Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 445
Filter
1.
Front Cell Dev Biol ; 12: 1412236, 2024.
Article in English | MEDLINE | ID: mdl-39114568

ABSTRACT

Background: Familial hypercholesterolemia (FH) is an autosomal dominant disorder characterized by increased LDL-cholesterol levels. About 85% of FH cases are caused by LDLR mutations encoding the low-density lipoprotein receptor (LDLR). LDLR is synthesized in the endoplasmic reticulum (ER) where it undergoes post-translational modifications and then transported through Golgi apparatus to the plasma membrane. Over 2900 LDLR variants have been reported in FH patients with limited information on the pathogenicity and functionality of many of them. This study aims to elucidate the cellular trafficking and functional implications of LDLR missense variants identified in suspected FH patients using biochemical and functional methods. Methods: We used HeLa, HEK293T, and LDLR-deficient-CHO-ldlA7 cells to evaluate the subcellular localization and LDL internalization of ten LDLR missense variants (p.C167F, p.D178N, p.C243Y, p.E277K, p.G314R, p.H327Y, p.D477N, p.D622G, p.R744Q, and p.R814Q) reported in multiethnic suspected FH patients. We also analyzed the functional impact of three variants (p.D445E, p.D482H, and p.C677F), two of which previously shown to be retained in the ER. Results: We show that p.D622G, p.D482H, and p.C667F are largely retained in the ER whereas p.R744Q is partially retained. The other variants were predominantly localized to the plasma membrane. LDL internalization assays in CHO-ldlA7 cells indicate that p.D482H, p.C243Y, p.D622G, and p.C667F have quantitatively lost their ability to internalize Dil-LDL with the others (p.C167F, p.D178N, p.G314R, p.H327Y, p.D445E, p.D477N, p.R744Q and p.R814Q) showing significant losses except for p.E277K which retained full activity. However, the LDL internalization assay is only to able evaluate the impact of the variants on LDL internalization and not the exact functional defects such as failure to bind LDL. The data represented illustrate the hypomorphism nature of variants causing FH which may explain some of the variable expressivity of FH. Conclusion: Our combinatorial approach of in silico, cellular, and functional analysis is a powerful strategy to determine pathogenicity and FH disease mechanisms which may provide opportunitites for novel therapeutic strategies.

2.
J Community Genet ; 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39126536

ABSTRACT

Familial Hypercholesterolemia (FH) is an inherited disorder that significantly increases an individual's risk of developing premature cardiovascular disease (CVD). Early intervention involving lifestyle modification and medication is crucial in preventing CVD. Prior studies have shown that lipid-lowering therapy in children is safe and effective. Despite FH being a treatable and manageable condition, the condition is still underdiagnosed and undertreated. Universal lipid screening (ULS) in children has been recommended by some medical experts in the United States as a strategy to identify cases of FH and maximize the benefits of early invention. However, lipid screening is not routinely offered in pediatric clinics. This study aimed to explore parental experience with FH diagnosis in their children, identify key facilitators and barriers in children's diagnosis and care, and examine parental perspectives on ULS in children in the United States. A total of fourteen semi-structured interviews were conducted with participants recruited through the Family Heart Foundation. Thematic analysis identified three key themes: role of family history in facilitating child's FH diagnosis, barriers and challenges in post-diagnosis care, and attitudes towards ULS in children. All participants supported ULS in children and emphasized the value of early diagnosis and treatment for FH. However, a lack of guidance or referral after the child's diagnosis was a concern raised by many participants. This underscores the need for accessible and comprehensive care amid ongoing efforts to increase pediatric diagnosis of FH.

3.
Front Immunol ; 15: 1447991, 2024.
Article in English | MEDLINE | ID: mdl-39136026

ABSTRACT

Background: Factor H (FH) is a major soluble inhibitor of the complement system and part of a family comprising five related proteins (FHRs 1-5). Deficiency of FHR1 was described to be linked to an elevated risk of systemic lupus erythematosus (SLE). As FHR1 can partially antagonize the functionality of FH, an altered FHR1/FH ratio could not only enhance SLE vulnerability but also affect the disease expression. This study focuses on the analysis of FH and FHR1 at a protein level, and the occurrence of anti-FH autoantibodies (anti-FH) in a large cohort of SLE patients to explore their association with disease activity and/or expression. Methods: We assessed FH and FHR1 levels in plasma from 378 SLE patients compared to 84 healthy controls (normal human plasma, NHP), and sera from another cohort of 84 healthy individuals (normal human serum, NHS), using RayBio® CFH and CFHR1 ELISA kits. Patients were recruited by the Swiss SLE Cohort Study (SSCS). Unmeasurable FHR1 levels were all confirmed by Western blot, and in a subgroup of patients by PCR. Anti-FH were measured in SLE patients with non-detectable FHR1 levels and matched control patients using Abnova's CFH IgG ELISA kit. Results: Overall, FH and FHR1 levels were significantly higher in healthy controls, but there was no significant difference in FHR1/FH ratios between SLE patients and NHPs. However, SLE patients showed a significantly higher prevalence of undetectable FHR1 compared to all healthy controls (35/378 SLE patients versus 6/168 healthy controls; p= 0.0214, OR=2.751, 95% CI = 1.115 - 8.164), with a consistent trend across all ethnic subgroups. Levels of FH and FHR1, FHR1/FH ratios and absence of FHR1 were not consistently associated with disease activity and/or specific disease manifestations, but absence of FHR1 (primarily equivalent to CFHR1 deficiency) was linked to the presence of anti-FH in SLE patients (p=0.039). Conclusions: Deficiency of FHR1 is associated with a markedly elevated risk of developing SLE. A small proportion of FHR1-deficient SLE patients was found to have autoantibodies against FH but did not show clinical signs of microangiopathy.


Subject(s)
Autoantibodies , Complement Factor H , Lupus Erythematosus, Systemic , Humans , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/blood , Female , Male , Complement Factor H/metabolism , Complement Factor H/immunology , Adult , Autoantibodies/blood , Autoantibodies/immunology , Middle Aged , Complement C3b Inactivator Proteins/genetics , Young Adult , Aged , Case-Control Studies , Adolescent , Blood Proteins
4.
Article in English | MEDLINE | ID: mdl-39138786

ABSTRACT

We present a real-life case of a very young man with multiple risk factors who progressed rapidly from minimally obstructive non-calcified plaque on computed tomography angiography (CCTA) to severe three-vessel coronary disease presenting with STEMI. It questions the reliability of zero coronary calcium in high-risk subgroups like familial hypercholesterolemia, high Lp(a), and the young. While CCTA can accurately visualize non-calcified plaque, its interpretation requires expertise and clinical judgment should consider both imaging and clinical risk factors for management. Advanced plaque quantification, peri-coronary (PCAT), and epicardial (EAT) adipose tissue could help better-stratified patients but the evidence-based clinical application remains unknown.

5.
Exp Neurol ; : 114919, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39142370

ABSTRACT

Oxidative stress can impair the endothelial barrier and thereby enable autoantibody migration in Neuromyelitis optica spectrum disorder (NMOSD). Tissue-specific vulnerability to autoantibody-mediated damage could be explained by a differential, tissue-dependent endothelial susceptibility to oxidative stress. In this study, we aim to investigate the barrier integrity and complement profiles of brain and retinal endothelial cells under oxygen-induced oxidative stress to address the question of whether the pathomechanism of NMOSD preferentially affects the brain or the retina. Primary human brain microvascular endothelial cells (HBMEC) and primary human retinal endothelial cells (HREC) were cultivated at different cell densities (2.5*104 to 2*105 cells/cm2) for real-time cell analysis. Both cell types were exposed to 100, 500 and 2500 µM H2O2. Immunostaining (CD31, VE-cadherin, ZO-1) and Western blot, as well as complement protein secretion using multiplex ELISA were performed. HBMEC and HREC cell growth phases were cell type-specific. While HBMEC cell growth could be categorized into an initial peak, proliferation phase, plateau phase, and barrier breakdown phase, HREC showed no proliferation phase, but entered the plateau phase immediately after an initial peak. The plateau phase was 7 h shorter in HREC. Both cell types displayed a short-term, dose-dependent adaptive response to H2O2. Remarkably, at 100 µM H2O2, the transcellular resistance of HBMEC exceeded that of untreated cells. 500 µM H2O2 exerted a more disruptive effect on the HBMEC transcellular resistance than on HREC. Both cell types secreted complement factors H (FH) and I (FI), with FH secretion remaining stable after 2 h, but FI secretion decreasing at higher H2O2 concentrations. The observed differences in resistance to oxidative stress between primary brain and retinal endothelial cells may have implications for further studies of NMOSD and other autoimmune diseases affecting the eye and brain. These findings may open novel perspectives for the understanding and treatment of such diseases.

6.
Front Pharmacol ; 15: 1373020, 2024.
Article in English | MEDLINE | ID: mdl-38974045

ABSTRACT

FH-deficient Renal Cell Carcinoma (FH-deficient RCC) are inherited tumors caused by mutations in the fumarate hydratase (FH) gene, which plays a role in the tricarboxylic acid cycle. These mutations often result in aggressive forms of renal cell carcinoma (RCC) and other tumors. Here, we present a case of FH-deficient RCC in a 43-year-old woman with a history of uterine fibroids. She exhibited a new heterozygous mutation in exon six of the FH gene (c.799_803del, c.781_796del). The patient had multiple bone metastases and small subcutaneous nodules in various areas such as the shoulders, back, and buttocks. Biopsy of a subcutaneous nodule on the right side revealed positive expression of 2-succinate-cysteine (2SC), and FH staining indicated FH expression deletion. The patient underwent treatment with a combination of erlotinib and bevacizumab, which resulted in significant efficacy with moderate side effects. This treatment combination may be recommended as a standard regimen. This case underscores the importance of genetic testing in patients with advanced renal cancer to enhance diagnostic accuracy. Furthermore, it provides insights into potential treatment approaches for FH-deficient RCC.

7.
Transl Cancer Res ; 13(6): 3126-3141, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988939

ABSTRACT

Background and Objective: This review aims to investigate the ferroptosis mechanism of fumarate hydratase (FH)-related tumors for the purpose of possible treatment of tumors. Ferroptosis is an iron (Fe)-dependent form of regulated cell death caused by lipid peroxidation on the cell membrane. Studies have implicated FH in tumorigenesis. As mutations in the FH gene alter cellular metabolism and increase tumorigenesis risk, particularly in the kidneys. As most tumor cells require higher amounts of ferrous ions (Fe2+) than normal cells, they are more susceptible to ferroptosis. Recent studies have indicated that ferroptosis is inhibited the pathogenesis and progression of FH-deficient tumors by regulating lipid and iron metabolism, glutathione-glutathione peroxidase 4 (GSH-GPX4), nuclear factor-erythroid 2-related factor 2 (NRF2)/heme oxygenase-1 (HO-1) pathways. While the Fe2+ content is significantly lower in FH-deficient tumor cells, than that in normal cells. It is promising to promote ferroptosis by increasing the concentration of Fe2+ in cells to achieve the purpose of tumor treatment. Methods: In this study, we searched for relevant articles on ferroptosis and FH-deficient tumors using PubMed database. Key Content and Findings: FH is a tumor suppressor. A number of basic studies have shown that the loss of FH plays an important role in hereditary leiomyomas and tumors such as renal cell carcinoma, ovarian cancer, and other tumors. This type of tumor cells can through induce ferroptosis, inhibit proliferation, migration and invasion of tumor cells, increase the sensitivity of tumor cells to chemotherapy, and reverse the drug resistance through various molecular mechanisms. At present, the research on ferroptosis in FH-related tumors is still in the basic experimental stage. Conclusions: This article reviews the anti-tumor effects and mechanisms of FH and ferroptosis, in order to further explore the medical value of ferroptosis in FH-related tumor therapy.

8.
Article in English | MEDLINE | ID: mdl-38994621

ABSTRACT

BACKGROUND: Thyroid cancer is a rare but increasingly prevalent form of cancer worldwide. The development and progression of thyroid cancer are associated with mitochondrial instability, which refers to alterations in the structure, function, and energy status of mitochondria. These alterations lead to an imbalance in mitochondrial metabolism, causing cellular damage and apoptosis. However, the molecular mechanisms underlying mitochondrial instability and thyroid cancer remain poorly understood. OBJECTIVE: This study aimed to explore the molecular mechanism of delaying the progression of thyroid cancer by regulating mitochondrial homeostasis through fumarate 1-mediated PGC-1α in vitro. METHODS: Human papillary thyroid carcinoma cell lines (TPC-1 and K-1) and a normal thyroid cell line (Nthy-ori 3-1) were cultured in this study. TPC-1 cells and K-1 cells were separately transfected with oveRNA-FH1 and oveRNA-NC, designated as the oveRNA-FH1 group, oveRNA- NC group, TPC-1 group, and Nthy-ori 3-1 group. Various assays were performed to assess cell viability, proliferation capacity, invasion and migration abilities, as well as mitochondrial morphology changes and the expression of relevant factors. qRT-PCR and Western blot analysis were carried out to analyze the expression changes of PGC-1α, mitochondrial dynamics-related factors, and pyroptosis genes. The goal of these experiments was to evaluate the impact of FH1 on mitochondrial instability and elucidate the specific mechanisms underlying thyroid cancer and mitochondrial instability. RESULTS: The results of this study demonstrated that FH1 expression was significantly downregulated in thyroid papillary carcinoma cell lines compared to the normal thyroid cell line. Overexpression of FH1 reduced cell viability and inhibited cell proliferation rate in TPC-1 cells. Furthermore, FH1 overexpression suppressed cell invasion and migration abilities. Abnormal mitochondrial morphological changes were observed in TPC-1 and K-1 cells, whereas FH1 overexpression resulted in relatively normal mitochondria. FH1 overexpression also affected the expression of fusion and fission genes, promoting fission and inhibiting fusion in thyroid cancer cells. Moreover, FH1 overexpression led to increased inflammation and pyroptosis. These conclusions were further verified by in vitro tumor formation experiments. CONCLUSION: FH1 promoted thyroid cancer progression by regulating mitochondrial homeostasis via the PGC-1α-dependent pathway, which affected pyroptosis and apoptosis.

9.
Med Clin (Barc) ; 2024 Jul 12.
Article in English, Spanish | MEDLINE | ID: mdl-39003116

ABSTRACT

INTRODUCTION: Lupus nephritis (LN) is a disease marked by autoantibodies against complement components. Autoantibodies against negative complement regulator factor H (anti-FH) are prevalent in aHUS, are associated with deletion of factor H-related protein 1 (FHR1) gene, and have overt functional consequences. They are also observed in C3 glomerulopathies. The frequency and relevance of anti-FH in LN are poorly studied. AIM: The aim of our investigation was to screen for the presence of anti-FH and FHR1 gene deletion in a cohort of LN patients and to evaluate their association with LN activity. METHOD: ELISA test and Western blot for detection of anti-FH and FHR1 deletion were used, respectively. Patients' clinical and laboratory parameters regarding anti-FH role were processed by statistical analysis. RESULTS: Anti-FH were found at low level in a small number of LN patients - 11.7% (7/60) and were not associated with deletion of FHR1. Anti-FH did not correlate with ANA titers, anti-dsDNA, C3/C4 hypocomplementemia, eGFR, proteinuria, or active urinary sediment in LN patients. A weak correlation was found between anti-FH and anti-C3 levels. Anti-FH were linked with endocapillary proliferation and histological activity index. Four anti-FH positive patients had severe to moderate LN as per the BILAG renal score. CONCLUSIONS: Anti-FH autoantibodies are an accessory finding in LN and are more likely to manifest during the active phase of the disease. Due to their low frequency and plasma levels, they do not seem suitable for routine laboratory investigation in patients with LN.

10.
J Clin Lipidol ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-39054196

ABSTRACT

BACKGROUND: Evinacumab is an inhibitor of angiopoietin-like 3 protein (ANGPTL3) that offers a new approach for correcting high low-density lipoprotein-cholesterol (LDL-C) and may reduce the need or frequency for lipoprotein apheresis (LA) in patients with homozygous familial hypercholesterolemia (HoFH). OBJECTIVE: We aimed to investigate the long-term efficacy and safety of evinacumab in patients with HoFH aged between 14 and 63 years on and off LA in real-world clinical practice. METHODS: Evinacumab was administrated intravenously (15 mg /kg Q4W) for the first 24 months in 7 patients with genetically confirmed HoFH, receiving best standard of lipid-lowering treatment and LA, followed by a subsequent compassionate extension period of approximately 12-month treatment with evinacumab without LA. Patient experience of evinacumab and health-related EuroQol (EQ-5D-3L) quality of life questionnaire were also assessed. RESULTS: Compared with baseline, evinacumab resulted in a sustained reduction in plasma LDL-C concentration of -43.4 % and -54.2 % at 30 and 36 months, respectively. All 7 HoFH patients achieved an LDL-C reduction >30 % with 3 patients having on-treatment LDL-C level < 2.5 mmol/L (96 mg/dL). Evinacumab was well-tolerated, with no major adverse reported or significant changes in liver enzyme concentrations. All FH patients agreed that evinacumab was acceptable and less physically demanding than LA. The mean utility score and EQ- visual analogue scale scores were 0.966 and 78.6, respectively, which are comparable to the Italian general population. CONCLUSIONS: Our findings suggest that evinacumab is a safe and effective treatment for high LDL-cholesterol that is acceptable to HoFH patients receiving and not receiving LA.

11.
Int J Hyperthermia ; 41(1): 2384459, 2024.
Article in English | MEDLINE | ID: mdl-39074841

ABSTRACT

OBJECTIVE: This study aimed to explore the efficacy and safety of high-intensity focused ultrasound (HIFU) ablation for treating fumarate hydratase (FH)-deficient uterine leiomyomas. METHOD: Ten patients with FH-deficient uterine leiomyomas treated with HIFU ablation at the Third Xiangya Hospital from July 2017 to January 2023 were enrolled in this study. The effectiveness and adverse effects of HIFU were analyzed. RESULTS: The median age of the patients who received HIFU was 32.0 years (range: 28-41 years). Only 2 patients had solitary uterine leiomyomas, whereas the remaining 8 patients had multiple uterine leiomyomas. The median diameter of the largest myoma was 56 mm (range: 41-99 mm). Magnetic resonance imaging showed that the FH-deficient uterine leiomyomas of 8 patients presented as mixed intensity on T2WI, that of one patient was hypointense, and that of another patient was hyperintense on T2WI. All patients successfully underwent HIFU ablation in one session without severe adverse effects. The median nonperfusion volume ratio (NPVR) was 40% (30.0%-78.0%) after HIFU treatment. Four patients had NPVR ≥70%. At 3-month follow-up after HIFU ablation, the clinical symptoms of 5 of the 8 patients with symptoms before treatment were relieved. Six months after treatment, 4 of the 8 patients with symptoms were still in remission. All patients received reintervention by March 2024. The reintervention rates were 20%, 70%, and 90% at 12, 24, and 36 months, respectively, after HIFU ablation. CONCLUSION: HIFU is a safe and feasible treatment for FH-deficient uterine leiomyomas, and most patients show effective results in the short term after treatment. However, the reintervention rates are high, and the long-term effects are limited.


Subject(s)
Fumarate Hydratase , High-Intensity Focused Ultrasound Ablation , Leiomyoma , Humans , Female , High-Intensity Focused Ultrasound Ablation/methods , Adult , Leiomyoma/surgery , Leiomyoma/therapy , Fumarate Hydratase/genetics , Uterine Neoplasms/surgery , Uterine Neoplasms/therapy
12.
Front Immunol ; 15: 1334151, 2024.
Article in English | MEDLINE | ID: mdl-38919628

ABSTRACT

Introduction: Complement factor H (FH) is a major regulator of the complement alternative pathway, its mutations predispose to an uncontrolled activation in the kidney and on blood cells and to secondary C3 deficiency. Plasma exchange has been used to correct for FH deficiency and although the therapeutic potential of purified FH has been suggested by in vivo experiments in animal models, a clinical approved FH concentrate is not yet available. We aimed to develop a purification process of FH from a waste fraction rather than whole plasma allowing a more efficient and ethical use of blood and plasma donations. Methods: Waste fractions from industrial plasma fractionation (pooled human plasma) were analyzed for FH content by ELISA. FH was purified from unused fraction III and its decay acceleration, cofactor, and C3 binding capacity were characterized in vitro. Biodistribution was assessed by high-resolution dynamic PET imaging. Finally, the efficacy of the purified FH preparation was tested in the mouse model of C3 glomerulopathy (Cfh-/- mice). Results: Our purification method resulted in a high yield of highly purified (92,07%), pathogen-safe FH. FH concentrate is intact and fully functional as demonstrated by in vitro functional assays. The biodistribution revealed lower renal and liver clearance of human FH in Cfh-/- mice than in wt mice. Treatment of Cfh-/- mice documented its efficacy in limiting C3 activation and promoting the clearance of C3 glomerular deposits. Conclusion: We developed an efficient and economical system for purifying intact and functional FH, starting from waste material of industrial plasma fractionation. The FH concentrate could therefore constitute possible treatments options of patients with C3 glomerulopathy, particularly for those with FH deficiency, but also for patients with other diseases associated with alternative pathway activation.


Subject(s)
Complement C3 , Complement Factor H , Mice, Knockout , Complement Factor H/metabolism , Complement Factor H/genetics , Animals , Humans , Mice , Disease Models, Animal , Proof of Concept Study , Mice, Inbred C57BL
13.
Int J Biochem Cell Biol ; 172: 106588, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768890

ABSTRACT

Immune responses in early life are characterized by a failure to robustly generate long-lasting protective responses against many common pathogens or upon vaccination. This is associated with a reduced ability to generate T-cell dependent high affinity antibodies. This review highlights the differences in T-cell dependent antibody responses observed between infants and adults, in particular focussing on the alterations in immune cell function that lead to reduced T follicular helper cell-B cell crosstalk within germinal centres in early life. Understanding the distinct functional characteristics of early life humoral immunity, and how these are regulated, will be critical in guiding age-appropriate immunological interventions in the very young.


Subject(s)
Immunity, Humoral , Humans , Immunity, Humoral/immunology , Animals , B-Lymphocytes/immunology , Infant , Germinal Center/immunology , Germinal Center/cytology , Adult
14.
Environ Sci Technol ; 58(25): 11016-11026, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38743591

ABSTRACT

Dissimilatory iron-reducing bacteria (DIRB) oxidize organic matter or hydrogen and reduce ferric iron to form Fe(II)-bearing minerals, such as magnetite and siderite. However, compared with magnetite, which was extensively studied, the mineralization process and mechanisms of siderite remain unclear. Here, with the combination of advanced electron microscopy and synchrotron-based scanning transmission X-ray microscopy (STXM) approaches, we studied in detail the morphological, structural, and chemical features of biogenic siderite via a growth experiment with Shewanella oneidensis MR-4. Results showed that along with the growth of cells, Fe(II) ions were increasingly released into solution and reacted with CO32- to form micrometer-sized siderite minerals with spindle, rod, peanut, dumbbell, and sphere shapes. They are composed of many single-crystal siderite plates that are fanned out from the center of the particles. Additionally, STXM revealed Fh and organic molecules inside siderite. This suggests that the siderite crystals might assemble around a Fh-organic molecule core and then continue to grow radially. This study illustrates the biomineralization and assembly of siderite by a successive multistep growth process induced by DIRB, also provides evidences that the distinctive shapes and the presence of organic molecules inside might be morphological and chemical features for biogenic siderite.


Subject(s)
Iron , Iron/metabolism , Shewanella/metabolism , Minerals/metabolism , Minerals/chemistry , Oxidation-Reduction , Bacteria/metabolism , Carbonates , Ferric Compounds
15.
Front Endocrinol (Lausanne) ; 15: 1381093, 2024.
Article in English | MEDLINE | ID: mdl-38721148

ABSTRACT

Vagal paraganglioma (VPGL) is a rare neuroendocrine tumor that originates from the paraganglion associated with the vagus nerve. VPGLs present challenges in terms of diagnostics and treatment. VPGL can occur as a hereditary tumor and, like other head and neck paragangliomas, is most frequently associated with mutations in the SDHx genes. However, data regarding the genetics of VPGL are limited. Herein, we report a rare case of a 41-year-old woman with VPGL carrying a germline variant in the FH gene. Using whole-exome sequencing, a variant, FH p.S249R, was identified; no variants were found in other PPGL susceptibility and candidate genes. Loss of heterozygosity analysis revealed the loss of the wild-type allele of the FH gene in the tumor. The pathogenic effect of the p.S249R variant on FH activity was confirmed by immunohistochemistry for S-(2-succino)cysteine (2SC). Potentially deleterious somatic variants were found in three genes, SLC7A7, ZNF225, and MED23. The latter two encode transcriptional regulators that can impact gene expression deregulation and are involved in tumor development and progression. Moreover, FH-mutated VPGL was characterized by a molecular phenotype different from SDHx-mutated PPGLs. In conclusion, the association of genetic changes in the FH gene with the development of VPGL was demonstrated. The germline variant FH: p.S249R and somatic deletion of the second allele can lead to biallelic gene damage that promotes tumor initiation. These results expand the clinical and mutation spectra of FH-related disorders and improve our understanding of the molecular genetic mechanisms underlying the pathogenesis of VPGL.


Subject(s)
Cranial Nerve Neoplasms , Paraganglioma , Adult , Female , Humans , Acid Anhydride Hydrolases/genetics , Cranial Nerve Neoplasms/genetics , Cranial Nerve Neoplasms/pathology , Exome Sequencing , Germ-Line Mutation , Paraganglioma/genetics , Paraganglioma/pathology , Vagus Nerve Diseases/genetics , Vagus Nerve Diseases/pathology
16.
Article in English | MEDLINE | ID: mdl-38795733

ABSTRACT

BACKGROUND: Oral consumption of peanut products early in life reduces the incidence of peanut allergy in children. However, little is known about whether exposure via the oral mucosa alone is sufficient or whether the gastrointestinal tract must be engaged to protect against peanut allergy. OBJECTIVE: We used a mouse model and examined the effects of peanut allergen administration to only the oral cavity on allergy development induced by environmental exposure. METHODS: Naive BALB/c mice were administered peanut flour (PNF) sublingually, followed by epicutaneous exposure to PNF to mimic a human condition. The sublingual volume was adjusted to engage only the oral cavity and prevent it from reaching the esophagus or gastrointestinal tract. The efficacy was evaluated by examining the anaphylactic response, antibody titers, and T follicular helper cells. RESULTS: The mice exposed epicutaneously to PNF developed peanut allergy, as demonstrated by increased plasma levels of peanut-specific IgE and the manifestation of acute systemic anaphylaxis following intraperitoneal challenge with peanut extract. The development of peanut allergy was suppressed when mice had been given PNF sublingually before epicutaneous exposure. There were fewer T follicular helper cells in the skin-draining lymph nodes of mice that received sublingual PNF than in the mice that received PBS. Suppression of IgE production was observed with sublingual PNF at 1/10 of the intragastric PNF dose. CONCLUSION: Administration of peanut allergens only to the oral cavity effectively prevents the development of peanut allergy. The capacity of the oral mucosa to promote immunologic tolerance needs to be evaluated further to prevent food allergy.

17.
Lipids Health Dis ; 23(1): 136, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715054

ABSTRACT

BACKGROUND: Familial hypercholesterolemia (FH) is one of the most common autosomal dominant diseases. FH causes a lifelong increase in low-density lipoprotein cholesterol (LDL-C) levels, which in turn leads to atherosclerotic cardiovascular disease. The incidence of FH is widely underestimated and undertreated, despite the availability and effectiveness of lipid-lowering therapy. Patients with FH have an increased cardiovascular risk; therefore, early diagnosis and treatment are vital. To address the burden of FH, several countries have implemented national FH screening programmes. The currently used method for FH detection in Lithuania is mainly based on opportunistic testing with subsequent cascade screening of index cases' first-degree relatives. METHODS: A total of 428 patients were included in this study. Patients with suspected FH are referred to a lipidology center for thorough evaluation. Patients who met the criteria for probable or definite FH according to the Dutch Lipid Clinic Network (DLCN) scoring system and/or had LDL-C > = 6.5 mmol/l were subjected to genetic testing. Laboratory and instrumental tests, vascular marker data of early atherosclerosis, and consultations by other specialists, such as radiologists and ophthalmologists, were also recorded. RESULTS: A total of 127/428 (30%) patients were genetically tested. FH-related mutations were found in 38.6% (n = 49/127) of the patients. Coronary artery disease (CAD) was diagnosed in 13% (n = 57/428) of the included patients, whereas premature CAD was found in 47/428 (11%) patients. CAD was diagnosed in 19% (n = 9/49) of patients with FH-related mutations, and this diagnosis was premature for all of them. CONCLUSIONS: Most patients in this study were classified as probable or possible FH without difference of age and sex. The median age of FH diagnosis was 47 years with significantly older females than males, which refers to the strong interface of this study with the LitHir programme. CAD and premature CAD were more common among patients with probable and definite FH, as well as those with an FH-causing mutation. The algorithm described in this study is the first attempt in Lithuania to implement a specific tool which allows to maximise FH detection rates, establish an accurate diagnosis of FH, excluding secondary causes of dyslipidaemia, and to select patients for cascade screening initiation more precisely.


Subject(s)
Algorithms , Cholesterol, LDL , Hyperlipoproteinemia Type II , Receptors, LDL , Humans , Hyperlipoproteinemia Type II/epidemiology , Hyperlipoproteinemia Type II/diagnosis , Hyperlipoproteinemia Type II/genetics , Hyperlipoproteinemia Type II/blood , Lithuania/epidemiology , Male , Female , Middle Aged , Adult , Receptors, LDL/genetics , Cholesterol, LDL/blood , Genetic Testing/methods , Mass Screening/methods , Aged , Mutation , Proprotein Convertase 9/genetics , Proprotein Convertase 9/blood
18.
Metabolism ; 155: 155916, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615945

ABSTRACT

Exercise is an effective non-pharmacological strategy for the treatment of nonalcoholic steatohepatitis (NASH), but the underlying mechanism needs further investigation. Kruppel-like factor 10 (Klf10) is a transcriptional factor that is expressed in multiple tissues including liver, whose role in NASH is not well defined. In our study, exercise induces hepatic Klf10 expression through the cAMP/PKA/CREB pathway. Hepatocyte-specific knockout of Klf10 (Klf10LKO) increases lipid accumulation, cell death, inflammation and fibrosis in NASH diet-fed mice and reduces the protective effects of treadmill exercise against NASH, while hepatocyte-specific overexpression of Klf10 (Klf10LTG) works in concert with exercise to reduce NASH in mice. Mechanistically, Klf10 promotes the expression of fumarate hydratase 1 (Fh1), thereby reducing fumarate accumulation in hepatocytes. This decreases the trimethyl (me3) levels of histone 3 lysine 4 (H3K4me3) on lipogenic genes promoters to attenuate lipogenesis, thus ameliorating free fatty acids (FFAs)-induced hepatocytes steatosis, apoptosis, insulin resistance and blunting dysfunctional hepatocytes-mediated activation of macrophages and hepatic stellate cells. Therefore, by regulating the Fh1/fumarate/H3K4me3 pathway, Klf10 acts as a downstream effector of exercise to combat NASH.


Subject(s)
Early Growth Response Transcription Factors , Fumarate Hydratase , Kruppel-Like Transcription Factors , Liver , Non-alcoholic Fatty Liver Disease , Physical Conditioning, Animal , Animals , Male , Mice , Early Growth Response Transcription Factors/metabolism , Early Growth Response Transcription Factors/genetics , Hepatocytes/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Lipogenesis/genetics , Lipogenesis/physiology , Liver/metabolism , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/therapy , Non-alcoholic Fatty Liver Disease/genetics , Physical Conditioning, Animal/physiology , Fumarate Hydratase/metabolism
19.
J Cardiovasc Dev Dis ; 11(4)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38667741

ABSTRACT

BACKGROUND: The diagnosis of familial hypercholesterolemia (FH) in children is primarily based on main criteria including low-density lipoprotein cholesterol (LDL-C) levels, increased in the proband and relatives, and its inheritance. Two other relevant parameters are symptoms, rarely occurring in children, as rare are the FH homozygous patients, and the mutation detection of related genes. The latter allows the final diagnosis, although it is not commonly available. Moreover, the application of diagnostic scores, useful in adults, is poorly applied in children. The aim of this study was to compare the reliability of criteria here applied with different scores, apart from genetic analysis, for FH diagnosis. The latter was then confirmed by genetic analysis. METHODS: n. 180 hypercholesterolemic children (age 10.2 ± 4.6 years) showing LDL-C levels ≥95th percentile (age- and sex-related), the dominant inheritance pattern of hypercholesterolemia (including LDL-C ≥95th percentile in one parent), were considered potentially affected by FH and included in the study. The molecular analysis of the LDLR, APOB and PCSK9 genes was applied to verify the diagnostic accuracy. Biochemical and family history data were also retrospectively categorized according to European Atherosclerosis Society (EAS), Simon Broome Register (SBR), Pediatric group of the Italian LIPIGEN (LIPIGEN-FH-PED) and Dutch Lipid Clinic Network (DLCN) criteria. Detailed kindred biochemical and clinical assessments were extended to three generations. The lipid profile was detected by standard laboratory kits, and gene analysis was performed by traditional sequencing or Next-Generation Sequencing (NGS). RESULTS: Among 180 hypercholesterolemic subjects, FH suspected based on the above criteria, 164/180 had the diagnosis confirmed, showing causative mutations. The mutation detection rate (MDR) was 91.1%. The scoring criteria proposed by the EAS, SBR and LIPIGEN-FH-PED (resulting in high probable, possible-defined and probable-defined, respectively) showed high sensitivity (~90%), low specificity (~6%) and high MDR (~91%). It is noteworthy that their application, as a discriminant for the execution of the molecular investigation, would lead to a loss of 9.1%, 9.8% and 9.1%, respectively, of FH-affected patients, as confirmed by the genetic analysis. DLCN criteria, for which LDL-C cut-offs are not specific for childhood, would lead to a loss of 53% of patients with mutations. CONCLUSIONS: In the pediatric population, the combination of LDL-C ≥95th percentile in the proband and the dominant inheritance pattern of hypercholesterolemia, with LDL-C ≥95th percentile in one parent, is a simple, useful and effective diagnostic criterion, showing high MDR. This pattern is crucial for early FH diagnosis. EAS, SBR and LIPIGEN-FH-PED criteria can underestimate the real number of patients with gene mutations and cannot be considered strictly discriminant for the execution of molecular analysis.

20.
Phytochemistry ; 223: 114099, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38641143

ABSTRACT

Panax notoginseng (Burk.) F.H. Chen is a traditional medicinal herb known as Sanqi or Tianqi in Asia and is commonly used worldwide. It is one of the main raw ingredients of Yunnan Baiyao, Fu fang dan shen di wan, and San qi shang yao pian. It is also a source of cardiotonic pill used to treat cardiovascular diseases in China, Korea, and Russia. Approximately 270 Panax notoginseng saponins have been isolated and identified as the major active components. Although the absorption and bioavailability of saponins are predominantly dependent on the gastrointestinal biotransformation capacity of an individual, minor saponins are better absorbed into the bloodstream and act as active substances than major saponins. Notably, minor saponins are absent or are present in minimal quantities under natural conditions. In this review, we focus on the strategies for the enrichment and production of minor saponins in P. notoginseng using physical, chemical, enzyme catalytic, and microbial methods. Moreover, pharmacological studies on minor saponins derived from P. notoginseng over the last decade are discussed. This review serves as a meaningful resource and guide, offering scholarly references for delving deeper into the exploration of the minor saponins in P. notoginseng.


Subject(s)
Drugs, Chinese Herbal , Panax notoginseng , Saponins , Saponins/chemistry , Panax notoginseng/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Humans , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL