGFR1 in macrophages. We deleted myeloid-expressed Fgfr1 in Apoe-/- mice and showed that Fgfr1 deficiency reduces atherosclerotic lesions and lipid accumulations in both male and female mice upon HFD feeding. These protective effects of myeloid Fgfr1 deficiency were also observed when mice with intact FGFR1 were treated with FGFR inhibitor AZD4547. To understand the mechanistic basis of this protection, we harvested macrophages from mice and show that FGFR1 is required for macrophage inflammatory responses and uptake of oxidized LDL. RNA sequencing showed that FGFR1 activity is mediated through phospholipase-C-gamma (PLCγ) and the activation of nuclear factor-κB (NF-κB) but is independent of FGFR substrate 2. CONCLUSION: Our study provides evidence of a new FGFR1-PLCγ- NF-κB axis in macrophages in inflammatory atherosclerosis, supporting FGFR1 as a potentially therapeutic target for atherosclerosis-related diseases.

16.
Exp Hematol Oncol ; 13(1): 49, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730491

ABSTRACT

BACKGROUND: Leukemias driven by activated, chimeric FGFR1 kinases typically progress to AML which have poor prognosis. Mouse models of this syndrome allow detailed analysis of cellular and molecular changes occurring during leukemogenesis. We have used these models to determine the effects of leukemia development on the immune cell composition in the leukemia microenvironment during leukemia development and progression. METHODS: Single cell RNA sequencing (scRNA-Seq) was used to characterize leukemia associated neutrophils and define gene expression changes in these cells during leukemia progression. RESULTS: scRNA-Seq revealed six distinct subgroups of neutrophils based on their specific differential gene expression. In response to leukemia development, there is a dramatic increase in only two of the neutrophil subgroups. These two subgroups show specific gene expression signatures consistent with neutrophil precursors which give rise to immature polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). Analysis of gene expression in these precursor cells identified pathways that were specifically upregulated, the most pronounced of which involved matrix metalloproteinases Mmp8 and Mmp9, during leukemia progression. Pharmacological inhibition of MMPs using Ilomastat preferentially restricted in vitro migration of neutrophils from leukemic mice and led to a significantly improved survival in vivo, accompanied by impaired PMN-MDSC recruitment. As a result, levels of T-cells were proportionally increased. In clinically annotated TCGA databases, MMP8 was shown to act as an independent indicator for poor prognosis and correlated with higher neutrophil infiltration and poor pan-cancer prognosis. CONCLUSION: We have defined specific leukemia responsive neutrophil subgroups based on their unique gene expression profile, which appear to be the precursors of neutrophils specifically associated with leukemia progression. An important event during development of these neutrophils is upregulation MMP genes which facilitated mobilization of these precursors from the BM in response to cancer progression, suggesting a possible therapeutic approach to suppress the development of immune tolerance.

17.
Transl Res ; 271: 93-104, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38797433

ABSTRACT

Hepatopulmonary syndrome (HPS) is a serious pulmonary complication in the advanced stage of liver disease. The occurrence of pulmonary edema in HPS patients is life-threatening. Increased pulmonary vascular permeability is an important mechanism leading to pulmonary edema, and endothelial glycocalyx (EG) is a barrier that maintains stable vascular permeability. However, in HPS, whether the pulmonary vascular EG changes and its regulatory mechanism are still unclear. Spleen derived monocytes are involved in the pathogenesis of HPS. However, whether they regulate the pulmonary vascular permeability in HPS patients or rats and what is the mechanism is still unclear. Healthy volunteers and HPS patients with splenectomy or not were enrolled in this study. We found that the respiration of HPS patients was significantly improved in response to splenectomy, while the EG degradation and pulmonary edema were aggravated. In addition, HPS patients expressed higher levels of oncostatin M (OSM) and fibroblast growth factor (FGF). Subsequently, the co-culture system of monocytes and human umbilical vein endothelial cells (HUVECs) was constructed. It was found that monocytes secreted OSM and activated the FGF/FGFR1 signaling pathway in HUVECs. Then, an HPS rat model was constructed by common bile duct ligation (CBDL) for in vivo verification. HPS rats were intravenously injected with OSM recombinant protein and/or TNF-α into the rats via tail vein 30 min before CBDL. The results showed that the respiration of HPS rats was improved after splenectomy, while the degradation of EG in pulmonary vessels and vascular permeability were increased, and pulmonary edema was aggravated. Moreover, the expression of OSM and FGF was upregulated in HPS rats, while both were downregulated after splenectomy. Intravenous injection of exogenous OSM eliminated the effect of splenectomy on FGF and improved EG degradation. It can be seen that during HPS, spleen-derived monocytes secrete OSM to promote pulmonary vascular EG remodeling by activating the FGF/FGFR1 pathway, thereby maintaining stable vascular permeability, and diminishing pulmonary edema. This study provides a promising therapeutic target for the treatment of HPS.


Subject(s)
Capillary Permeability , Hepatopulmonary Syndrome , Monocytes , Oncostatin M , Receptor, Fibroblast Growth Factor, Type 1 , Signal Transduction , Spleen , Animals , Humans , Hepatopulmonary Syndrome/metabolism , Male , Monocytes/metabolism , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Spleen/metabolism , Oncostatin M/metabolism , Fibroblast Growth Factors/metabolism , Rats , Human Umbilical Vein Endothelial Cells/metabolism , Splenectomy , Rats, Sprague-Dawley , Lung/metabolism , Lung/blood supply , Female , Middle Aged , Adult , Glycocalyx/metabolism
18.
Cell Commun Signal ; 22(1): 270, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750548

ABSTRACT

Fibroblast growth factor receptor 1 (FGFR1) is a N-glycosylated cell surface receptor tyrosine kinase, which upon recognition of specific extracellular ligands, fibroblast growth factors (FGFs), initiates an intracellular signaling. FGFR1 signaling ensures homeostasis of cells by fine-tuning essential cellular processes, like differentiation, division, motility and death. FGFR1 activity is coordinated at multiple steps and unbalanced FGFR1 signaling contributes to developmental diseases and cancers. One of the crucial control mechanisms over FGFR1 signaling is receptor endocytosis, which allows for rapid targeting of FGF-activated FGFR1 to lysosomes for degradation and the signal termination. We have recently demonstrated that N-glycans of FGFR1 are recognized by a precise set of extracellular galectins, secreted and intracellular multivalent lectins implicated in a plethora of cellular processes and altered in immune responses and cancers. Specific galectins trigger FGFR1 clustering, resulting in activation of the receptor and in initiation of intracellular signaling cascades that shape the cell physiology. Although some of galectin family members emerged recently as key players in the clathrin-independent endocytosis of specific cargoes, their impact on endocytosis of FGFR1 was largely unknown.Here we assessed the contribution of extracellular galectins to the cellular uptake of FGFR1. We demonstrate that only galectin-1 induces internalization of FGFR1, whereas the majority of galectins predominantly inhibit endocytosis of the receptor. We focused on three representative galectins: galectin-1, -7 and -8 and we demonstrate that although all these galectins directly activate FGFR1 by the receptor crosslinking mechanism, they exert different effects on FGFR1 endocytosis. Galectin-1-mediated internalization of FGFR1 doesn't require galectin-1 multivalency and occurs via clathrin-mediated endocytosis, resembling in this way the uptake of FGF/FGFR1 complex. In contrast galectin-7 and -8 impede FGFR1 endocytosis, causing stabilization of the receptor on the cell surface and prolonged propagation of the signals. Furthermore, using protein engineering approaches we demonstrate that it is possible to modulate or even fully reverse the endocytic potential of galectins.


