Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters











Publication year range
1.
J Environ Sci (China) ; 147: 114-130, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003034

ABSTRACT

Fenton and Fenton-like processes, which could produce highly reactive species to degrade organic contaminants, have been widely used in the field of wastewater treatment. Therein, the chemistry of Fenton process including the nature of active oxidants, the complicated reactions involved, and the behind reason for its strongly pH-dependent performance, is the basis for the application of Fenton and Fenton-like processes in wastewater treatment. Nevertheless, the conflicting views still exist about the mechanism of the Fenton process. For instance, reaching a unanimous consensus on the nature of active oxidants (hydroxyl radical or tetravalent iron) in this process remains challenging. This review comprehensively examined the mechanism of the Fenton process including the debate on the nature of active oxidants, reactions involved in the Fenton process, and the behind reason for the pH-dependent degradation of contaminants in the Fenton process. Then, we summarized several strategies that promote the Fe(II)/Fe(III) cycle, reduce the competitive consumption of active oxidants by side reactions, and replace the Fenton reagent, thus improving the performance of the Fenton process. Furthermore, advances for the future were proposed including the demand for the high-accuracy identification of active oxidants and taking advantages of the characteristic of target contaminants during the degradation of contaminants by the Fenton process.


Subject(s)
Hydrogen Peroxide , Iron , Waste Disposal, Fluid , Iron/chemistry , Hydrogen Peroxide/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Wastewater/chemistry , Oxidation-Reduction , Hydroxyl Radical/chemistry
2.
Environ Sci Technol ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39324836

ABSTRACT

In this study, vacuum ultraviolet (VUV) was first proposed to activate ferrate (Fe(VI)) for degrading micropollutants (e.g., carbamazepine (CBZ)). Results indicated that VUV/Fe(VI) could significantly facilitate the CBZ degradation, and the removal efficiencies of VUV/Fe(VI) were 30.9-83.4% higher than those of Fe(VI) at pH = 7.0-9.0. Correspondingly, the degradation rate constants of VUV/Fe(VI) were 2.3-36.0-fold faster than those of Fe(VI). Free radical quenching and probe experiments revealed that the dominant active species of VUV/Fe(VI) were •OH and Fe(V)/Fe(IV), whose contribution ratios were 43.3 to 48.6% and 48.2 to 46.6%, respectively, at pH = 7.0-9.0. VUV combined with Fe(VI) not only effectively mitigated the weak oxidizing ability of Fe(VI) under alkaline conditions (especially pH = 9.0) but also attenuated the deteriorating effect of background constituents on Fe(VI). In different real waters (tap water, river water, WWTPs effluent), VUV/Fe(VI) retained a remarkably enhanced effect on CBZ degradation compared to Fe(VI). Moreover, VUV/Fe(VI) exhibited outstanding performance in the debasement of CBZ and sulfamethoxazole (SMX), as well as six other micropollutants, displaying broad-spectrum capability in degrading micropollutants. Overall, this study developed a novel oxidation process that was efficient and energy-saving for the rapid removal of micropollutants.

3.
Environ Pollut ; 362: 124924, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39278557

ABSTRACT

Ferryl ions (Fe(IV)) are often thought to play an important role in iron-based advanced oxidation processes (AOPs), and their presence is typically inferred through the unique pathway of methyl phenyl sulfoxide (PMSO) conversion to methyl phenyl sulfone (PMSO2). Here, we first employed probe method by degrading the mixed system containing PMSO, benzoic acid (BA), nitrobenzene (NB) to analyze the steady-state concentration of Fe (IV) in the iron-based heterogeneous persulfate reaction system. In addition, studies were conducted on the direct oxidation of PMSO by different oxidants under different pH conditions, and the results showed that peroxymonosulfate (PMS), sodium hypochlorite (NaClO) and sodium periodate (PI) can directly oxidize PMSO and convert it into PMSO2. Furthermore, the influence of different types of iron salts and biomass on the prepared iron-biochar (Fe-BC) for the activation of persulfate on degradation of PMSO and the formation of PMSO2 was also investigated. This study may provide new insights into the use of PMSO as a probe for the analysis of Fe(IV) in heterogeneous reaction systems.

4.
Water Res ; 261: 122068, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39003879

ABSTRACT

Electrochemical advanced oxidation processes (EAOPs) have shown great promise for treating industrial wastewater contaminated with phenolic compounds. However, the presence of chloride in the wastewater leads to the production of undesirable chlorinated organic and inorganic byproducts, limiting the application of EAOPs. To address this challenge, we investigated the potential of incorporating Fe(II) and Fe(III) into the EAOPs with a boron-doped diamond (BDD) anode under near-neutral conditions. Our findings revealed that both Fe(II) and Fe(III) facilitated the generation of high-valent iron-oxo species (Fe(IV) and Fe(V)) in the anodic compartment, thereby reducing the oxidation contribution of reactive chlorine species. Remarkably, the addition of 1000 µM Fe(II) under high chloride conditions resulted in over a 2.8-fold increase in the oxidation rate of 50 µM phenolic contaminants at pH 6.5. Furthermore, 1000 µM Fe(II) contributed to a reduction of more than 66% in the formation of chlorinated byproducts, consequently enhancing the biodegradability of the treated water. Additionally, transitioning from batch mode to continuous flow mode further amplified the positive effects of Fe(II) on the EAOPs. Overall, this study presents a modified electrochemical approach that simultaneously enhanced the degradation of phenolic contaminants and improved the biodegradability of wastewater with high chloride concentrations.


Subject(s)
Chlorides , Electrochemical Techniques , Iron , Oxidation-Reduction , Phenols , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Phenols/chemistry , Chlorides/chemistry , Iron/chemistry , Water Pollutants, Chemical/chemistry , Waste Disposal, Fluid/methods , Water Purification/methods , Electrodes , Boron/chemistry
5.
J Hazard Mater ; 476: 135068, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39002487

ABSTRACT

Iron-based catalysts for peroxymonosulfate (PMS) activation hold considerable potential in water treatment. However, the slow conversion of Fe(III) to Fe(II) restricts its large-scale application. Herein, an iron phosphate tungsten boride composite (FePO4/WB) was synthesized by a simple hydrothermal method to facilitate the Fe(III)/Fe(II) redox cycle and realize the efficient degradation of neonicotinoid insecticides (NEOs). Based on electron paramagnetic resonance (EPR) characterization, scavenging experiments, chemical probe approaches, and quantitative tests, both radicals (HO• and SO4⋅-) and non-radicals (1O2 and Fe(IV)) were produced in the FePO4/WB-PMS system, with relative contributions of 3.02 %, 3.58 %, 6.24 %, and 87.16 % to the degradation of imidacloprid (IMI), respectively. Mechanistic studies revealed that tungsten boride (WB) promoted the reduction of FePO4, and the generated Fe(II) dominantly activated PMS through a two-electron transfer to form Fe(IV), while a minority of Fe(II) engaged in a one-electron transfer with PMS to produce SO4⋅-, HO•, and 1O2. In addition, four degradation pathways of NEOs were proposed by analyzing the byproducts using UPLC-Q-TOF-MS/MS. Besides, seed germination experiments revealed the biotoxicity of NEOs was significantly reduced after degradation via the FePO4/WB-PMS system. Meanwhile, the recycling experiments and continuous flow reactor experiments showed that FePO4/WB exhibited high stability. Overall, this study provided a new perspective on water remediation by Fenton-like reaction. ENVIRONMENTAL IMPLICATION: Neonicotinoids (NEOs) are a type of insecticide used widely around the world. They've been found in many aquatic environments, raising concerns about their possible negative effects on the environment and health. Iron-based catalysts for peroxymonosulfate (PMS) activation hold great promise for water purification. However, the slow conversion of Fe(III) to Fe(II) restricts its large-scale application. Herein, iron phosphate tungsten boride composite (FePO4/WB) was synthesized by a simple hydrothermal method to facilitate the Fe(III)/Fe(II) redox cycle and realize the efficient degradation of NEOs. The excellent stability and reusability provided a great prospect for water remediation.


Subject(s)
Insecticides , Iron , Neonicotinoids , Water Pollutants, Chemical , Insecticides/chemistry , Iron/chemistry , Catalysis , Neonicotinoids/chemistry , Water Pollutants, Chemical/chemistry , Reactive Oxygen Species/chemistry , Tungsten/chemistry , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Water Purification/methods , Peroxides/chemistry , Ferric Compounds/chemistry , Nitro Compounds
6.
J Colloid Interface Sci ; 672: 688-699, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38865882

ABSTRACT

In this study, a series of Fe-based materials are facilely synthesized using MIL-88A and melamine as precursors. Changing the mass ratio of melamine and MIL-88A could tune the coating layers of generated zero-valent iron (Fe0) particles from Fe3C to Fe3N facilely. Compared to Fe/Fe3N@NC sample, Fe/Fe3C@NC exhibits better catalytic activity and stability to degrade carbamazepine (CBZ) with peroxymonosulfate (PMS) as oxidant. Free radical quenching tests, open-circuit potential (OCP) test and electron paramagnetic resonance spectra (EPR) prove that hydroxyl radicals (OH) and superoxide radical (O2-) are dominant reactive oxygen species (ROSs) with Fe/Fe3C@NC sample. For Fe/Fe3N@NC sample, the main ROSs are changed into sulfate radicals (SO4-) and high valent iron-oxo (Fe (IV)=O) species. In addition, the better conductivity of Fe3C is beneficial for the electron transfer from Fe0 to the Fe3C, thus could keep the activity of the surface sites and obtain better stability. DFT calculation reveals the better adsorption and activation ability of Fe3C than Fe3N. Moreover, PMS can also be adsorbed on the Fe sites of Fe3N with shorter FeO bonds and longer SO bonds than on Fe3C, the Fe (IV)=O is thus present in the Fe/Fe3N@NC/PMS system. This study provides a novel strategy for the development of highly active Fe-based materials for Fenton-like reactions and thus could promote their real application.

7.
Environ Sci Technol ; 58(22): 9669-9678, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38771965

ABSTRACT

In subsurface environments, Fe(II)-bearing clay minerals can serve as crucial electron sources for O2 activation, leading to the sequential production of O2•-, H2O2, and •OH. However, the observed •OH yields are notably low, and the underlying mechanism remains unclear. In this study, we investigated the production of oxidants from oxygenation of reduced Fe-rich nontronite NAu-2 and Fe-poor montmorillonite SWy-3. Our results indicated that the •OH yields are dependent on mineral Fe(II) species, with edge-surface Fe(II) exhibiting significantly lower •OH yields compared to those of interior Fe(II). Evidence from in situ Raman and Mössbauer spectra and chemical probe experiments substantiated the formation of structural Fe(IV). Modeling results elucidate that the pathways of Fe(IV) and •OH formation respectively consume 85.9-97.0 and 14.1-3.0% of electrons for H2O2 decomposition during oxygenation, with the Fe(II)edge/Fe(II)total ratio varying from 10 to 90%. Consequently, these findings provide novel insights into the low •OH yields of different Fe(II)-bearing clay minerals. Since Fe(IV) can selectively degrade contaminants (e.g., phenol), the generation of mineral Fe(IV) and •OH should be taken into consideration carefully when assessing the natural attenuation of contaminants in redox-fluctuating environments.


Subject(s)
Hydroxyl Radical , Minerals , Hydroxyl Radical/chemistry , Minerals/chemistry , Iron/chemistry , Clay/chemistry , Oxygen/chemistry , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Aluminum Silicates/chemistry , Bentonite/chemistry
8.
Environ Sci Technol ; 58(17): 7505-7515, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38619820

ABSTRACT

The reaction of peracetic acid (PAA) and Fe(II) has recently gained attention due to its utility in wastewater treatment and its role in cloud chemistry. Aerosol-cloud interactions, partly mediated by aqueous hydroxyl radical (OH) chemistry, represent one of the largest uncertainties in the climate system. Ambiguities remain regarding the sources of OH in the cloud droplets. Our research group recently proposed that the dark and light-driven reaction of Fe(II) with peracids may be a key contributor to OH formation, producing a large burst of OH when aerosol particles take up water as they grow to become cloud droplets, in which reactants are consumed within 2 min. In this work, we quantify the OH production from the reaction of Fe(II) and PAA across a range of physical and chemical conditions. We show a strong dependence of OH formation on ultraviolet (UV) wavelength, with maximum OH formation at λ = 304 ± 5 nm, and demonstrate that the OH burst phenomenon is unique to Fe(II) and peracids. Using kinetics modeling and density functional theory calculations, we suggest the reaction proceeds through the formation of an [Fe(II)-(PAA)2(H2O)2] complex, followed by the formation of a Fe(IV) complex, which can also be photoactivated to produce additional OH. Determining the characteristics of OH production from this reaction advances our knowledge of the sources of OH in cloudwater and provides a framework to optimize this reaction for OH output for wastewater treatment purposes.


Subject(s)
Aerosols , Hydroxyl Radical , Peracetic Acid , Hydroxyl Radical/chemistry , Peracetic Acid/chemistry , Light , Kinetics , Iron/chemistry
9.
J Hazard Mater ; 469: 133982, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38460256

ABSTRACT

Enhancing Fe(VI) oxidation ability by generating high-valent iron-oxo species (Fe(IV)/Fe(V)) has attracted continuous interest. This work for the first time reports the efficient activation of Fe(VI) by a well-known aza-aromatic chelating agent 2,2'-bipyridyl (BPY) for micropollutant degradation. The presence of BPY increased the degradation constants of six model compounds (i.e., sulfamethoxazole (SMX), diclofenac (DCF), atenolol (ATL), flumequine (FLU), 4-chlorophenol (4-CP), carbamazepine (CBZ)) with Fe(VI) by 2 - 6 folds compared to those by Fe(VI) alone at pH 8.0. Lines of evidence indicated the dominant role of Fe(IV)/Fe(V) intermediates. Density functional theory calculations suggested that the binding of Fe(III) to one or two BPY molecules initiated the oxidation of Fe(III) to Fe(IV) by Fe(VI), while Fe(VI) was reduced to Fe(V). The increased exposures of Fe(IV)/Fe(V) were experimentally verified by the pre-generated Fe(III) complex with BPY and using methyl phenyl sulfoxide as the probe compound. The presence of chloride and bicarbonate slightly affected model compound degradation by Fe(VI) in the presence of BPY, while a negative effect of humic acid was obtained under the same conditions. This work demonstrates the potential of N-donor heterocyclic ligand to activate Fe(VI) for micropollutant degradation, which is instructive for the Fe(VI)-based oxidation processes.

10.
J Hazard Mater ; 469: 134029, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38492403

ABSTRACT

A novel "ferrate/percarbonate (Fe(VI)/SPC) co-oxidation process" was used to treat ciprofloxacin (CIP) and various micropollutants (MPs), which owned better performance than mixture of Fe(VI), Na2CO3 and H2O2. The mechanism investigation found that the low-concentration H2O2 (1-2 µM) released by SPC can promote the high-valent iron intermediates (Fe(IV)/Fe(V)) of Fe(VI) to the MP oxidation, and Fe(VI) products can also activate SPC to produce hydroxyl radical (·OH). The interactive activation of Fe(VI) and SPC was realized, which retained the high selectivity of Fe(VI) to electron-rich pollutants, and also made up the oxidation of electron-deficient pollutants through •OH, improving the degradation effect of various MPs by 20-30%, and the rate constant was increased by 1 to 3 times. Moreover, non-purgeable organic carbon (NPOC) determination confirmed that â€¢OH participation reduced the NPOC value of CIP from 5.43 mg/L to 4.37 mg/L. The transformation pathway of CIP showed that Fe(VI)/SPC resulted in more hydroxylation intermediates of CIP than Fe(VI) alone. Acute toxicity assays found that the photoinhibition rate of CIP treated with Fe(VI) alone was 14.5%, while the sample treated with Fe(VI)/SPC showed no significant photoinhibition effect, which proved that the new process had good detoxification properties for CIP.

11.
Environ Sci Technol ; 58(10): 4812-4823, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38428041

ABSTRACT

Many studies have investigated activation of ferrate (Fe(VI)) to produce reactive high-valent iron intermediates to enhance the oxidation of micropollutants. However, the differences in the risk of pollutant transformation caused by Fe(IV) and Fe(V) have not been taken seriously. In this study, Fe(VI)-alone, Fe3+/Fe(VI), and NaHCO3/Fe(VI) processes were used to oxidize fluoroquinolone antibiotics to explore the different effects of Fe(IV) and Fe(V) on product accumulation and toxicity changes. The contribution of Fe(IV) to levofloxacin degradation was 99.9% in the Fe3+/Fe(VI) process, and that of Fe(V) was 89.4% in the NaHCO3/Fe(VI) process. The cytotoxicity equivalents of levofloxacin decreased by 1.9 mg phenol/L in the Fe(IV)-dominant process while they significantly (p < 0.05) increased by 4.7 mg phenol/L in the Fe(V)-dominant process. The acute toxicity toward luminescent bacteria and the results for other fluoroquinolone antibiotics also showed that Fe(IV) reduced the toxicity and Fe(V) increased the toxicity. Density functional theory calculations showed that Fe(V) induced quinolone ring opening, which would increase the toxicity. Fe(IV) tended to oxidize the piperazine group, which reduced the toxicity. These results show the different-pollutant transformation caused by Fe(IV) and Fe(V). In future, the different risk outcomes during Fe(VI) activation should be taken seriously.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Water Purification , Fluoroquinolones/toxicity , Levofloxacin , Iron , Oxidation-Reduction , Phenols , Anti-Bacterial Agents/toxicity , Water Purification/methods
12.
Environ Pollut ; 345: 123534, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38342432

ABSTRACT

The Fe-based catalysts typically undergo severe problems such as deactivation and Fe sludge emission during the peroxymonosulfate (PMS) activation, which commonly leads to poor operation and secondary pollution. Herein, an S-doped Fe-based catalyst with a core-shell structure (Fe@CT, T = 1000°C) was synthesized, which can solve the above issues via the dynamic surface evolution during the reaction process. Specifically, the Fe0 on the surface of Fe@C1000 could be consumed rapidly, leaving numerous pores; the Fe3C from the core would subsequently migrate to the surface of Fe@C1000, replenishing the consumed active Fe species. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses demonstrated that the reaction surface reconstructed during the PMS activation, which involved the FeIII in-situ reduction by S species as well as the depletion/replenishment of effective Fe species. The reconstructed Fe@C1000 achieved near-zero Fe sludge emission (from 0.59 to 0.08-0.23 mg L-1) during 5 cycles and enabled the dynamic evolution of dominant reactive oxygen species (ROS) from SO4·- to FeIVO, sustainably improving the oxidation capacity (80.0-92.5% in following four cycles) to ciprofloxacin (CIP) and reducing the toxicity of its intermediates. Additionally, the reconstructed Fe@C1000/PMS system exhibited robust resistance to complex water matrix. This study provides a theoretical guideline for exploring surface reconstruction on catalytic activity and broadens the application of Fe-based catalysts in the contaminants elimination.


Subject(s)
Iron , Sewage , Iron/toxicity , Iron/chemistry , Ciprofloxacin/toxicity , Peroxides/chemistry , Catalysis
13.
Chemistry ; 30(19): e202303955, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38268122

ABSTRACT

A Fe3+ complex with N3S3-type tripod ligand, 1, reacts with O2 in CH3OH to generate formaldehyde, which has been studied structurally, spectroscopically, and electrochemically. Complex 1 crystallizes as an octahedral structure with crystallographic C3 symmetry around the metal, with Fe-N=2.2917(17) Å and Fe-S=2.3574(6) Å. UV-vis spectrum of 1 in CH3OH under Ar shows an intense band at 572 nm (ϵ 4,100 M-1cm-1), which shifts to 590 nm (ϵ 2,860 M-1cm-1) by the addition of O2, and a new peak appeared at 781 nm (ϵ 790 M-1cm-1). Such a spectral change is not observed in CH2Cl2. Cyclic voltammogram (CV) of 1 in CH2Cl2 under Ar gives reversible redox waves assigned to Fe2+/Fe3+ and Fe3+/Fe4+ couples at -1.60 V (ΔE=69 mV) and -0.53 V (ΔE=71 mV) vs Fc/Fc+, respectively. In contrast, in CH3OH, the reversible redox waves, albeit accompanied by a positive shift of the Fe2+/Fe3+ couple, are observed at -1.20 V (ΔE=85 mV) and -0.53 V (ΔE=64 mV) vs Fc/Fc+ under Ar. Interestingly, a catalytic current was observed for the CV of 1 in CH3OH in the presence of CH3ONa under Ar, when the sweep rate was slowed down.

14.
Sci Total Environ ; 912: 168860, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38040358

ABSTRACT

In this work, the oxidation performance of a new ferrate(VI)/ferrihydrite (Fe(VI)/Fh) system was systematically explored to degrade efficiently six kinds of benzophenone-type UV filters (BPs). Fe(VI)/Fh system not only had a superior degradation capacity towards different BPs, but also exhibited higher reactivity over a pH range of 6.0-9.0. The second-order kinetic model successfully described the process of BP-4 degradation by heterogeneous Fh catalyzed Fe(VI) system (R2 = 0.93), and the presence of Fh could increase the BP-4 degradation rate by Fe(VI) by an order of magnitude (198 M-1·s-1 v.s. 14.2 M-1·s-1). Remarkably, there are higher utilization efficiency and potential of Fe(VI) in Fe(VI)/Fh system than in Fe(VI) alone system. Moreover, characterization and recycling experiments demonstrated that Fh achieved certain long-term running performance, and the residual Fe content of solution after clarifying process meet World Health Organization (WHO) guidelines for drinking water. The contributions of reactive species could be ranked as Fe(V)/Fe(IV) > Fe(VI) > â€¢OH. Fe(IV)/Fe(V) were the dominant species for the enhanced removal in the Fe(VI)/Fh system, whose percentage contribution (72 %-36 %) were much higher than those in Fe(VI) alone system (5 %-17 %). However, the contribution of Fe(VI) in oxidizing BP-4 should not be underestimated (20 %-56 %). These findings reasonably exploit available Fh resources to reduce the relatively high cost of Fe(VI), which offers a proper strategies for efficient utilization of high-valent iron species and may be used as a highly-efficient and cost-effective BPs purification method.

15.
Chemosphere ; 341: 140032, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37659508

ABSTRACT

CuFeS2 is regarded as a promising catalyst for heterogeneous activation to remove organic contaminants in wastewater. However, effects of solvents in regulating material synthesis and catalytic activity are still not clear. Herein, we reported the role of water, ethanol, ethylene glycol (EG), glycerol, and polyethylene glycol 200 on the synthesis of CuFeS2 micro-flowers and their performance in activating persulfate (PS) to remove imidacloprid (IMI) pesticide. The results showed that the solvent had an effect on the morphology, crystallinity, yields, specific surface areas and unpaired electrons of CuFeS2 micro-flowers. The degradation experiments revealed the efficient catalytic activity of EG-mediated CuFeS2 for heterogeneous PS activation. SO4•- and •OH were identified in EG-CuFeS2/PS system and •OH (90.4%) was the dominant reactive species. Meanwhile, stable 20% of η[PMSO2] (the molar ratio of PMSO2 generation to PMSO consumption) was achieved and demonstrated that Fe(IV) was also involved in the degradation process. Moreover, S2- promoted the cycling of Fe3+/Fe2+ and Cu2+/Cu+, enhancing the synergistic activation and reusability of the catalyst. Density functional theory (DFT) calculations verified that PS was adsorbed by Fe atom and electron transfer occurred on the catalyst surface. Three possible degradation pathways of IMI were proposed by analysis of the degradation intermediates and their toxicities were evaluated by ECOSAR. This study not only provides a theoretical foundation for catalyst design, but also promotes the industrial application of bimetallic sulfide Fenton-like catalysts for water management.


Subject(s)
Ethylene Glycol , Water Pollutants, Chemical , Oxidation-Reduction , Nitro Compounds , Sulfides , Water , Glycols , Water Pollutants, Chemical/analysis
16.
Chemphyschem ; 24(22): e202300508, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37623820

ABSTRACT

FeIV =Oaq is a key intermediate in many advanced oxidation processes and probably in biological systems. It is usually referred to as FeIV =O2+ . The pKa's of FeIV =Oaq as derived by DFT are: pKa1=2.37 M06 L/6-311++G(d,p) (SDD for Fe) and pKa2=7.79 M06 L/6-311++G(d,p) (SDD for Fe). This means that in neutral solutions, FeIV =Oaq is a mixture of (H2 O)4 (OH)FeIV =O+ and (H2 O)2 (OH)2 FeIV =O. The oxidation potential of FeIV =Oaq in an acidic solution, E0 {(H2 O)5 FeIV =O2+ /FeIII (H2 O)6 3+ , pH 0.0} is calculated with and without a second solvation sphere and the recommended value is between 2.86 V (B3LYP/Def2-TZVP, with a second solvation sphere) and 2.23 V (M06 L/Def2-TZVP without a second solvation sphere). This means that FeIV =Oaq is the strongest oxidizing agent formed in systems involving FeVI O4 2- even in neutral media.

17.
J Hazard Mater ; 460: 132335, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37619276

ABSTRACT

Over the past few years, high-valent iron oxo species (Fe(IV)) have shown considerable promise. However, an improved solution is needed for the bottleneck of unsatisfactory electron transfer efficiency in Fe-based catalyst/PMS systems. In this study, Enteromorpha-derived biochar was pyrolyzed with iron and barium titanate (FeBCBa). Under ultrasonic treatment, it removes 94.5% of atrazine (10 mg/L) within 60 min, and is environmentally friendly. BaTiO3's piezoelectricity enhances Fe(IV) production in FeBCBa, resulting in superior performance. In the ultrasonic condition, the apparent reaction rate was 1.42 times higher than in the non-ultrasonic condition. Using density functional theory calculations, it can be shown that due to the Fe dopant, electrons in ATZ's LUMO are more easily transferred to the catalyst's HOMO, which is beneficial for ATZ removal. The results of this study provide new guidance for constructing stable and efficient catalysts for environmental remediation.

18.
Environ Pollut ; 336: 122449, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37633439

ABSTRACT

Although alkaline sulfite activation of ferrate (Fe(VI)) has advantages of fast response and high activity for degradation of organic contaminants, the specific production pathways of active species and the pH conditions still hinder its widespread application. Based on this, our study constructed a novel advanced oxidation process of calcium sulfite (CaSO3) could activated Fe(VI) continuously by Ca2+ buffering and investigated the mechanism under different pH values and CaSO3 dosages with ciprofloxacin as a target organic pollutant. The results showed that Ca2+ stabilized the process at a neutral/weakly alkaline microenvironment of pH 7-8, which could alleviate the hydrolysis of ≡FeIV=O by protons and iron hydroxyl groups. Besides, the removal of pollutants occurred efficiently when sulfate (SO32-) was excessive and had a 3:1 ratio of SO32- to Fe(VI), achieving more than 99% removal of electron-rich phenolic organic pollutants within 2 min. By adding different radical scavengers and combining electrochemical analysis methods and electron paramagnetic resonance spectroscopy techniques to revealed that the main active species in Fe(VI)/CaSO3 process were ≡FeIV=O/≡FeV=O. Furthermore, the reactivity of various sulfate species (such as SO32-, SO3•-, SO4•-, SO5•-) with Fe(VI) was calculated using density functional theory (DFT), and it was found that Fe(VI)-SO32- reaction has a much lower energy barrier (-36.08 kcal/mol), indicating that SO32- can readily activate Fe(VI) and generate ≡FeIV=O to attack the atoms with high Fukui index (f -) in organic pollutants. The above results confirm the feasibility of Fe(VI)/CaSO3 process. Thus, this study can theoretically and practically prove that the main active species is ≡FeIV=O, rather than SO4•- or •OH in Fe(VI)/CaSO3 process.


Subject(s)
Calcium , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Iron/chemistry , Oxidation-Reduction , Sulfites , Sulfur Oxides , Sulfates
19.
Water Res ; 243: 120311, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37459795

ABSTRACT

Additive metal to zero-valent iron (ZVI) could enhance the reduction ability and the additive Cu0 was incorporated to ZVI to accelerate PMS activation with atrazine (ATZ) as target compound. The efficiencies of ATZ degradation and PMS decomposition climbed up firstly and then declined as Cu0 loading increased from 0.01 to 1.00 wt% with the maximums at 0.10 wt%. SO4•-, HO•, Fe(IV), O2•- and 1O2 were generated by nZVI-Cu0/PMS based on the results of electron paramagnetic resonance (EPR) and simultaneous degradation of nitrobenzene, ATZ, and methyl phenyl sulfoxide (PMSO). The rate constant of Fe(IV) and ATZ was estimated as 7 × 104 M-1∙s-1 via the variation of methyl phenyl sulfone (PMSO2)formation at different ATZ concentrations. However, Fe(IV) contributed negligibly to ATZ degradation due to the strong scavenging of Fe(IV) by PMS. SO4•- and HO• were the reactive species responsible for ATZ degradation and the yield ratio of SO4•- and HO• was about 8.70 at initial stage. Preliminary thermodynamic calculation on the possible activation ways revealed that the dominant production of SO4•- might originate from the atomic H reduction of PMS in the surface layer of nZVI-Cu0. Ten products of ATZ degradation were identified by HPLC/ESI/QTOF and the possible degradation pathways were analyzed combined with theoretical calculation on ATZ structure. The decrease of temperature or increase of solution pH led to the decline of ATZ degradation, as well as the individual addition of common ions (HCO3-, Cl-, SO42-, NH4+, NO3- and F-) and natural organic matters (NOM). In real water, ATZ was still efficiently degraded with the decontamination efficiency decreasing in the sequence of tap water > surface water > simulated wastewater > groundwater. For the treatment of ATZ-polluted continuous flow, nZVI-Cu0 in double-layer layout had a higher capacity than the single-layer mode. Meanwhile, the leaching TFe and TCu were limited. The results indicate nZVI-Cu0/PMS is applicable and the multiple-layer layout of nZVI-Cu0 is suggested for ATZ-polluted ground water and soil remediation.


Subject(s)
Atrazine , Water Pollutants, Chemical , Atrazine/chemistry , Peroxides/chemistry , Feasibility Studies , Iron , Water , Water Pollutants, Chemical/chemistry
20.
Water Res ; 242: 120296, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37413752

ABSTRACT

Sole O2 or H2O2 oxidant hardly oxidize Sb(III) on a time scale of hours to days, but Sb(III) oxidation can simultaneously occur in Fe(II) oxidation by O2 and H2O2 due to the generation of reactive oxygen species (ROS). However, Sb(III) and Fe(II) co-oxidation mechanisms regarding the dominant ROS and effects of organic ligands require further elucidation. Herein, the co-oxidation of Sb(III) and Fe(II) by O2 and H2O2 was studied in detail. The results indicated that increasing the pH significantly increased Sb(III) and Fe(II) oxidation rates during Fe(II) oxygenation, while the highest Sb(III) oxidation rate and oxidation efficiency was obtained at pH 3 with H2O2 as the oxidant. HCO3- and H2PO4-anions exerted different effects on Sb(III) oxidation in Fe(II) oxidation processes by O2 and H2O2. In addition, Fe(II) complexed with organic ligands could improve Sb(III) oxidation rates by 1 to 4 orders of magnitude mainly due to more ROS production. Moreover, quenching experiments combined with the PMSO probe demonstrated that .OH was the main ROS at acidic pH, whereas Fe(IV) played a key role in Sb(III) oxidation at near-neutral pH. In particular, the steady-state concentration of Fe(IV) ([Fe(IV)]ss) and kFe(IV)/Sb(III) were determined to be 1.66×10-9 M and 2.57×105 M-1 s-1, respectively. Overall, these findings help to better understand the geochemical cycling and fate of Sb in Fe(II)- and DOM-rich subsurface environments undergoing redox fluctuations and are conductive to developing Fenton reactions for the in-situ remediation of Sb(III)-contaminated environments.


Subject(s)
Hydrogen Peroxide , Oxygen , Reactive Oxygen Species , Ligands , Oxidation-Reduction , Oxidants , Ferrous Compounds , Ferric Compounds
SELECTION OF CITATIONS
SEARCH DETAIL