Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters











Publication year range
1.
Sci Total Environ ; 951: 175721, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39181258

ABSTRACT

Ammonium oxidation coupled with Fe(III) reduction, known as Feammox, and nitrate-dependent ferrous oxidation (NDFO) are two processes that can be synergistically achieved through the Fe(III)/Fe(II) cycle. This integrated approach enables the simultaneous removal of ammonia nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) from wastewater, representing a novel method for complete nitrogen removal. This study presents a systematic and exhaustive examination of the Feammox-NDFO coupled process. An initial thorough exploration of the underlying mechanisms behind the coupling process is conducted, highlighting how the Fe(III)/Fe(II) cycle enables the concurrent occurrence of these reactions. Further, the functional microorganisms associated with and playing a crucial role in the Feammox-NDFO process are summarized. Next, the key influencing factors that govern the efficiency of the Feammox-NDFO process are explored. These include parameters such as pH, temperature, carbon source, iron source, nitrogen source, and various electron shuttles that may mediate electron transfer. Understanding the impact of these factors is essential for optimizing the process. The most recent trends and endeavors on the Feammox-NDFO coupling technology in wastewater treatment applications are also examined. This includes examining both laboratory-scale studies and field trials, highlighting their successes and challenges. Finally, an outlook is presented regarding the future advancement of the Feammox-NDFO technology. Areas of improvement and novel strategies that could further enhance the efficiency of simultaneous nitrogen removal from the iron cycle are discussed. In summary, this study aspires to offer a thorough comprehension of the Feammox-NDFO coupled process, with a focus on its mechanisms, influencing factors, applications, and prospects. It is anticipated to yield invaluable insights for the advancement of process optimization, thus sparking fresh ideas and strategies aimed at accomplishing the thorough elimination of nitrogen from wastewater via the iron cycle.


Subject(s)
Oxidation-Reduction , Waste Disposal, Fluid , Wastewater , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Nitrogen , Ammonium Compounds/metabolism , Nitrates , Iron/chemistry
2.
Bioresour Technol ; 408: 131179, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39084532

ABSTRACT

An iron-retrofitted anaerobic baffled reactor (ABR) system was developed for the effective treatment of rural wastewater with reduced maintenance demand and aeration costs. Average removal efficiencies of chemical oxygen demand, total nitrogen and total phosphorus of 99.4%, 62.7% and 92.6% were achieved respectively, when the ABR system was operating at steady state. With effective bioreduction of FeIII in the anaerobic chambers, phosphorus was immobilized in the sludge as vivianite, the sole phosphorus-carrying mineral. The FeIII in the recirculated sludge induced Feammox in the ABR reactor, contributing 14.8% to total nitrogen removal. Biophase separation and enrichment of microorganisms associated with iron and nitrogen transformations were observed in the system after Fe dosing, which enhanced the removal of pollutants. The coupling of Feammox and vivianite crystallization to remove nitrogen and phosphorus in an iron-retrofitted ABR would appear to be a promising technology for rural wastewater treatment.


Subject(s)
Bioreactors , Iron , Phosphorus , Sewage , Wastewater , Water Purification , Iron/chemistry , Water Purification/methods , Anaerobiosis , Wastewater/chemistry , Biological Oxygen Demand Analysis , Nitrogen , Waste Disposal, Fluid/methods , Nutrients , Rural Population
3.
Sci Total Environ ; 946: 174497, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38969131

ABSTRACT

Partial nitrification (PN) is crucial for anaerobic ammonium oxidation (ANAMMOX), but faces challenges such as high energy demands and process control. Recent research has highlighted additives like magnetite as potential alternatives to conventional electron acceptors (O2 and NO2-) for enhancing ammonium (NH4+) oxidation with lower energy consumption. This study investigated the effect of adding 50 mg/L of magnetite to ANAMMOX reactors, resulting in improved nitrogen (N) removal efficiency. The magnetite-added ANAMMOX (M-ANA) reactor yielded N removal efficiencies of 71 %, 66 %, and 57 % for NH4+:NO2- molar ratios of 1:1.3, 1:0.8, and 1:0.5, respectively. The M-ANA reactor operated under a 0.5 mol lower NO2- concentration achieved similar performance to the control ANAMMOX (C-ANA) reactor operated with a theoretical amount of NO2-. Moreover, the M-ANA reactor showed the potential to remove NH4+ by 56 % without any NO2- supplementation. Metagenomic analysis showed that the addition of magnetite significantly improved the relative abundance of microorganisms involved in the FEAMMOX reaction, such as Fimbriimonas ginsengisoli and Pseudomonas stutzeri. It also facilitated positive mutualism between ANAMMOX and FEAMMOX reactions. In addition, M-ANA granules exhibited a dense and compact structure compared with C-ANA, and the presence of magnetite facilitated the formation of resilient granules. Notably, the useful protein (Heme C) concentration and specific microbial activity in the M-ANA reactor were 1.3 and 2.2 times higher than those in the C-ANA reactor. Overall, the results demonstrate that an appropriate amount of magnetite can enhance the N removal efficiency while reducing the energy input requirements and associated carbon emissions. These findings can guide the future development of carbon- and energy-neutral N removal processes.


Subject(s)
Ammonium Compounds , Bioreactors , Ferrosoferric Oxide , Nitrites , Oxidation-Reduction , Waste Disposal, Fluid , Bioreactors/microbiology , Anaerobiosis , Waste Disposal, Fluid/methods , Nitrites/metabolism , Ammonium Compounds/metabolism , Nitrification , Bacteria/metabolism
4.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-39083023

ABSTRACT

The last two decades have seen nitrogen/iron-transforming bacteria at the forefront of new biogeochemical discoveries, such as anaerobic ammonium oxidation coupled to ferric iron reduction (feammox) and lithoautotrophic nitrate-reducing ferrous iron-oxidation (NRFeOx). These emerging findings continue to expand our knowledge of the nitrogen/iron cycle in nature and also highlight the need to re-understand the functional traits of the microorganisms involved. Here, as a proof-of-principle, we report compelling evidence for the capability of an NRFeOx enrichment culture to catalyze the feammox process. Our results demonstrate that the NRFeOx culture predominantly oxidizes NH4+ to nitrogen gas, by reducing both chelated nitrilotriacetic acid (NTA)-Fe(III) and poorly soluble Fe(III)-bearing minerals (γ-FeOOH) at pH 4.0 and 8.0, respectively. In the NRFeOx culture, Fe(II)-oxidizing bacteria of Rhodanobacter and Fe(III)-reducing bacteria of unclassified_Acidobacteriota coexisted. Their relative abundances were dynamically regulated by the supplemented iron sources. Metagenomic analysis revealed that the NRFeOx culture contained a complete set of denitrifying genes along with hao genes for ammonium oxidation. Additionally, numerous genes encoding extracellular electron transport-associated proteins or their homologs were identified, which facilitated the reduction of extracellular iron by this culture. More broadly, this work lightens the unexplored potential of specific microbial groups in driving nitrogen transformation through multiple pathways and highlights the essential role of microbial iron metabolism in the integral biogeochemical nitrogen cycle.


Subject(s)
Ammonium Compounds , Nitrates , Oxidation-Reduction , Nitrates/metabolism , Ammonium Compounds/metabolism , Anaerobiosis , Ferric Compounds/metabolism , Iron/metabolism , Ferrous Compounds/metabolism , Nitrogen/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification
5.
Environ Res ; 252(Pt 3): 118984, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38670211

ABSTRACT

Anaerobic ammonium oxidation has been considered as an environmental-friendly and energy-efficient biological nitrogen removal (BNR) technology. Recently, new reaction pathway for ammonium oxidation under anaerobic condition had been discovered. In addition to nitrite, iron trivalent, sulfate, manganese and electrons from electrode might be potential electron acceptors for ammonium oxidation, which can be coupled to traditional BNR process for wastewater treatment. In this paper, the pathway and mechanism for ammonium oxidation with various electron acceptors under anaerobic condition is studied comprehensively, and the research progress of potentially functional microbes is summarized. The potential application of various electron acceptors for ammonium oxidation in wastewater is addressed, and the N2O emission during nitrogen removal is also discussed, which was important greenhouse gas for global climate change. The problems remained unclear for ammonium oxidation by multi-electron acceptors and potential interactions are also discussed in this review.


Subject(s)
Oxidation-Reduction , Wastewater , Wastewater/chemistry , Waste Disposal, Fluid/methods , Electrons , Anaerobiosis , Ammonium Compounds/chemistry , Water Purification/methods , Quaternary Ammonium Compounds/chemistry
6.
Chemosphere ; 358: 142072, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657691

ABSTRACT

Nitrogen pollution has been increasing with the development of industrialization. Consequently, the excessive deposition of reactive nitrogen in the environment has generated the loss of biodiversity and eutrophication of different ecosystems. In 2005, a Feammox process was discovered that anaerobically metabolizes ammonium. Feammox with the use of hollow fiber membrane bioreactors (HFMB), based on the formation of biofilms of bacterial communities, has emerged as a possible efficient and sustainable method for ammonium removal in environments with high iron concentrations. This work sought to study the possibility of implementing, at laboratory scale, an efficient method by evaluating the use of HFMB. Samples from an internal circulation reactor (IC) incubated in culture media for Feammox bacteria. The cultures were enriched in a batch reactor to evaluate growth conditions. Next, HFMB assembly was performed, and Feammox parameters were monitored. Also, conventional PCR and scanning electron microscopy (SEM) analysis were performed to characterize the bacterial communities associated with biofilm formation. The use of sodium acetate presented the best performance for Feammox activity. The HFMB operation showed an ammonium (NH4+) removal of 50%. SEM analysis of the fibers illustrated the formation of biofilm networks formed by bacteria, which were identified as Albidiferax ferrireducens, Geobacter spp, Ferrovum myxofaciens, Shewanella spp., and Anammox. Functional genes Archaea/Bacteria ammonia monooxygenase, nrxA, hzsB, nirS and nosZ were also identified. The implementation of HFMB Feammox could be used as a sustainable tool for the removal of ammonium from wastewater produced because of anthropogenic activities.


Subject(s)
Ammonium Compounds , Bacteria , Biofilms , Bioreactors , Biofilms/growth & development , Bioreactors/microbiology , Bacteria/metabolism , Ammonium Compounds/metabolism , Iron/metabolism , Anaerobiosis
7.
Environ Res ; 252(Pt 1): 118843, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38582429

ABSTRACT

Recently, the newly discovered anaerobic ammonium oxidation coupled with iron reduction (i.e., Feammox) has been proven to be a widespread nitrogen (N) loss pathway in ecosystems and has an essential contribution to gaseous N loss in paddy soil. However, the mechanism of iron-nitrogen coupling transformation and the role of iron-reducing bacteria (IRB) in Feammox were poorly understood. This study investigated the Feammox and iron reduction changes and microbial community evolution in a long-term anaerobic incubation by 15N isotope labeling combined with molecular biological techniques. The average rates of Feammox and iron reduction during the whole incubation were 0.25 ± 0.04 µg N g-1 d-1 and 40.58 ± 3.28 µg Fe g-1 d-1, respectively. High iron oxide content increased the Feammox rate, but decreased the proportion of Feammox-N2 in three Feammox pathways. RBG-13-54-9, Brevundimonas, and Pelomonas played a vital role in the evolution of microbial communities. The characteristics of asynchronous changes between Feammox and iron reduction were found through long-term incubation. IRB might not be the key species directly driving Feammox, and it is necessary to reevaluate the role of IRB in Feammox process.


Subject(s)
Iron , Oxidation-Reduction , Soil Microbiology , Soil , China , Iron/metabolism , Soil/chemistry , Bacteria/metabolism , Ammonium Compounds/analysis , Ammonium Compounds/metabolism
8.
Methods Enzymol ; 696: 287-320, 2024.
Article in English | MEDLINE | ID: mdl-38658084

ABSTRACT

Acidimicrobium sp. strain A6 is a recently discovered autotrophic bacterium that is capable of oxidizing ammonium while reducing ferric iron and is relatively common in acidic iron-rich soils. The genome of Acidimicrobium sp. strain A6 contains sequences for several reductive dehalogenases, including a gene for a previously unreported reductive dehalogenase, rdhA. Incubations of Acidimicrobium sp. strain A6 in the presence of perfluorinated substances, such as PFOA (perfluorooctanoic acid, C8HF15O2) or PFOS (perfluorooctane sulfonic acid, C8HF17O3S), have shown that fluoride, as well as shorter carbon chain PFAAs (perfluoroalkyl acids), are being produced, and the rdhA gene is expressed during these incubations. Results from initial gene knockout experiments indicate that the enzyme associated with the rdhA gene plays a key role in the PFAS defluorination by Acidimicrobium sp. strain A6. Experiments focusing on the defluorination kinetics by Acidimicrobium sp. strain A6 show that the defluorination kinetics are proportional to the amount of ammonium oxidized. To explore potential applications for PFAS bioremediation, PFAS-contaminated biosolids were augmented with Fe(III) and Acidimicrobium sp. strain A6, resulting in PFAS degradation. Since the high demand of Fe(III) makes growing Acidimicrobium sp. strain A6 in conventional rectors challenging, and since Acidimicrobium sp. strain A6 was shown to be electrogenic, it was grown in the absence of Fe(III) in microbial electrolysis cells, where it did oxidize ammonium and degraded PFAS.


Subject(s)
Biodegradation, Environmental , Fluorocarbons , Fluorocarbons/metabolism , Fluorocarbons/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Caprylates/metabolism , Halogenation , Alkanesulfonic Acids/metabolism , Alkanesulfonic Acids/chemistry , Oxidation-Reduction
9.
Sci Total Environ ; 923: 171368, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38438040

ABSTRACT

Coastal sediments play a central role in regulating the amount of land-derived reactive nitrogen (Nr) entering the ocean, and their importance becomes crucial in vulnerable ecosystems threatened by anthropogenic activities. Sedimentary denitrification has been identified as the main sink of Nr in marine environments, while anaerobic ammonium oxidation with nitrite (anammox) has also been pointed out as a key player in controlling the nitrogen pool in these locations. Collected evidence in the present work indicates that the microbial biota in coastal sediments from Baja California (northwestern Mexico) has the potential to drive anaerobic ammonium oxidation linked to Mn(IV) reduction (manganammox). Unamended sediment showed ammonification, but addition of vernadite (δMnO2 with nano-crystal size ∼15 Å) as terminal electron acceptor fueled simultaneous ammonium oxidation (up to ∼400 µM of ammonium removed) and production of Mn(II) with a ratio ∆[Mn(II)]/∆[NH4+] of 1.8, which is very close to the stoichiometric value of manganammox (1.5). Additional incubations spiked with external ammonium also showed concomitant ammonium oxidation and Mn(II) production, accounting for ∼30 % of the oxidized ammonium. Tracer analysis revealed that the nitrogen loss associated with manganammox was 4.2 ± 0.4 µg 30N2/g-day, which is 17-fold higher than that related to the feammox process (anaerobic ammonium oxidation linked to Fe(III) reduction, 0.24 ± 0.02 µg 30N2/g-day). Taxonomic characterization based on 16S rRNA gene sequencing revealed the existence of several clades belonging to Desulfobacterota as potential microorganisms catalyzing the manganammox process. These findings suggest that manganammox has the potential to be an additional Nr sink in coastal environments, whose contribution to total Nr losses remains to be evaluated.


Subject(s)
Ammonium Compounds , Nitrogen , Nitrogen/analysis , Anaerobiosis , Geologic Sediments/chemistry , Ferric Compounds , Ecosystem , RNA, Ribosomal, 16S/genetics , Mexico , Oxides , Oxidation-Reduction , Denitrification
10.
Bioresour Technol ; 398: 130533, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38452950

ABSTRACT

Liquid digestate of food waste is an ammonium-, ferric- and sulfate-laden leachate produced during digestate dewatering, where the carbon source is insufficient for nitrogen removal. A two-stage partial nitrification-anammox/denitrification process was established for nitrogen removal of liquid digestate without pre-treatment (>300 d), through which nitrogen (95 %), biodegradable organics (100 %), sulfate (78 %) and iron (100 %) were efficiently removed. Additional ammonium conversion (20 %N) might be coupled with ferric and sulfate reduction, while produced nitrite could be further converted to di-nitrogen gas through anammox (75 %) and denitrification (25 %). Notably, since increasingly contribution of hydroxylamine producing nitrous oxide, and up-regulated expression of electron transfer and cytochrome c protein, the enhanced ammonium oxidation was probably conducted through extracellular polymeric substances-mediated electron transfer between sulfate/ferric-reducers and aerobic ammonium oxidizers. Thus, the established partial nitrification-anammox/denitrification process might be a cost-efficient nitrogen removal technology for liquid digestate, benefitting to domestic waste recycling and carbon neutralization.


Subject(s)
Ammonium Compounds , Refuse Disposal , Nitrification , Denitrification , Food Loss and Waste , Nitrogen , Sulfates , Food , Anaerobic Ammonia Oxidation , Oxidation-Reduction , Iron , Carbon , Bioreactors , Sewage
11.
Sci Total Environ ; 918: 170660, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38325492

ABSTRACT

Soil carbon and nitrogen cycles affect agricultural production, environmental quality, and global climate. Iron (Fe), regarded as the most abundant redox-active metal element in the Earth's crust, is involved in a biogeochemical cycle that includes Fe(III) reduction and Fe(II) oxidation. The redox reactions of Fe can be linked to the carbon and nitrogen cycles in soil in various ways. Investigating the transformation processes and mechanisms of soil carbon and nitrogen species driven by Fe redox can provide theoretical guidance for improving soil fertility, and addressing global environmental pollution as well as climate change. Although the widespread occurrence of these coupling processes in soils has been revealed, explorations of the effects of Fe redox on soil carbon and nitrogen cycles remain in the early stages, particularly when considering the broader context of global climate and environmental changes. The key functional microorganisms, mechanisms, and contributions of these coupling processes to soil carbon and nitrogen cycles have not been fully elucidated. Here, we present a systematic review of the research progress on soil carbon and nitrogen cycles mediated by Fe redox, including the underlying reaction processes, the key microorganisms involved, the influencing factors, and their environmental significance. Finally, some unresolved issues and future perspectives are addressed. This knowledge expands our understanding of the interconnected cycles of Fe, carbon and nitrogen in soils.

12.
Chemosphere ; 349: 140933, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38092166

ABSTRACT

Anaerobic ammonium oxidation, associated with both iron (Feammox) and manganese (Mnammox) reduction, is a microbial nitrogen (N) removal mechanism recently identified in natural ecosystems. Nevertheless, the spatial distributions of these non-canonical Anammox (NC-Anammox) pathways and their environmental drivers in subtidal coastal sediments are still unknown. Here, we determined the potential NC-Anammox rates and abundance of dissimilatory metal-reducing bacteria (Acidomicrobiaceae A6 and Geobacteraceae) at different horizons (0-20 cm at 5 cm intervals) of subtidal coastal sediments using the 15N isotope-tracing technique and molecular analyses. Sediments were collected across three sectors (inlet, transition, and inner) in a coastal lagoon system (Bahia de San Quintin, Mexico) dominated by seagrass meadows. The positive relationship between 30N2 production rates and dissimilatory Fe and Mn reduction provided evidence for Feammox's and Mnammox's co-occurrence. N loss through NC-Anammox was detected in subtidal sediments, with potential rates of 0.07-0.62 µg N g-1 day-1. NC-Anammox process in vegetated sediments tended to be higher than those in adjacent unvegetated ones. NC-Anammox rates showed a subsurface peak (between 5 and 15 cm) in the vegetated sediments but decreased consistently with depth in the adjacent bare bottoms. Thus, the presence/absence of seagrasses and sediment characteristics, particularly the availability of organic carbon and microbiologically reducible Fe(III) and Mn(IV), affected the abundance of dissimilatory metal-reducing bacteria, which mediated NC-Anammox activity and the associated N removal. An annual loss of 32.31 ± 3.57 t N was estimated to be associated with Feammox and Mnammox within the investigated area, accounting for 2.8-4.7% of the gross total import of reactive N from the ocean into the Bahia de San Quintin. Taken as a whole, this study reveals the distribution patterns and controlling factors of the NC-Anammox pathways along a coastal lagoon system. It improves our understanding of the coupling between N and trace metal cycles in coastal environments.


Subject(s)
Ammonium Compounds , Ferric Compounds , Ferric Compounds/metabolism , Ecosystem , Geologic Sediments/microbiology , Ammonium Compounds/metabolism , Nitrogen Cycle , Oxidation-Reduction , Nitrogen/metabolism , Bacteria/metabolism
13.
Chemosphere ; 346: 140547, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37890800

ABSTRACT

The problem of nitrogen removal in eutrophic water needs to be solved. Two new autotrophic nitrogen removal technologies, ammonia oxidation coupled with Fe(III) reduction (Feammox) and Nitrate-dependent Fe(II) oxidation (NDFO), have been shown to have the potential to treat eutrophic water. However, the continuous addition of iron sources not only costs more, but also leads to sludge mineralization. In this study, nano-sized iron powder was loaded on the surface of K3 filler as a solid iron source for the extracellular metabolism of iron-trophic bacteria. At the same time, due to the high selective adsorption of zeolite for ammonia can improve the low nitrogen metabolism rate caused by low nitrogen concentrations in eutrophic water, three kinds of modified functional biological carriers were prepared by mixing zeolite powder and iron powder in different proportions (Z1, Zeolite:iron = 1; Z2, Zeolite:iron = 2; Z3, Zeolite:iron = 3). Z3 exhibited the best performance, with removal efficiencies of 54.8% for total nitrogen during 70 days of cultivation. The chemical structure and state of iron compounds changed under microorganism activity. The ex-situ test detected high NDFO and Feammox activities, with values of 1.02 ± 0.23 and 0.16 ± 0.04 mgN/gVSS/h. The enrichment of NDFO bacteria (Gallionellaceae, 0.73%-1.43%-0.74%) and Feammox bacteria (Alicycliphilus, 1.51%-0.88%-2.30%) indicated that collaboration between various functional microorganisms led to autotrophic nitrogen removal. Hence, zeolite/iron-modified biocarrier could drive the Fe(II)/Fe(III) cycle to remove nitrogen autotrophically from eutrophic water without carbon and Fe resource addition.


Subject(s)
Iron , Zeolites , Iron/chemistry , Ammonia/metabolism , Denitrification , Nitrogen/chemistry , Powders , Oxidation-Reduction , Ferrous Compounds , Nitrogen Cycle
14.
Water Res ; 250: 121022, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38113591

ABSTRACT

Granule-based partial nitritation and anaerobic ammonium oxidation (PN/A) is an energy-efficient approach for treating ammonia wastewater. When treating low-strength ammonia wastewater, the stable synergy between PN and anammox is however difficult to establish due to unstable dissolved oxygen control. Here, we proposed, the PN/A granular sludge formed by a micro-oxygen-driven iron redox cycle with continuous aeration (0.42 ± 0.10 mg-O2/L) as a novel strategy to achieve stable and efficient nitrogen (N) removal. 240-day bioreactor operation showed that the iron-involved reactor had 37 % higher N removal efficiency than the iron-free reactor. Due to the formation of the microaerobic granular sludge (MGS), the bio(chemistry)-driven iron cycle could be formed with the support of anaerobic ammonium oxidation coupled to Fe3+ reduction. Both ammonia-oxidizing bacteria and generated Fe2+ could scavenge the oxygen as a defensive shield for oxygen-sensitive anammox bacteria in the MGS. Moreover, the iron minerals derived from iron oxidation and Fe-P precipitates were also deposited on the MGS surface and/or embedded in the internal channels, thus reducing the size of the channels that could limit oxygen mass transfer inside the MGS. The spatiotemporal assembly of diverse functional microorganisms in the MGS for the realization of stable PN/A could be achieved with the support of the iron redox cycle. In contrast, the iron-free MGS could not optimize oxygen mass transfer, which led to an unstable and inefficient PN/A. This work provides an alternative iron-related autotrophic N removal for low-strength ammonia wastewater.


Subject(s)
Ammonium Compounds , Sewage , Sewage/microbiology , Wastewater , Ammonia , Iron , Anaerobiosis , Oxidation-Reduction , Bioreactors/microbiology , Nitrogen , Oxygen , Denitrification
15.
Bioresour Technol ; 387: 129604, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37544543

ABSTRACT

Mixed pollutant wastewater has been a difficult problem due to the high toxicity of water bodies and the difficulty of treatment. Rice husk biochar modified with nano-iron tetroxide (RBC-nFe3O4) by polyvinyl alcohol cross-linking internal doping was used to introduce iron-reducing bacteria Klebsiella sp. FC61 to construct a bioreactor. The results of the long-term operation of the bioreactor showed that the removal efficiency of ammonia nitrogen (NH4+-N) and chemical oxygen demand best reached 90.18 and 98.49%, respectively. In addition, in the co-presence of Ni2+, Cd2+, and ciprofloxacin, the bioreactor was still able to remove pollutants efficiently by RBC-nFe3O4 and bio-iron precipitation inside the biocarrier. During the long-term operation, Klebsiella was always the dominant species in the bioreactor. And the sequencing data for functional prediction showed that the biocarrier contained a variety of enzymes and proteins involved in Feammox-related activities to ensure the stable and efficient operation of the bioreactor.


Subject(s)
Hydrogels , Microbiota , Hydrogels/metabolism , Wastewater , Iron/metabolism , Bioreactors/microbiology , Nitrogen/metabolism , Bacteria/genetics , Bacteria/metabolism , Klebsiella/genetics , Klebsiella/metabolism
16.
J Hazard Mater ; 459: 132039, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37480613

ABSTRACT

Acidimicrobium sp. Strain A6 (A6) can degrade perfluoroalkyl acids (PFAAs) by oxidizing NH4+ while reducing Fe(Ⅲ). However, supplying and distributing Fe(III) phases in sediments is challenging since surface charges of Fe(III)-phases are typically positive while those of sediments are negative. Therefore, ferrihydrite particles were coated with polyacrylic acid (PAA) with four different molecular weights, resulting in a negative zeta potential on their surface. Zeta potential was determined as a function of pH and PAA loading, with the lowest value observed when the PAA/ferrihydrite ratio was > 1/5 (w/w) at a pH of 5.5. Several 50-day incubations with an A6-enrichment culture were conducted to determine the effect of PAA-coated ferrihydrite as the electron acceptor of A6 on the Feammox activity and PFOA degradation. NH4+ oxidation, PFOA degradation, production of shorter-chain PFAS, and F- were observed in all PAA-coated samples. The 6 K and 450 K treatments exhibited significant reductions in PFOA concentration and substantial F- production compared to incubations with bare ferrihydrite. Electrochemical impedance spectroscopy showed lowered charge transfer resistance in the presence of PAA-coated ferrihydrite, indicating that PAAs facilitated electron transfer to ferrihydrite. This study highlights the potential of PAA-coated ferrihydrite in accelerating PFAS defluorination, providing novel insights for A6-based bioremediation strategies.


Subject(s)
Actinobacteria , Fluorocarbons , Ferric Compounds , Electrons , Oxidants
17.
Chemosphere ; 339: 139463, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37480952

ABSTRACT

The release of ammonia (as NH4+) into water bodies causes serious environmental problems. Therefore, the removal of ammonia from wastewater effluents has become a worldwide concern. New autotrophic biological alternatives for ammonia removal could reduce the limitations of conventional organic carbon-dependent nitrification-denitrification methods. Here, the potential of anaerobic ammonium oxidation coupled to Fe3+ reduction (a process known as Feammox) is studied in wastewater treatment plants of the yeast and beer production industry, not related to ammonium or iron treatment. This process is presented as a viable option to improve the efficiency of ammonia removal from wastewater. The results of this study show that enrichments under Feammox conditions achieved removals of 28.19-32.25% of the total NH4+. The highest rates of ammonium removal and Fe3+ reduction were achieved using FeCl3 as iron source and pH = 7.0. Different environmental conditions for the enrichments were studied and it was found that the use of sodium acetate as a carbon source and an incubation temperature of 35 °C presented higher rates of iron reduction and higher increase in nitrate concentration, related to ammonium oxidative processes. Likewise, the presence of relevant species of the iron and nitrogen cycles as Ferrovum myxofaciens, Geobacter spp, Shewanella spp, Albidiferax ferrireducens and Anammox was verified, supporting the findings of this study. These results provide information that may be relevant to the potential applicability of Feammox to treat wastewater with high ammonia load and could help develop cost-effective and environmentally friendly methods for ammonium removal in wastewater treatment plants.


Subject(s)
Ammonium Compounds , Wastewater , Ammonia , Anaerobiosis , Nitrogen/analysis , Iron , Oxidation-Reduction , Bioreactors , Denitrification
18.
Water Res ; 243: 120280, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37441896

ABSTRACT

Novelty techniques of Fe(III) reduction coupled to anaerobic ammonium oxidation (i.e. Feammox) and nitrate-dependent Fe(II) oxidation (i.e. NDFO) provide new insights into autotrophic nitrogen removal from eutrophic waters. Given that Feammox and NDFO can theoretically complete the simultaneous NH+ 4-N and NO- 3-N removal via Fe(III)/Fe(II) cycle, this study introduces iron powder to the surface of the biocarrier as a solid-phase source of Fe, and biochar was used as an electron shuttle to mix with the iron powder to improve the bioavailability of iron. Batch experiments was carried out for 70 days using simulated eutrophic water as the medium to investigate the effects of the modified biocarrier for enhanced nitrogen removal. The results showed that BC1 (Fe:BC=1:1) with the highest relative Fe content exhibited the highest nitrogen removal efficiency of 66.74%. XPS and XRD results showed both Fe(III) and Fe(II) compounds on the biocarrier surface, confirming the occurrence of Fe(III)/Fe(II) cycle. The ex-situ activity test indicated that functional activity was positively correlated with the iron content of the biocarrier. The in-situ experiments with different substrates showed the occurrence of Feammox and NDFO. NDFO bacteria (Gallionellaceae), Feammox bacteria (Alicycliphilus), denitrifying and digesting bacteria were enriched, suggesting that the coupled nitrogen removal of NDFO and Feammox is the result of cooperation between different functional microorganisms. Thus, the Fe-modified biocarrier showed superior performance and application potential in catalyzing autotrophic nitrogen removal from eutrophic water by functional microorganisms.


Subject(s)
Ammonium Compounds , Ferric Compounds , Nitrogen , Powders , Ammonium Compounds/chemistry , Iron/chemistry , Oxidation-Reduction , Ferrous Compounds , Denitrification
19.
Water Res ; 242: 120295, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37429134

ABSTRACT

Removing ammonia (NH4+-N) and recalcitrant organics from low carbon/nitrogen wastewater requires a large amount of chemical reagents and energy. This work reports a new advanced oxidation process to remove recalcitrant organics with the assistant of NH4+-N in low carbon/nitrogen wastewater. Specifically, NH4+-N in wastewater mediated Fe(II)/Fe(III) cycle for the activation of oxidation reagent (e.g., H2O2) (ammonia-mediated AOP) to improve the removal of recalcitrant organics. In ammonia-mediated AOP, NH4+-N, recalcitrant organics, and PO4-P in wastewater were removed by 88.2%, 80.5% and 84%, respectively, with a low H2O2 consuming of only 5 mg/L. The removal efficiency of recalcitrant organics in the ammonia-mediated AOP increased as the concentration of NH4+-N in wastewater increased. Recalcitrant organics can be removed with an efficiency of 74∼82%, when the influent pH was 6∼6.8. This work provides a new and cost-effective approach to drive the iron cycle in Fenton treatment using NH4+-N from wastewater as mediator.

20.
Bioresour Technol ; 385: 129417, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37390928

ABSTRACT

This study investigated the enhancement effect of zero-valent iron and static magnetic field on the pollutant removal and power generation of electroactive constructed wetland. As demonstration, a conventional wetland was systematically modified by introducing zero-valent iron and then a static magnetic field, leading to progressive increases in pollutant (namely NH4+-N and chemical oxygen demand) removal efficiencies. By introducing both zero-valent iron and a static magnetic field, the power density increased four-fold to 9.2 mW/m2 and the internal resistance decreased by 26.7% to 467.4 Ω. Notably, static magnetic field decreased the relative abundance of electrochemically active bacteria (such as Romboutsia), while significantly enhancing species diversity. The permeability of the microbial cell membrane was improved, leading to a reduction in activation loss and internal resistance, thereby enhancing power generation capacity. Results showed that the addition of zero-valent iron and the applied magnetic field were beneficial to the pollutants removal and bioelectricity generation.


Subject(s)
Bioelectric Energy Sources , Environmental Pollutants , Water Purification , Wastewater , Wetlands , Iron , Electrodes , Water Purification/methods , Electricity
SELECTION OF CITATIONS
SEARCH DETAIL