Subject(s)
Endocytosis , Galectin 1 , Galectins , Receptor, Fibroblast Growth Factor, Type 1 , Animals , Humans , Galectin 1/metabolism , Galectin 1/genetics , Galectins/metabolism , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Signal Transduction
19.
Front Vet Sci ; 11: 1375329, 2024.
Article in English | MEDLINE | ID: mdl-38799725

ABSTRACT

Introduction: The reduction of nitrogen (N) and phosphorus (P) in ruminant feed is desirable due to costs and negative environmental impact. Ruminants are able to utilize N and P through endogenous recycling, particularly in times of scarcity. When N and/or P were reduced, changes in mineral homeostasis associated with modulation of renal calcitriol metabolism occurred. The aim of this study was to investigate the potential effects of dietary N- and/or P-reduction on the regulatory mechanisms of mineral transport in the kidney and its hormonal regulation in young goats. Results: During N-reduction, calcium (Ca) and magnesium (Mg) concentrations in blood decreased, accompanied by a lower protein expression of cytochrome P450 family 27 subfamily B member 1 (CYP27B1) (p = 0.016). The P-reduced fed goats had low blood phosphate concentrations with simultaneously high Ca and Mg levels. The insulin-like growth factor 1 concentrations decreased significantly with P-reduction. Furthermore, gene expression of CYP27B1 (p < 0.001) and both gene (p = 0.025) and protein (p = 0.016) expression of the fibroblast growth factor receptor 1c isoform in the kidney were also significantly reduced during a P-reduced diet. ERK1/2 activation exhibited a trend toward reduction in P-reduced animals. Interestingly, calcitriol concentrations remained unaffected by either restriction individually, but interacted significantly with N and P (p = 0.014). Additionally, fibroblast growth factor 23 mRNA expression in bone decreased significantly with P-restriction (p < 0.001). Discussion: These results shed light on the complex metabolic and regulatory responses of mineral transport of young goats to dietary N and P restriction.

20.
Genes Chromosomes Cancer ; 63(4): e23232, 2024 04.
Article in English | MEDLINE | ID: mdl-38607246

ABSTRACT

The wide application of RNA sequencing in clinical practice has allowed the discovery of novel fusion genes, which have contributed to a refined molecular classification of rhabdomyosarcoma (RMS). Most fusions in RMS result in aberrant transcription factors, such as PAX3/7::FOXO1 in alveolar RMS (ARMS) and fusions involving VGLL2 or NCOA2 in infantile spindle cell RMS. However, recurrent fusions driving oncogenic kinase activation have not been reported in RMS. Triggered by an index case of an unclassified RMS (overlapping features between ARMS and sclerosing RMS) with a novel FGFR1::ANK1 fusion, we reviewed our molecular files for cases harboring FGFR1-related fusions. One additional case with an FGFR1::TACC1 fusion was identified in a tumor resembling embryonal RMS (ERMS) with anaplasia, but with no pathogenic variants in TP53 or DICER1 on germline testing. Both cases occurred in males, aged 7 and 24, and in the pelvis. The 2nd case also harbored additional alterations, including somatic TP53 and TET2 mutations. Two additional RMS cases (one unclassified, one ERMS) with FGFR1 overexpression but lacking FGFR1 fusions were identified by RNA sequencing. These two cases and the FGFR1::TACC1-positive case clustered together with the ERMS group by RNAseq. This is the first report of RMS harboring recurrent FGFR1 fusions. However, it remains unclear if FGFR1 fusions define a novel subset of RMS or alternatively, whether this alteration can sporadically drive the pathogenesis of known RMS subtypes, such as ERMS. Additional larger series with integrated genomic and epigenetic datasets are needed for better subclassification, as the resulting oncogenic kinase activation underscores the potential for targeted therapy.


Subject(s)
Rhabdomyosarcoma, Alveolar , Rhabdomyosarcoma, Embryonal , Rhabdomyosarcoma , Male , Humans , Adult , Child , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma, Embryonal/genetics , Epigenomics , Genomics , Ribonuclease III , DEAD-box RNA Helicases , Receptor, Fibroblast Growth Factor, Type 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL