Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.699
Filter
1.
BMC Med Genomics ; 17(1): 197, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107825

ABSTRACT

BACKGROUND: Ventricular septal defect (VSD) is the most common congenital heart disease. Although a small number of genes associated with VSD have been found, the genetic factors of VSD remain unclear. In this study, we evaluated the association of 10 candidate single nucleotide polymorphisms (SNPs) with isolated VSD in a population from Southwest China. METHODS: Based on the results of 34 congenital heart disease whole-exome sequencing and 1000 Genomes databases, 10 candidate SNPs were selected. A total of 618 samples were collected from the population of Southwest China, including 285 VSD samples and 333 normal samples. Ten SNPs in the case group and the control group were identified by SNaPshot genotyping. The chi-square (χ2) test was used to evaluate the relationship between VSD and each candidate SNP. The SNPs that had significant P value in the initial stage were further analysed using linkage disequilibrium, and haplotypes were assessed in 34 congenital heart disease whole-exome sequencing samples using Haploview software. The bins of SNPs that were in very strong linkage disequilibrium were further used to predict haplotypes by Arlequin software. ViennaRNA v2.5.1 predicted the haplotype mRNA secondary structure. We evaluated the correlation between mRNA secondary structure changes and ventricular septal defects. RESULTS: The χ2 results showed that the allele frequency of FLT4 rs383985 (P = 0.040) was different between the control group and the case group (P < 0.05). FLT4 rs3736061 (r2 = 1), rs3736062 (r2 = 0.84), rs3736063 (r2 = 0.84) and FLT4 rs383985 were in high linkage disequilibrium (r2 > 0.8). Among them, rs3736061 and rs3736062 SNPs in the FLT4 gene led to synonymous variations of amino acids, but predicting the secondary structure of mRNA might change the secondary structure of mRNA and reduce the free energy. CONCLUSIONS: These findings suggest a possible molecular pathogenesis associated with isolated VSD, which warrants investigation in future studies.


Subject(s)
Genetic Predisposition to Disease , Haplotypes , Heart Septal Defects, Ventricular , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Humans , Heart Septal Defects, Ventricular/genetics , China , Male , Female , Gene Frequency , Case-Control Studies , Child , Child, Preschool , Infant
2.
Cancer Sci ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39118482

ABSTRACT

Corilagin (CLG) has antitumor activities in certain human malignant cancers. Herein, the effects and mechanisms of CLG on osteosarcoma (OS) were investigated. OS cell viability and proliferation were detected by MTT and colony formation assay. Cell cycle and apoptosis were examined using flow cytometry. The interaction between TRAF6 and FLT3 was investigated using a co-immunoprecipitation assay. Results demonstrated that CLG treatment inhibited OS cell viability and proliferation but promoted OS cell autophagy and apoptosis in a concentration-dependent manner. Mechanically, CLG inhibited TRAF6-mediated FLT3 ubiquitination degradation. TRAF6 overexpression abolished the effects of CLG on OS cell proliferation, autophagy, and apoptosis. Finally, CLG administration inhibited OS tumor growth in mice by inducing autophagy-dependent apoptosis. Taken together, CLG inhibited OS progression by facilitating mTOR/ULK1 pathway-mediated autophagy through inhibiting TRAF6-mediated FLT3 ubiquitination, which indicated that CLG was a promising candidate for the treatment of OS.

3.
Expert Rev Hematol ; : 1-8, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39110722

ABSTRACT

INTRODUCTION: Children receiving treatment for acute myeloid leukemia (AML) are at high risk of invasive fungal disease (IFD). Evidence from pediatric studies support the efficacy of antifungal prophylaxis in reducing the burden of IFD in children receiving therapy for AML, yet existing antifungal agents have specific limitations and comparative data to inform the optimal prophylactic approach are lacking. AREAS COVERED: This review summarizes the epidemiology of invasive fungal disease (IFD) and current antifungal prophylaxis recommendations for children with acute myeloid leukemia (AML). Challenges with currently available antifungal agents and considerations related to the changing landscape of AML therapy are reviewed. A keyword search was conducted to identify pediatric studies regarding IFD and antifungal prophylaxis in children with AML up to December 2023. EXPERT OPINION: Children undergoing treatment for AML are recommended to receive antifungal prophylaxis to reduce risk of IFD, with tolerability, pharmacokinetics, feasibility of administration, and drug interactions all factors that require consideration in this context. With increased use of novel targeted agents for AML therapy, together with the development of new antifungal agents, data from well-designed clinical studies to optimize prophylactic approaches will be essential to limit the burden of IFD in this vulnerable cohort.

4.
Bioinformation ; 20(5): 460-472, 2024.
Article in English | MEDLINE | ID: mdl-39132250

ABSTRACT

Acute Myeloid Leukemia (AML) is a complex hematologic malignancy characterized by the rapid proliferation of abnormal myeloid precursor cells. The FMS-like tyrosine kinase 3 (FLT3), a receptor tyrosine kinase, plays a pivotal role in regulating cell survival, proliferation, and differentiation within the hematopoietic system. Mutations in FLT3, particularly internal tandem duplications (ITDs) and point mutations within the tyrosine kinase domain (TKD), are prevalent in AML and are associated with poor prognosis and increased risk of relapse. The development of targeted therapies has revolutionized the landscape of cancer treatment by focusing on the inhibition of kinase signalling. Small-molecule inhibitors designed to selectively target receptor tyrosine kinases, such as PLX3397, have shown promising results in preclinical studies and early phase clinical trials. PLX3397 exerts its inhibitory effects by targeting CSF1R and KIT, leading to the disruption of receptor tyrosine kinase signalling cascades, suppression of leukemic cell growth, and induction of apoptosis. This study emphasizes the significance of FLT3 as a receptor tyrosine kinase as a therapeutic target for PLX3397. After evaluating the usefulness of PLX3397 as an enzyme inhibitor using ADMET prediction, PLX3397 was prepared for molecular docking in the FLT3 crystal structure (PDB: 4XUF). A molecular dynamics simulation was performed on PLX3397 to evaluate its binding affinity and protein stability in a simulated physiological environment. In conclusion, targeting FLT3 as a receptor tyrosine kinase with PLX3397 represents a promising therapeutic strategy for improving outcomes in patients with FLT3-mutated AML. Further clinical investigations are warranted to validate the efficacy and safety of PLX3397 and to optimize treatment strategies for AML patients based on the FLT3 mutational status.

5.
Biomol Ther (Seoul) ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39091016

ABSTRACT

Acute myeloid leukemia (AML) is a genetically diverse and challenging malignancy, with mutations in the FLT3 gene being particularly common and deleterious. Gilteritinib, a potent FLT3 inhibitor, has been approved by the U.S. Food and Drug Administration (FDA) for the treatment of relapsed/refractory AML with FLT3 mutations. Although gilteritinib was developed based on its inhibitory activity against FLT3 kinase, it is important to understand the precise mechanisms of its antileukemic activity in managing drug resistance and discovering biomarkers. This study was designed to elucidate the effect of gilteritinib on the FLT3 expression level. The results showed that gilteritinib induced a dose-dependent decrease in both FLT3 phosphorylation and expression. This reduction was particularly pronounced after 48 h of treatment. The decrease in FLT3 expression was found to be independent of changes in FLT3 mRNA transcription, suggesting post-transcriptional regulatory mechanisms. Further studies were performed in various AML cell lines and cells with both FLT3 wild-type and FLT3 mutant exhibited FLT3 reduction by gilteritinib treatment. In addition, other FLT3 inhibitors were evaluated for their ability to reduce FLT3 expression. Other FLT3 inhibitors, midostaurin, crenolanib, and quizartinib, also reduced FLT3 expression, consistent with the effect of gilteritinib. These findings hold great promise for optimizing gilteritinib treatment in AML patients. However, it is important to recognize that further research is warranted to gain a full understanding of these mechanisms and their clinical implications in the context of FLT3 reduction.

6.
Rinsho Ketsueki ; 65(7): 684-692, 2024.
Article in Japanese | MEDLINE | ID: mdl-39098020

ABSTRACT

FLT3 mutation is one of the most frequent genetic mutations in AML, identified in approximately 30% of patients, and FLT3-ITD mutation is considered a poor prognostic factor. Based on these molecular and clinical backgrounds, FLT3 mutations are considered promising therapeutic targets in AML, and intensive development of targeted therapeutics has been ongoing for more than two decades. Recently, combination of FLT3 inhibitors with intensive chemotherapy for untreated AML patients with FLT3 mutations and FLT3 inhibitor monotherapy for relapsed/refractory patients have been approved. In Japan, the combination of quizartinib and intensive chemotherapy for untreated FLT3-ITD-positive AML was approved in 2023. Clinical use of FLT3 inhibitors shows strong promise for improving the clinical outcomes of these AML patients with an extremely poor prognosis. Meanwhile, various resistance mechanisms to FLT3 inhibitors have been identified, including the emergence of resistance-associated mutations, and attenuated inhibitory effects of FLT3 inhibitors involving the bone marrow microenvironment surrounding AML cells. Thus, future efforts should aim to optimize combination therapy based on the characteristics of each FLT3 inhibitor, develop biomarkers that could inform treatment selection, and to better understand these resistance mechanisms and develop methods for overcoming them.


Subject(s)
Leukemia, Myeloid, Acute , Mutation , Protein Kinase Inhibitors , fms-Like Tyrosine Kinase 3 , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/genetics , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Drug Resistance, Neoplasm
7.
Cell Commun Signal ; 22(1): 391, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113090

ABSTRACT

BACKGROUND: Approximately 25-30% of patients with acute myeloid leukemia (AML) have FMS-like receptor tyrosine kinase-3 (FLT3) mutations that contribute to disease progression and poor prognosis. Prolonged exposure to FLT3 tyrosine kinase inhibitors (TKIs) often results in limited clinical responses due to diverse compensatory survival signals. Therefore, there is an urgent need to elucidate the mechanisms underlying FLT3 TKI resistance. Dysregulated sphingolipid metabolism frequently contributes to cancer progression and a poor therapeutic response. However, its relationship with TKI sensitivity in FLT3-mutated AML remains unknown. Thus, we aimed to assess mechanisms of FLT3 TKI resistance in AML. METHODS: We performed lipidomics profiling, RNA-seq, qRT-PCR, and enzyme-linked immunosorbent assays to determine potential drivers of sorafenib resistance. FLT3 signaling was inhibited by sorafenib or quizartinib, and SPHK1 was inhibited by using an antagonist or via knockdown. Cell growth and apoptosis were assessed in FLT3-mutated and wild-type AML cell lines via Cell counting kit-8, PI staining, and Annexin-V/7AAD assays. Western blotting and immunofluorescence assays were employed to explore the underlying molecular mechanisms through rescue experiments using SPHK1 overexpression and exogenous S1P, as well as inhibitors of S1P2, ß-catenin, PP2A, and GSK3ß. Xenograft murine model, patient samples, and publicly available data were analyzed to corroborate our in vitro results. RESULTS: We demonstrate that long-term sorafenib treatment upregulates SPHK1/sphingosine-1-phosphate (S1P) signaling, which in turn positively modulates ß-catenin signaling to counteract TKI-mediated suppression of FLT3-mutated AML cells via the S1P2 receptor. Genetic or pharmacological inhibition of SPHK1 potently enhanced the TKI-mediated inhibition of proliferation and apoptosis induction in FLT3-mutated AML cells in vitro. SPHK1 knockdown enhanced sorafenib efficacy and improved survival of AML-xenografted mice. Mechanistically, targeting the SPHK1/S1P/S1P2 signaling synergizes with FLT3 TKIs to inhibit ß-catenin activity by activating the protein phosphatase 2 A (PP2A)-glycogen synthase kinase 3ß (GSK3ß) pathway. CONCLUSIONS: These findings establish the sphingolipid metabolic enzyme SPHK1 as a regulator of TKI sensitivity and suggest that combining SPHK1 inhibition with TKIs could be an effective approach for treating FLT3-mutated AML.


Subject(s)
Glycogen Synthase Kinase 3 beta , Leukemia, Myeloid, Acute , Phosphotransferases (Alcohol Group Acceptor) , Protein Phosphatase 2 , beta Catenin , fms-Like Tyrosine Kinase 3 , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , beta Catenin/metabolism , beta Catenin/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Animals , Mice , Protein Phosphatase 2/metabolism , Protein Phosphatase 2/genetics , Protein Phosphatase 2/antagonists & inhibitors , Cell Line, Tumor , Sorafenib/pharmacology , Apoptosis/drug effects , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Cell Proliferation/drug effects , Drug Synergism , Xenograft Model Antitumor Assays , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics
8.
EJHaem ; 5(4): 802-809, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39157616

ABSTRACT

Mixed-phenotype acute leukemia (MPAL) with FLT3-TKD mutations is a rare and challenging subtype of leukemia. Effective management strategies are crucial for improving patient outcomes. A 31-year-old man with FLT3-TKD-mutated MPAL achieved hematological remission through the JALSG ALL202-O protocol and gilteritinib, followed by cord blood transplantation (CBT). Post-transplant complications included adenovirus-induced hemorrhagic cystitis, managed with bladder irrigation and ribavirin, and engraftment failure, necessitating a second CBT on Day 35. Subsequent adenoviral conjunctivitis resolved with vidarabine. The patient achieved neutrophil engraftment by Day 76 and was discharged on Day 173 without relapse. This case highlights the importance of vigilant supportive care and tailored therapy in managing MPAL with FLT3 mutations, especially in the context of post-transplant complications.

9.
Eur J Med Chem ; 277: 116717, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39094274

ABSTRACT

The urgent and unmet medical demand of acute myeloid leukemia (AML) patients has driven the drug discovery process for expansion of the landscape of AML treatment. Despite the several agents developed for treatment of AML, more than 60 % of treated patients undergo relapse again after re-emission, thus, no complete cure for this complex disease has been reached yet. Targeted oncoprotein degradation is a new paradigm that can be employed to solve drug resistance, disease relapse, and treatment failure in complex diseases as AML, the most lethal hematological malignancy. AML is an aggressive blood cancer form and the most common type of acute leukemia, with bad outcomes and a very poor 5-year survival rate. FLT3 mutations occur in about 30 % of AML cases and FLT3-ITD is associated with poor prognosis of this disease. Prevalent FLT3 mutations include internal tandem duplication and point mutations (e.g., D835) in the tyrosine kinase domain, which induce FLT3 kinase activation and result in survival and proliferation of AML cells again. Currently approved FLT3 inhibitors suffer from limited clinical efficacy due to FLT3 reactivation by mutations, therefore, alternative new treatments are highly needed. Proteolysis-targeting chimera (PROTAC) is a bi-functional molecule that consists of a ligand of the protein of interest, FLT3 inhibitor in our case, that is covalently linked to an E3 ubiquitin ligase ligand. Upon FLT3-specific PROTAC binding to FLT3, the PROTAC can recruit E3 for FLT3 ubiquitination, which is subsequently subjected to proteasome-mediated degradation. In this review we tried to address the question if PROTAC technology has succeeded in tackling the disease relapse and treatment failure of AML. Next, we explored the latest FLT3-targeting PROTACs developed in the past few years such as quizartinib-based PROTACs, dovitinib-based PROTACs, gilteritinib-based PROTACs, and others. Then, we followed with a deep analysis of their advantages regarding potency improvement and overcoming AML drug resistance. Finally, we discussed the challenges facing these chimeric molecules with proposed future solutions to circumvent them.

10.
Ann Hematol ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105739

ABSTRACT

ETV6::ABL1 is a rare fusion gene that found in MPN, ALL, and AML. It has a complex and diverse formation mechanism due to the reciprocal orientations of the ETV6 and ABL1 genes relative to the centromeres. NPM1 is frequently mutated in adult AML, often accompanied by FLT3-ITD, which suggests molecular synergisms in AML pathogenesis. Previous reports on ETV6::ABL1 mostly focus on FLT3-ITD. In this study, we present a case of AML with ETV6::ABL1, along with NPM1 and FLT3-ITD. The patient showed a rapid increase in primitive cells at the initial stage, along with the presence of immature granulocytes and erythrocytes. Through cytogenetic analysis, fluorescence in situ hybridization (FISH), and RNA-seq, we elucidated the mechanism behind the formation of the ETV6::ABL1 fusion gene. Despite conventional chemotherapy failure and rapid tumor proliferation, we attempted to add FLT3 inhibitor sorafenib to the treatment, along with chemotherapy bridging to haploidentical transplantation. After haplo-HSCT, a combination of sorafenib and dasatinib was administered as maintenance therapy. The patient achieved complete remission (CR) and maintained it for 11 months. The intricate genetic landscape observed in this case presents diagnostic dilemmas and therapeutic challenges, emphasizing the importance of a comprehensive understanding of its implications for disease classification, risk stratification, and treatment selection.

11.
Cancer Imaging ; 24(1): 110, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160578

ABSTRACT

BACKGROUND: To evaluate and compare the diagnostic power of [18F]FLT-PET with ceMRI in patients with brain tumours or other focal lesions. METHODS: 121 patients with suspected brain tumour or those after brain tumour surgery were enroled in this retrospective study (61 females, 60 males, mean age 37.3 years, range 1-80 years). All patients underwent [18F]FLT-PET/MRI with gadolinium contrast agent application. In 118 of these patients, a final diagnosis was made, verified by histopathology or by follow-up. Agreement between ceMRI and [18F]FLT-PET of the whole study group was established. Further, sensitivity and specificity of ceMRI and [18F]FLT-PET were calculated for differentiation of high-grade vs. low-grade tumours, high-grade vs. low-grade tumours together with non-tumour lesions and for differentiation of high-grade tumours from all other verified lesions. RESULTS: [18F]FLT-PET and ceMRI findings were concordant in 119 cases (98%). On closer analysis of a subset of 64 patients with verified gliomas, the sensitivity and specificity of both PET and ceMRI were identical (90% and 84%, respectively) for differentiating low-grade from high-grade tumours, if the contrast enhancement and [18F]FLT uptake were considered as hallmarks of high-grade tumour. For differentiation of high-grade tumours from low-grade tumours and lesions of nontumorous aetiology (e.g., inflammatory lesions or post-therapeutic changes) in a subgroup of 93 patients by visual evaluation, the sensitivity of both PET and ceMRI was 90%, whereas the specificity of PET was slightly higher (61%) compared to ceMRI (57%). By receiver operating characteristic analysis, the sensitivity and specificity were 82% and 74%, respectively, when the threshold of SUVmax in the tumour was set to 0.9 g/ml. CONCLUSION: We demonstrated a generally very high correlation of [18F]FLT accumulation with contrast enhancement visible on ceMRI and a comparable diagnostic yield in both modalities for differentiating high-grade tumours from low-grade tumours and lesions of other aetiology.


Subject(s)
Brain Neoplasms , Gadolinium , Magnetic Resonance Imaging , Positron-Emission Tomography , Humans , Male , Female , Middle Aged , Aged , Adult , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Aged, 80 and over , Positron-Emission Tomography/methods , Magnetic Resonance Imaging/methods , Adolescent , Child, Preschool , Child , Young Adult , Retrospective Studies , Gadolinium/pharmacokinetics , Infant , Contrast Media , Radiopharmaceuticals , Multimodal Imaging/methods , Dideoxynucleosides , Sensitivity and Specificity
12.
Int J Mol Sci ; 25(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39126100

ABSTRACT

Acute myeloid leukemia (AML) has a poor survival rate for both pediatric and adult patients due to its frequent relapse. To elucidate the bioenergetic principle underlying AML relapse, we investigated the transcriptional regulation of mitochondrial-nuclear dual genomes responsible for metabolic plasticity in treatment-resistant blasts. Both the gain and loss of function results demonstrated that NFκB2, a noncanonical transcription factor (TF) of the NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells) family, can control the expression of TFAM (mitochondrial transcription factor A), which is known to be essential for metabolic biogenesis. Furthermore, genetic tracking and promoter assays revealed that NFκB2 is in the mitochondria and can bind the specific "TTGGGGGGTG" region of the regulatory D-loop domain to activate the light-strand promoter (LSP) and heavy-strand promoter 1 (HSP1), promoters of the mitochondrial genome. Based on our discovery of NFκB2's novel function of regulating mitochondrial-nuclear dual genomes, we explored a novel triplet therapy including inhibitors of NFκB2, tyrosine kinase, and mitochondrial ATP synthase that effectively eliminated primary AML blasts with mutations of the FMS-related receptor tyrosine kinase 3 (FLT3) and displayed minimum toxicity to control cells ex vivo. As such, effective treatments for AML must include strong inhibitory actions on the dual genomes mediating metabolic plasticity to improve leukemia prognosis.


Subject(s)
Genome, Mitochondrial , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/genetics , Cell Line, Tumor , Promoter Regions, Genetic , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Nucleus/metabolism , Cell Nucleus/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Mitochondria/metabolism , Mitochondria/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Gene Expression Regulation, Leukemic
13.
J Oncol Pharm Pract ; : 10781552241276547, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39150342

ABSTRACT

INTRODUCTION: Midostaurin is a multikinase inhibitor approved for the treatment of adult patients with newly diagnosed FMS-like tyrosine kinase 3 mutated (FLT3m) acute myeloid leukemia (AML). Azole antifungal medications are commonly used in AML and are known to interact with anti-cancer drugs such as midostaurin through the CYP3A pathway. However, there are no midostaurin related dose modifications recommended with strong CYP3A inhibitors. METHODS: We retrospectively reviewed 40 patients between 2017-2022 and compared efficacy and safety outcomes in patients who received azole antifungals concurrently to those who did not receive an azole or received it sequentially to midostaurin for treatment of FLT3m AML. RESULTS: Median age of both groups was approximately 55 years and 70% of patients harbored FLT-3 internal tandem duplication mutations. Most patients in the concurrent arm were on either posaconazole (33%) or isavuconazole (50%) for antifungal prophylaxis and micafungin (72%) for the sequential/no azole arm. Overall CR/CRi rate with concurrent versus sequential/no azole were 72% and 77%, and non-hematologic grade 3 toxicities were 22% and 40% (p = 0.21), respectively. Rates of dose reductions (6% vs. 0%, p = 0.26) and held doses (17% vs. 14%, p = 0.79) were not different between concurrent and sequential/no azole. There were no differences in the rates of new fungal infection during induction between the two groups. CONCLUSION: Azoles given concurrently or sequentially with midostaurin were found to be equally safe and effective in the treatment of newly diagnosed FLT3 AML. Additional confirmatory studies are needed due to our limited sample size.

14.
Cell Commun Signal ; 22(1): 355, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978049

ABSTRACT

BACKGROUND: FMS-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) is a common mutation type in acute myeloid leukemia (AML) and is usually associated with poor patient prognosis. With advancements in molecular diagnostics and the development of tyrosine kinase inhibitors (TKI), the overall survival (OS) of AML patients with FLT3-ITD mutations has been prolonged to some extent, but relapse and drug resistance are still substantial challenges. Ningetinib is a novel TKI against various kinases in relation to tumour pathogenesis and is undergoing clinical trials of lung cancer. In this study, we explored the antitumor activity of ningetinib against AML with FLT3 mutations both in vivo and in vitro. METHODS: Cell proliferation assays were performed in AML cell lines and Ba/F3 cells expressing various FLT3 mutations to validate the antileukemic activity of ningetinib in vitro. Immunoblot assays were used to verify the effect of ningetinib on the FLT3 protein and downstream pathways. Molecular docking and CETSA were used to validate the interaction of ningetinib with target proteins. The survival benefit of ningetinib in vivo was assessed in Ba/F3-FLT3-ITD-, MOLM13, Ba/F3-FLT3-ITD-F691L-, MOLM13-FLT3-ITD-F691L-induced leukemia mouse models. We also used patient-derived primary cells to determine the efficacy of ningetinib. RESULTS: Ningetinib inhibited cell proliferation, blocked the cell cycle, induced apoptosis and bound FLT3 to inhibit its downstream signaling pathways, including the STAT5, AKT and ERK pathways, in FLT3-ITD AML cell lines. In the mouse models with FLT3-ITD and FLT3-ITD-F691L mutation, ningetinib showed superior anti-leukemia activity to existing clinical drugs gilteritinib and quizartinib, significantly prolongating the survival of mice. In addition, ningetinib exhibited activity against patient-derived primary cells harboring FLT3-ITD mutations. CONCLUSION: Overall, our study confirmed the therapeutic role of ningetinib in AML with FLT3-ITD mutations, providing a potential new option for clinically resistant patients.


Subject(s)
Cell Proliferation , Drug Resistance, Neoplasm , Leukemia, Myeloid, Acute , Protein Kinase Inhibitors , fms-Like Tyrosine Kinase 3 , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Humans , Animals , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Cell Proliferation/drug effects , Mice , Xenograft Model Antitumor Assays , Apoptosis/drug effects , Mutation , Signal Transduction/drug effects
15.
Cell Rep Med ; 5(7): 101645, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39019012

ABSTRACT

Fms-like tyrosine kinase 3 (FLT3) mutations, present in over 30% of acute myeloid leukemia (AML) cases and dominated by FLT3-internal tandem duplication (FLT3-ITD), are associated with poor outcomes in patients with AML. While tyrosine kinase inhibitors (TKIs; e.g., gilteritinib) are effective, they face challenges such as drug resistance, relapse, and high costs. Here, we report that metformin, a cheap, safe, and widely used anti-diabetic agent, exhibits a striking synergistic effect with gilteritinib in treating FLT3-ITD AML. Metformin significantly sensitizes FLT3-ITD AML cells (including TKI-resistant ones) to gilteritinib. Metformin plus gilteritinib (low dose) dramatically suppresses leukemia progression and prolongs survival in FLT3-ITD AML mouse models. Mechanistically, the combinational treatment cooperatively suppresses polo-like kinase 1 (PLK1) expression and phosphorylation of FLT3/STAT5/ERK/mTOR. Clinical analysis also shows improved survival rates in patients with FLT3-ITD AML taking metformin. Thus, the metformin/gilteritinib combination represents a promising and cost-effective treatment for patients with FLT3-mutated AML, particularly for those with low income/affordability.


Subject(s)
Aniline Compounds , Cell Cycle Proteins , Drug Synergism , Leukemia, Myeloid, Acute , Metformin , Mutation , Polo-Like Kinase 1 , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins , Pyrazines , Signal Transduction , fms-Like Tyrosine Kinase 3 , Metformin/pharmacology , Metformin/therapeutic use , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/antagonists & inhibitors , Humans , Animals , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Signal Transduction/drug effects , Pyrazines/pharmacology , Pyrazines/therapeutic use , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Mice , Mutation/genetics , Cell Line, Tumor , Thiophenes/pharmacology , Thiophenes/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , STAT5 Transcription Factor/metabolism , STAT5 Transcription Factor/genetics , Female , Xenograft Model Antitumor Assays , Male , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , TOR Serine-Threonine Kinases/metabolism
16.
BMC Pediatr ; 24(1): 483, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068406

ABSTRACT

During the treatment of 89 pediatric patients with Acute Myeloid Leukemia (AML) at the Hematology Department of Kunming Medical University's Children's Hospital from 2020 to 2023, three patients were identified to co-express the NUP98-NSD1, FLT3-ITD, and WT1 gene mutations. The bone marrow of these three patients was screened for high-risk genetic mutations using NGS and qPCR at the time of diagnosis. The treatment was administered following the China Children's Leukemia Group (CCLG)-AML-2019 protocol. All three patients exhibited a fusion of the NUP98 exon 12 with the NSD1 exon 6 and co-expressed the FLT3-ITD and WT1 mutations; two of the patients displayed normal karyotypes, while one presented chromosomal abnormalities. During the induction phase of the CCLG-AML-2019 treatment protocol, the DAH (Daunorubicin, Cytarabine, and Homoharringtonine) and IAH (Idarubicin, Cytarabine, and Homoharringtonine) regimens, in conjunction with targeted drug therapy, did not achieve remission. Subsequently, the patients were shifted to the relapsed/refractory chemotherapy regimen C + HAG (Cladribine, Homoharringtonine, Cytarabine, and G-CSF) for two cycles, which also failed to induce remission. One patient underwent Haploidentical Hematopoietic Stem Cell Transplantation (Haplo-HSCT) and achieved complete molecular remission during a 12-month follow-up period. Regrettably, the other two patients, who did not receive transplantation, passed away. The therapeutic conclusion is that pediatric AML patients with the aforementioned co-expression do not respond to chemotherapy. Non-remission transplantation, supplemented with tailor-made pre- and post-transplant strategies, may enhance treatment outcomes.


Subject(s)
Leukemia, Myeloid, Acute , Oncogene Proteins, Fusion , WT1 Proteins , fms-Like Tyrosine Kinase 3 , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , fms-Like Tyrosine Kinase 3/genetics , Male , Female , Child , Oncogene Proteins, Fusion/genetics , WT1 Proteins/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Child, Preschool , Cytarabine/therapeutic use , Mutation , Nuclear Pore Complex Proteins/genetics , Hematopoietic Stem Cell Transplantation , Homoharringtonine/therapeutic use , Infant
17.
Asian Pac J Cancer Prev ; 25(7): 2283-2289, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39068559

ABSTRACT

INTRODUCTION: Acute myeloid leukemia with normal cytogenetics (CN-AML) represents a heterogeneous group having diverse genetic mutations. Understanding the significance of each of these mutations is necessary. In this study, we evaluated the prognostic role of MN1 expression in adult CN-AML patients. METHOD: One hundred and sixty-three de-novo adult AML patients were evaluated for MN1 expression by real-time PCR. MN1 expression was correlated with the clinical characteristics of the patients and their outcomes. RESULTS: Higher MN1 expression was associated with NPM1 wild-type (p<0.0001), CD34 positivity (p=0.006), and lower clinical remission rate (p=0.027). FLT3-ITD and CEBPA mutations had no association with MN1 expression. On survival analysis, a high MN1 expression was associated with poor event-free survival (Hazard Ratio 2.47, 95% Confidence Interval: 1.42-4.3; p<0.0001) and overall survival (Hazard Ratio 4.18, 95% Confidence Interval: 2.17-8.08; p<0.0001). On multivariate analysis, the MN1 copy number emerged as an independent predictor of EFS (p<0.0001) and OS (p<0.0001). CONCLUSION: MN1 expression is an independent predictor of outcome in CN-AML.


Subject(s)
Biomarkers, Tumor , Leukemia, Myeloid, Acute , Nucleophosmin , Trans-Activators , Tumor Suppressor Proteins , Humans , Male , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Female , Adult , Middle Aged , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Prognosis , Young Adult , Trans-Activators/genetics , Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Survival Rate , Follow-Up Studies , Adolescent , Mutation , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism , Risk Assessment , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Aged, 80 and over
18.
Mol Biol Rep ; 51(1): 867, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073493

ABSTRACT

BACKGROUND: FLT3 gene mutations are genetic abnormality that caused leukemogenesis. Furthermore, presence of FLT3 mutations is associated with poor prognosis in AML. This study aimed to identify FLT3 gene mutations so that it can be used as a genetic reference for the AML patients in Indonesian population. METHODS: This cross-sectional study recruited 63 AML de novo patients between August 2021 and July 2023 at Cipto Mangukusumo General Hospital and Dharmais Cancer Hospital. We collected peripheral blood from the patients for DNA isolation. FLT3 gene mutation was detected using PCR method, then followed by the Sanger sequencing. Novel mutation in exon-14 continued to in silico study using SWISS MODEL server for modelling protein and PyMOL2 software for visualizing the protein model. RESULTS: Frequency FLT3-ITD mutation was 22% and 6 (10%) patients had a novel mutation on juxtamembrane domain. The number of FLT3-ITD insertions was 24 bp to 111 bp, with a median of 72 bp. Novel mutation indicated a change in the protein sequence at amino acid number 572 from Tyrosine to Valine and formed a stop codon (UGA) at amino acid position ins572G573. In-silico study from novel mutation showed the receptor FLT3 protein was a loss of most of the juxtamembrane domain and the entire kinase domain. CONCLUSION: A novel FLT3 gene mutation was found in this study in the juxtamembrane domain. Based on the sequencing analysis and in silico studies, this mutation is likely to affect the activity of the FLT3 receptor. Therefore, further studies on this novel mutation are needed.


Subject(s)
Leukemia, Myeloid, Acute , Mutation , fms-Like Tyrosine Kinase 3 , Humans , fms-Like Tyrosine Kinase 3/genetics , Leukemia, Myeloid, Acute/genetics , Male , Female , Mutation/genetics , Middle Aged , Adult , Cross-Sectional Studies , Aged , Indonesia , Protein Domains/genetics , Young Adult , Exons/genetics , Adolescent
19.
Front Oncol ; 14: 1402970, 2024.
Article in English | MEDLINE | ID: mdl-39015500

ABSTRACT

FLT3-ITD is a type of poor prognostic factors in acute myeloid leukemia (AML) disease. Gilteritinib, the second-generation FLT3 tyrosine kinase inhibitor, improved the overall survival of patients with relapsed/refractory FLT3-mutated AML in the ADMIRAL phase III trial. However, few data are available on the efficacy and safety of gilteritinib-based therapy for FLT3-mutated AML with central nervous system (CNS) involvement. We performed gilteritinib to treat a patient with CNS relapsed AML after allogeneic hematopoietic stem cell transplantation. The positive antileukemic effect of gilteritinib may bring new hope for the treatment of FLT3-mutated AML with CNS relapse.

20.
Front Oncol ; 14: 1405170, 2024.
Article in English | MEDLINE | ID: mdl-39011472

ABSTRACT

Background: Metastatic colon adenocarcinoma presents significant challenges in treatment, particularly when resistant to standard therapies. Precision oncology, guided by multidisciplinary tumor boards (MTBs), offers a promising way for individualized therapeutic approaches. Integration of comprehensive genomic profiling (CGP) and minimal residual disease (MRD) testing strengthens treatment decision-making, yet challenges persist in identifying and overcoming resistance mechanisms. FLT3 amplification can be one of those resistance/escape mechanisms that needs to be targeted. Case presentation: This case report presents a 58-year-old male diagnosed with metastatic colon adenocarcinoma with liver metastasis, resistant to conventional treatments. Utilizing CGP and MRD testing, our multidisciplinary MTB identified a complex mutational profile, including APC, DAXX, TP53 mutations, and CDK8 and FLT3 amplifications. With a tumor mutational burden of 10 muts/mb and TPS, CPS scores of 0, immunotherapy was considered, employing dual immune checkpoint inhibitors alongside mebendazole and Lenvatinib targeting the WNT and VEGF/angiogenesis pathways. MRD testing revealed early treatment failure. Re-evaluation identified high copied FLT3 amplification (62 copies) as a resistance mechanism, prompting modification to incorporate sorafenib and dual immunotherapy with mebendazole. Subsequent MRD assessments and radiological scans demonstrated a remarkable therapeutic response, with sustained efficacy and absence of detectable residual disease. Conclusion: This case highlights the successful application of precision oncology principles, facilitated by dynamic MTB-guided treatment strategies. Integration of MRD testing provided early detection of treatment inefficacy, allowing for timely intervention and adaptation of the treatment plan. Additionally, the case highlights the educational value of rare molecular alterations, emphasizing continual learning and refinement of treatment approaches in precision oncology.

SELECTION OF CITATIONS
SEARCH DETAIL