Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.703
Filter
1.
J Environ Sci (China) ; 147: 359-369, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003053

ABSTRACT

Agricultural practices significantly contribute to greenhouse gas (GHG) emissions, necessitating cleaner production technologies to reduce environmental pressure and achieve sustainable maize production. Plastic film mulching is commonly used in the Loess Plateau region. Incorporating slow-release fertilizers as a replacement for urea within this practice can reduce nitrogen losses and enhance crop productivity. Combining these techniques represents a novel agricultural approach in semi-arid areas. However, the impact of this integration on soil carbon storage (SOCS), carbon footprint (CF), and economic benefits has received limited research attention. Therefore, we conducted an eight-year study (2015-2022) in the semi-arid northwestern region to quantify the effects of four treatments [urea supplied without plastic film mulching (CK-U), slow-release fertilizer supplied without plastic film mulching (CK-S), urea supplied with plastic film mulching (PM-U), and slow-release fertilizer supplied with plastic film mulching (PM-S)] on soil fertility, economic and environmental benefits. The results revealed that nitrogen fertilizer was the primary contributor to total GHG emissions (≥71.97%). Compared to other treatments, PM-S increased average grain yield by 12.01%-37.89%, water use efficiency by 9.19%-23.33%, nitrogen accumulation by 27.07%-66.19%, and net return by 6.21%-29.57%. Furthermore, PM-S decreased CF by 12.87%-44.31% and CF per net return by 14.25%-41.16%. After eight years, PM-S increased SOCS (0-40 cm) by 2.46%, while PM-U decreased it by 7.09%. These findings highlight the positive effects of PM-S on surface soil fertility, economic gains, and environmental benefits in spring maize production on the Loess Plateau, underscoring its potential for widespread adoption and application.


Subject(s)
Agriculture , Carbon Footprint , Fertilizers , Plastics , Zea mays , Zea mays/growth & development , Agriculture/methods , China , Soil/chemistry , Greenhouse Gases/analysis , Nitrogen/analysis
2.
Sci Rep ; 14(1): 19396, 2024 08 20.
Article in English | MEDLINE | ID: mdl-39169040

ABSTRACT

Climate change negative impacts on food production systems have forced large scale food producers to make available less healthy products. Although available on the markets, tomatoes are no more tasting as they used to be and providing fewer nutrients compared to then. This study investigates and compares the quality and yield of organic tomatoes (Solanum lycopersicum) produced in an insect net covered photovoltaic greenhouse against ambient production. Plant's physical characteristics were measured, yields and nutrient content were found at harvest, and environmental conditions (temperature, relative humidity, solar irradiance and CO2) were recorded. Plants grew as high as 160 cm inside the greenhouse under an average afternoon temperature of 30.71 °C and a vapor pressure deficit (VPD) of 1.88 kPa against outside plant growth of 72 cm height under averages of 36.04 °C and 3.05 kPa. Although, inside greenhouse tomatoes were physically more attractive and firm with two times healthier tomatoes (98%), 52.39% higher content in protein, 13.31% more minerals and 13.19% more dry matter than outside tomatoes, the yield from outside environment was 4.57 times higher than that of inside due to probably the used crop variety adapted to the harsh climate. Using a crop variety optimum for greenhouse, increasing ventilation and using better fertilizers with enough irrigation could help increase productivity while keeping high fruit quality inside the greenhouse, leading to healthier fruits for food security in the Sahel.


Subject(s)
Climate Change , Solanum lycopersicum , Solanum lycopersicum/growth & development , Organic Agriculture/methods , Temperature , Fruit/growth & development , Crops, Agricultural/growth & development
3.
Heliyon ; 10(15): e34981, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39165941

ABSTRACT

Background: Urea is a fertilizer widely used by farmers, especially vegetable farmers, due to its high nitrogen content, around 46 %. However, plants only use a small amount of nitrogen, a maximum of 35 %, while the remaining nitrogen is wasted and released into the environment. Undeniably, it causes increases production costs and environmental problems. A slow-release urea fertilizer (SRF) has been formulated to resolve these issues. Methods: In this study, the membrane was made of chitosan with several crosslinking agents such as Tripolyphosphate (TPP). In addition, calcium ion bonds are expected to increase the interaction with urea fertilizer through the encapsulation process. The results: Our data showed that urea slow-release fertilizer (SRF) with the chitosan/TPP/Ca membrane, was successfully synthesized. This membrane has the characteristics of a thin white layer that is transparent. The physical and chemical characterization of SRF membranes with various coating membrane variations showed that the chitosan/TPP/Ca-urea membrane has Young's modulus of 7.75-22.05 N/mm2, swelling of 109.52-132.62 % and porosity of 0.756-1.06 %. Functional group analysis shows that several spectral changes indicate the presence of crosslinking process between the chitosan functional groups and TPP. The urea release results show that the membrane is released through a diffusion mechanism. Furthermore, SEM results show that these membranes have pores with various shapes and sizes. Conclusion: Based on the result, it can be concluded that chitosan membrane modification with the addition of TPP and calcium oxide provides improved membrane characteristic cs including degree of development, hydrophobicity, membrane stress, and nitrogen release on the membrane. This membrane shows is indicating suitability as a slow-release fertilizer.

4.
Heliyon ; 10(15): e34743, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39166072

ABSTRACT

The enduring existence of pollution presents a substantial danger to human health, natural systems, and social welfare. Human activities mostly generate greenhouse gas emissions, namely carbon dioxide, which negatively impacts the environment. This study used annual datasets to examine the association between maize crop production, maize yield, fertilizer consumption, agricultural land use, and environmental quality in China. In order to identify the positive and negative shocks with the assessment of short- and long-run dynamics, the study used an asymmetric Nonlinear Autoregressive Distributed Lag (NARDL) approach. A Robust Least Squares method was also used to locate the parameters nexus in order to assess the series' robustness. Results from the long-run interaction indicate that the maize crop production and agricultural land use has a positive impact on CO2 emissions with probability values of (0.000), (0.000), and (0.001), (0.780), respectively, via both positive and negative interruptions. Additionally, maize yield exposed a detrimental effect on environmental quality. Results of the robust least squares analysis showed that maize crop production, fertilizer consumption, and agricultural land use had a positive influence on environmental quality, with probability values of (0.000), (0.004), and (0.949), respectively. However, there is an unfavourable relationship between variable maize yields and CO2 emissions. China should play a significant role in seeking to reduce carbon dioxide emissions and adopt the beneficial policies necessary to ensure the environment's long-term sustainability, since these emissions are now a rising issue around the world.

5.
Front Plant Sci ; 15: 1401089, 2024.
Article in English | MEDLINE | ID: mdl-39166254

ABSTRACT

Organic farming methods, including the use of organic substrates, fertilizers, pesticides, and biological control, are gaining popularity in controlled environment agriculture (CEA) due to economic benefits and environmental sustainability. However, despite several studies focusing on the preparation and evaluation of liquid organic fertilizers, none have explored the compatibility of these fertilizers with different hydroponic systems. Therefore, the objective of this study was to evaluate lettuce production using a liquid organic fertilizer under different hydroponic systems. Four distinct hydroponic methods were selected: nutrient film technique (NFT), deep water culture (DWC) (liquid culture systems), and Dutch bucket (DB), regular plastic container (RPC) (substrate-based systems). 'Green Butter' lettuce was grown using a liquid organic fertilizer (Espartan) for four weeks. Shoot growth parameters (e.g., shoot width, number of leaves, leaf area, foliar chlorophyll content, fresh weight, and dry weight) and root growth parameters (e.g., root length, fresh weight, and dry weight) were measured. The growth difference of lettuce under the DB and RPC systems was negligible, but the growth in RPC was 29% to 60% and 15% to 44% higher than the NFT and DWC systems, respectively, for shoot width, number of leaves, leaf area, shoot fresh weight and dry weight. Root parameters were nearly identical for the NFT and DWC systems but significantly lower (21% to 94%) than the substrate-based DB and RPC systems. Although lettuce grown in the NFT system showed the least growth, its mineral content in the leaf tissue was comparable or sometimes higher than that of substrate-based hydroponic systems. In conclusion, the tested liquid organic fertilizer is suitable for substrate-based hydroponic systems; however, further evaluation of different liquid organic fertilizers, and crop species is required.

6.
Ecotoxicol Environ Saf ; 283: 116870, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39137467

ABSTRACT

The biogeochemical processes of sulfur and heavy metals in the environment are closely related to each other. We investigated the influence of sulfur addition on hyperaccumulator Sedum alfredii Hance growth, cadmium (Cd) accumulation, soil Cd bioavailability, soil bacterial communities and plant transcriptome responses. The results showed that an appropriate rate of sulfur addition (1.0 or 2.5 g/kg) enhanced the growth of Sedum alfredii Hance plants as well as their accumulation of Cd. A high rate of sulfur addition (5.0 or 10.0 g/kg) causes toxicity to Sedum alfredii Hance plants. The application of an appropriate amount of sulfur to the soil increased the abundance of sulfur-oxidizing bacteria such as Sulfuriferula and Thiobacillus; acid-fast bacillus such as Alicyclobacillus; and cadmium-tolerant bacteria such as Bacillus and Rhodanobacter. This led to a decrease in pH and an increase in bioavailable Cd in the soil. RNA sequencing revealed that the addition of sulfur to soils led to the up regulation of most of the differentially expressed genes (DEGs) involved in "photosynthesis" and "photosynthesis, light reaction" in Sedum alfredii Hance leaves. Moreover, the "plant hormone signal transduction" pathway was significantly enriched with sulfur addition. Sulfur assimilation in Sedum alfredii Hance plants may promote photosynthesis and hormone synthesis, leading to Cd tolerance in these plants. Our study revealed that sulfur fertilization enhanced the efficiency of Cd phytoremediation in Sedum alfredii Hance plants.

7.
BMC Plant Biol ; 24(1): 774, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143533

ABSTRACT

BACKGROUND: Nitrogen (N) is a crucial element for increasing photosynthesis and crop yields. The study aims to evaluate the photosynthetic regulation and yield formation mechanisms of different nodulating peanut varieties with N fertilizer application. METHOD: The present work explored the effect of N fertilizer application rates (N0, N45, N105, and N165) on the photosynthetic characteristics, chlorophyll fluorescence characteristics, dry matter, N accumulation, and yield of four peanut varieties. RESULTS: The results showed that N application increased the photosynthetic capacity, dry matter, N accumulation, and yield of peanuts. The measurement of chlorophyll a fluorescence revealed that the K-phase, J-phase, and I-phase from the OJIP curve decreased under N105 treatment compared with N0, and WOI, ET0/CSM, RE0/CSM, ET0/RC, RE0/RC, φPo, φEo, φRo, and Ψ0 increased, whereas VJ, VI, WK, ABS/RC, TR0/RC, DI0/RC, and φDo decreased. Meanwhile, the photosystem activity and electron transfer efficiency of nodulating peanut varieties decreased with an increase in N (N165). However, the photosynthetic capacity and yield of the non-nodulating peanut variety, which highly depended on N fertilizer, increased with an increase in N. CONCLUSION: Optimized N application (N105) increased the activity of the photosystem II (PSII) reaction center, improved the electron and energy transfer performance in the photosynthetic electron transport chain, and reduced the energy dissipation of leaves in nodulating peanut varieties, which is conducive to improving the yield. Nevertheless, high N (N165) had a positive effect on the photosystem and yield of non-nodulating peanut. The results provide highly valuable guidance for optimizing peanut N management and cultivation measures.


Subject(s)
Arachis , Chlorophyll , Fertilizers , Nitrogen , Photosynthesis , Arachis/metabolism , Arachis/physiology , Arachis/growth & development , Nitrogen/metabolism , Chlorophyll/metabolism , Fluorescence , Kinetics
8.
Front Plant Sci ; 15: 1435927, 2024.
Article in English | MEDLINE | ID: mdl-39148625

ABSTRACT

Introduction: Phosphorus nutrition and hormone concentration both affect crop yield formation. Ascertaining the interaction of phosphorus and GA3 has a synergistic effect on the grain yield and phosphorus utilization efficiency of oilseed flax in dryland. It is extremely important for improving grain yield and phosphorus utilization efficiency. Methods: A field experiment was conducted in 2019 and 2020 at the Dingxi Oil Crops Test Station to investigated the effects of phosphorus, gibberellin (GA3), and their interaction on the grain yield and phosphorus-utilization efficiency of oilseed flax plants. Phosphorus fertilizer was applied at three levels (0, 67.5, 135 kg P2O5·ha-1) and GA3 was also sprayed at three concentrations (0, 15, and 30 mg·L-1). Results: The results showed that application of 67.5 kg P2O5·ha-1 reduced leaves acid phosphatase (ACPase) activity, but increased phosphorus accumulation throughout the growth period, the 1000-kernel weight (TKW), and the number of grains per capsule. Spraying GA3 significantly increased the leaves ACPase activity, phosphorus accumulation after anthesis and its contribution to grain, phosphorus-utilization efficiency, the number of capsules per plant, and TKW. The phosphorus accumulation at the anthesis, kernel, and maturity stages under the treatment of fertilizing 67.5 kg P2O5·ha-1 and spraying 30 mg·L-1 GA3 were increased by 56.06%, 73.51%, and 62.17%, respectively, compared with the control (no phosphorus, no GA3). And the phosphorus accumulation after anthesis and its contribution to grain also increased. 67.5 kg P2O5·ha-1 combined with 30 mg·L-1 GA3 and 135 kg P2O5·ha-1 combined with 15 mg·L-1 GA3 both significantly increased grain yield of oilseed flax, reaching 1696 kg·ha-1 and 1716 kg·ha-1 across two years, respectively. And there was no significant difference between them. However, the former treatment significant increased the apparent utilization rate, agronomic utilization rate, and partial productivity of phosphorus. The interaction between phosphorus and GA3 was significant for grain yield. Conclusion: Therefore, the application of 67.5 kg P2O5·ha-1 in combination with 30 mg·L-1 GA3 is an effective fertilization approach for enhancing oilseed flax growth and grain yield in the experiment region and other similar areas.

9.
Heliyon ; 10(14): e34846, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39148993

ABSTRACT

F. taipaiensis P. Y. Li represents a significant asset within traditional Chinese medicinal flora, though it confronts the challenge of germplasm deterioration during its cultivation phase. This study aimed to discern the implications of single strains or combinations of diverse growth-promoting actinomycetes on the growth metrics, antioxidant competence and pertinent gene expression in the leaves of F. taipaiensis. The result revealed that the malondialdehyde content within the plant's leaves notably diminished in the treatment groups compared to the CK group, with the S6 group showcasing the most pronounced malondialdehyde reduction, amounting to approximately one-third of the CK's value. Leaf area, length and width peaked in the S5 cohort, registering values 4.55, 2.46 and 1.85 times surpassing the CK group. Concurrently, plant height and stem thickness were maximal in the S6 group, being 2.29 and 1.75 times that of the CK group, whereas leaf thickness reached its zenith in the S7 group, marking a 2.17-fold elevation compared to the CK. Photosynthetic pigments, soluble sugars and soluble proteins in the leaves, exhibited augmentation across the inoculated groups to varying magnitudes. Specifically, the S5 group was superior in photosynthetic metrics and pigments, while the S6 group manifested the highest soluble sugar concentration, which was 1.35 times that of the CK. The S3 group demonstrated the pinnacle of soluble protein content, an impressive 5.86-fold increment relative to the CK group. The enzymatic activities of superoxide dismutase, peroxidase and catalase, along with their affiliated gene expressions, were observably augmented in the inoculated groups, with the S5 group standing out. To encapsulate, the actinomycete inoculation holds potential in fostering the growth and maturation of F. taipaiensis, amplifying its environmental resilience. The revelations from this study extend valuable insights for the judicious choice of microbial fertilizers in the cultivated propagation of Fritillaria taipaiensis P. Y. Li.

10.
Heliyon ; 10(14): e34830, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39149013

ABSTRACT

The productivity of maize, an essential staple food crop in Africa, is severely constrained by the declining fertility of the soil. The combined use of organic and inorganic fertilizers could ameliorate this challenge in a sustainable way to boost maize productivity. Two field trials were conducted at Ashanti -Mampong and Damongo, in the transitional and Guinea Savannah agroecologies of Ghana respectively, to assess the influence of sole and integrated application of chicken manure and NPK fertilizer on the growth and yield of maize. The treatments included two maize varieties; Abontem and Obatanpa, and five fertilizer rates; 3 t/ha chicken manure (CM), NPK (65:38:38 kg ha-1 NPK), ½ CM + ½ NPK and ¾ CM + » NPK and control (no fertilizer). A 2 x 5 factorial randomized complete block design with three replications was used. Significant variations (p < 0.05) were revealed between varieties, fertilizer types and their interaction effects for phenological, growth and yield of maize in both locations. The superiority of the integrated application of NPK and chicken manure was also visible in the vegetative parameters such as plant height, number of leaves and shoot dry weight of the maize plants given them the comparative advantage to assimilate more photosynthates for partitioning to the ears and grains. Obatanpa treated with ½ CM + ½ NPK produced the highest yield of 4661.1 kg ha-1, which was 29.6 and 29.9 % higher than the same variety grown on sole NPK and sole chicken manure, respectively at Damongo. Abontem treated with ¾ CM + » NPK recorded a grain yield of 4479.3 kg ha-1, 11.7 % higher than the sole NPK and 10.3 % higher than the sole CM at Damongo. Similarly, Obatanpa grown on the ½ CM + ½ NPK recorded the highest grain yield of 4349.3 kg ha-1at Mampong followed by Abontem treated with the sole NPK (4267.1 kg ha-1). Sole NPK and the combined application of NPK and chicken manure gave comparable responses for vegetative traits while the integrated application proved superior for grain yield of maize across the two agroecologies.

11.
Physiol Mol Biol Plants ; 30(7): 1099-1111, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39100873

ABSTRACT

For agricultural safety and sustainability, instead of synthetic fertilizers the eco-friendly and inexpensive biological applications include members of plant-growth-promoting rhizobacteria (PGPR) genera, Pseudomonas spp. will be an excellent alternative option to bioinoculants as they do not threaten the soil biota. The effect of phosphate solubilizing bacteria (PSB) Pseudomonas aeruginosa (MK 764942.1) on groundnuts' growth and yield parameters was studied under field conditions. The strain was combined with a single super phosphate and tested in different combinations for yield improvement. Integration of bacterial strain with P fertilizer gave significantly higher pod yield ranging from 7.36 to 13.18% compared to plots where sole inorganic fertilizers were applied. Similarly, the combined application of PSB and inorganic P fertilizer significantly influenced plant height and number of branches compared to sole. However, a higher influence of phosphorous application (both PSB and P fertilizer) observed both nodule dry weight and number of nodules. Combined with single super phosphate (100% P) topped in providing better yield attributing characters (pod yield, haulm yield, biomass yield, 1000 kernel weight, and shelling percentage) in groundnut. Higher oil content was also recorded with plants treated with Pseudomonas aeruginosa combined with single super phosphate (SSP) (100% P). Nutrients like nitrogen (N), phosphorous (P), and potassium (K) concentrations were positively influenced in shoot and kernel by combined application. In contrast, Ca, Mg, and S were found to be least influenced by variations of Phosphorous. Plants treated with Pseudomonas aeruginosa and lower doses of SSP (75% P) recorded higher shoot and kernel P. We found that co-inoculation with PSB and SSP could be an auspicious substitute for utilizing P fertilizer in enhancing yield and protecting nutrient concentrations in groundnut cultivation. Therefore, PSB can be a good substitute for bio-fertilizers to promote agricultural sustainability.

12.
Front Plant Sci ; 15: 1434926, 2024.
Article in English | MEDLINE | ID: mdl-39104846

ABSTRACT

Introduction: High-yield and high-quality production of silage maize in cold regions is crucial for ensuring the sustainable development of livestock industry. Methods: This study first conducted an experiment to select the optimized silage maize varieties and densities using a split-plot design. The tested maize varieties were Xuntian 3171, Xuntian 16, Xunqing 858, and Fengtian 12, with each variety planted at densities of 67,500, 79,500, and 90,000 plants ha-1. Following the variety and density selection, another experiment on optimizing nitrogen management for silage maize was carried out using a completely randomized design: no nitrogen fertilizer (T1), applying urea-N 320 kg ha-1 (T2), applying urea-N 240 kg ha-1 (T3), applying polymer-coated urea-N 240 kg N ha-1 (T4), and ratios of polymer-coated urea-N to urea-N at 9:1 (T5), 8:2 (T6), 7:3 (T7), and 6:4 (T8). T5-T8 all applied 240 kg N ha-1. The yield and quality of silage maize, nitrogen use efficiency and balance, and economic benefits were evaluated. Results: Results showed that Xunqing 858 had significantly higher plant height (8.7%-22.6% taller than the other three varieties) and leaf area (30.9% larger than Xuntian 3171), resulting in yield 11.5%-51.6% higher than the other three varieties. All varieties achieved maximum yields at a planting density of 79,500 plants ha-1. Integrated management strategy 7 (T7: Xunqing 858, 79,500 plants ha-1, polymer-coated urea-N to urea-N ratio of 7:3) achieved the highest yield of 73.1 t ha-1, a 6.1%-58.1% increase over other treatments. This strategy also produced the highest crude protein (11.1%) and starch (19.1%) contents, and the lowest neutral detergent fiber content (50.6%), with economic benefits improved by 10.3%-97.8% compared to other strategies. Additionally, T7 improved nitrogen use efficiency by 15.4%-94.5%, reduced soil nitrate leaching by 4.4%-36.5%, and decreased nitrogen surplus by 7.0%-46.6%. Conclusion and discussion: Comprehensive analysis revealed that the integrated management strategy 7 significantly improved silage maize yield and quality in cold regions while enhancing nitrogen use efficiency and reducing the risk of nitrate leaching, aligning with green agriculture development requirements. These findings will provide vital theoretical insights and practical guidance for high-yield and high-quality silage maize production in cold regions worldwide.

13.
BMC Chem ; 18(1): 144, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103926

ABSTRACT

The combination of hydrogel and fertilizer as slow release fertilizer hydrogel (SRFH) has become one of the most promising materials to overcome the shortcomings of conventional fertilizer by decreasing fertilizer loss rate, supplying nutrients sustainably, and lowering the frequency of irrigation. The hydrogel based on carboxymethyl cellulose (CMC) and polyacrylic acid (PAA) (CMC/PAA) was synthesized. All materials, Vinasse, hydrogel (CMC/PAA) and (Vinasse/CMC-PAA) were characterized by FTIR, XRD, and SEM. The formed hydrogel was applied to control the salinity of Vinasse to use it as a cheap and economical fertilizer. The results showed that using the prepared hydrogel with Vinasse (V/CMC-PAA) as a slow-release organic fertilizer decreased the EC value through the first six hours from 1.77 to 0.35 mmohs/cm. Also, using V/CMC-PAA can control and keep the potassium as fertilizer for 50 days. The productivity per feddan from the sugar cane crop increased by about 15%, and the number of irrigations decreased from 5 to 4 times.

14.
Heliyon ; 10(14): e34351, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39108876

ABSTRACT

Organic based fertilizers is crucial for maintaining soil fertility, increasing crop production, and mitigating climate change. Among various organic fertilizers, vermicompost (VC) has been found to be one of the promising options for enhancing soil fertility and productivity. However, there are limited studies on the agronomic effects of vermicomposts in Nepal. In this study, a pot culture experiment was conducted inside a greenhouse to assess the agronomic and economic effects of four different commercially available vermicomposts, available in both reduced and original moisture forms, on okra. Nine treatments with three replications were arranged in a completely randomized design (CRD). These treatments included Divya vermicompost with both reduced (DvRM: 28.82 %) and original moisture (DvOM: 62.17 %); Praramva vermicompost with reduced (PvRM: 29.63 %) and original moisture (PvOM: 54.65 %), Bio-Comp vermicompost with reduced (BvRM: 26.75 %) and original moisture (BvOM: 49.77 %), Sathi vermicompost with reduced (SvRM: 28.52 %) and original moisture (SvOM: 65.18 %), and a control (CK: non-fertilized treatment). All VC treatments, whether in reduced or original moisture forms, showed better performance on plant growth parameters and fruit yield compared to the control. There was no significant difference between the four types of VCs, in either moisture form. The average number of fruits per pot in VC treatments (ranging from 5.5 to 8.0 fruits per pot) increased by 94 % compared to CK (3.5 fruits). Similarly, total fruit yield increased by 126 % in VC treatments (ranging from 16213 kg ha-1 to 23193 kg ha-1) compared to the CK (8260 kg ha-1). The benefit to cost ratio (B:C) of all the VCs was above 1 (B:C > 1), ranging from 1.00 to 1.59, illustrating the economic benefit of using vermicompost in okra cultivation. The findings suggest that farmers should consider the widespread use of vermicomposts to increase both crop productivity and farm profitability, thereby sustaining their livelihoods.

15.
J Basic Microbiol ; : e2400225, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113273

ABSTRACT

The integrated application of inorganic fertilizers, organic fertilizers, and biofertilizers helps sustain the nutrient pool and benefits the soil quality, thereby boosting plant health. The effect of different combinations of biofertilizers (consortium biofertilizer [CBF]-non-rhizobial PGPR), inorganic fertilizers, and organic fertilizers on soil health, growth, and yield of cowpea was evaluated by conducting a field experiment. The application of N100 FYM + CBF resulted in significantly higher populations of bacteria, fungi, PSB, and diazotroph, as well as soil dehydrogenase and alkaline phosphatase enzyme activities. However, the application of N100 FYM recorded a significantly higher actinomycetes population. The application of N100 FYM + CBF resulted in significantly higher soil OC, available nitrogen, phosphorus, and potassium. The soil pH was recorded to be highest in control, and soil EC was recorded to be lowest in control. The plant uptake of nitrogen, phosphorus, and potassium was significantly higher with N50 FYM + NP50 + CBF. The root-shoot biomass, number of leaves, nodules/plant, number of pods/plants, pod biomass, pod length, and pod width were significantly higher in treatment having N50 FYM + NP50 + CBF. However, the height of the plant, number of branches, and biomass of leaves were highest in treatment with N25 FYM + NP75 + CBF. The pod and stover yield were significantly higher in treatment with N50 FYM + NP50 + CBF. The results showed that the integrated application of non-rhizobial PGPR along with organic and inorganic fertilizer helps to improve overall soil health, quality, and plant growth of forage cowpea contributing to an increase in crop yield.

16.
BMC Plant Biol ; 24(1): 759, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39118015

ABSTRACT

BACKGROUND: Populus spp. is a crucial fast-growing and productive tree species extensively cultivated in the mid-latitude plains of the world. However, the impact of intensive cultivation management on gene expression in plantation remains largely unexplored. RESULTS: Precision water and fertilizer-intensive management substantially increased key enzyme activities of nitrogen transport, assimilation, and photosynthesis (1.12-2.63 times than CK) in Populus × euramericana 'Neva' plantation. Meanwhile, this management approach had a significant regulatory effect on the gene expression of poplar plantations. 1554 differential expression genes (DEGs)were identified in drip irrigation (ND) compared with conventional irrigation. Relative to ND, 2761-4116 DEGs, predominantly up-regulated, were identified under three drip fertilization combinations, among which 202 DEGs were mainly regulated by fertilization. Moreover, drip irrigation reduced the expression of cell wall synthesis-related genes to reduce unnecessary water transport. Precision drip and fertilizer-intensive management promotes the synergistic regulation of carbon and nitrogen metabolism and up-regulates the expression of major genes in nitrogen transport and assimilation processes (5 DEGs), photosynthesis (15 DEGs), and plant hormone signal transduction (11 DEGs). The incorporation of trace elements further enhanced the up-regulation of secondary metabolic process genes. In addition, the co-expression network identified nine hub genes regulated by precision water and fertilizer-intensive management, suggesting a pivotal role in regulating the growth of poplar. CONCLUSION: Precision water and fertilizer-intensive management demonstrated the ability to regulate the expression of key genes and transcription factor genes involved in carbon and nitrogen metabolism pathways, plant hormone signal transduction, and enhance the activity of key enzymes involved in related processes. This regulation facilitated nitrogen absorption and utilization, and photosynthetic abilities such as light capture, light transport, and electron transport, which faintly synergistically regulate the growth of poplar plantations. These results provide a reference for proposing highly efficient precision intensive management to optimize the expression of target genes.


Subject(s)
Fertilizers , Gene Expression Regulation, Plant , Populus , Populus/genetics , Populus/growth & development , Populus/metabolism , RNA-Seq , Agricultural Irrigation , Nitrogen/metabolism , Photosynthesis/genetics , Water/metabolism , Transcriptome
17.
J Hazard Mater ; 478: 135385, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39121733

ABSTRACT

The remediation of heavy metal-contaminated soils necessitated a holistic approach that encompassed water and fertilizer conservation alongside soil property restoration. This study introduced the synthesis of (poly)acrylamide-layered double hydroxide gel spheres (PAM-LDH beads), which were designed to simultaneously immobilize heavy metals, control the release of fertilizers, and enhance soil water retention. Laboratory soil experiments under diverse conditions highlighted the superior performance of PAM-LDH beads in the immobilization of hexavalent chromium (Cr(VI)). The layered double hydroxide (LDH) component was identified as the key player in Cr(VI) immobilization, with anion exchange being the predominant mechanism. Notably, the encapsulated urea within the beads was released independently of environmental influences, governed by a concentration gradient across the beads surface. This release process was characterized by an initial phase of absorptive swelling followed by a diffusive phase. The impact on plant growth was assessed, revealing that PAM-LDH beads significantly curtailed Cr(VI) accumulation and alleviated its phytotoxic effects. Changes in the carbon (C) and nitrogen (N) content of the plants suggested that the urea encapsulated within the beads served as a nutrient source, contributing to soil fertility. Moreover, the water-holding capacity and soil-water characteristic curves of PAM-LDH beads suggested that these superabsorbent beads could delay soil water evaporation. The observed shifts in microbial community structure provided evidence for the enhancement of soil carbon and nitrogen cycles, indicative of improved soil properties.

18.
J Hazard Mater ; 478: 135453, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39126851

ABSTRACT

High-ash coal slime-based silica fertilizer (CSF) has the potential to provide mineral nutrients and passivate lead (Pb) in the soil to ensure the sustainable development of the coal industry and agriculture. This study investigated the performance and passivation mechanism of CSF, which contains potassium tobermorite and potassium silicate as the main components for soil improvement. Leaching experiments showed that low-crystalline muscovite was the only crystalline phase for CSF etching and that the silicon (Si), calcium (Ca), and potassium (K) in CSF had significant citric solubility. Soil cultivation and planting trials confirmed the ability of CSF to neutralize soil acidity, increase available soil Si and K, improve exchangeable Ca content, reduce the bioefficacy of Pb (exchangeable Pb by 19-75 % and carbonate-bound Pb by 6-18 %), and increase residual state Pb content. Compared to untreated Pb-contaminated soil, the 0.4 % CSF treatment reduced Pb in Chinese cabbage (Brassica rapa) by 25 % and increased plant biomass, Ca, and K by 37 %, 36 %, and 4 %, respectively. At the same time, soil pH increased by 0.58, and residual state Pb increased by 5 %. In CSF-treated soils, lead silicate is the dominant form of Pb present in the residual state. First-principle calculations showed that Pb3Si2O7 (cohesion energy -1.98 eV) formed by the passivation of Pb by CSF had greater stability in the soil compared to lead carbonate (PbCO3) (cohesion energy -1.38 eV) and lead sulfate (PbSO4) (cohesion energy -1.41 eV). This work shows the promising application of coal slime mineral fertilizers prepared using hydrothermal methods for soil improvement.

19.
3 Biotech ; 14(9): 191, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39113676

ABSTRACT

Sustainable waste management through composting has gain renewed attention since it could upcycle organic waste into valuable bio-organic fertiliser. This study explored the composition of fungal communities in leaf litter and organic waste composts ecosystems by employing advanced internal transcribed spacer (ITS) metagenomic profiling. This approach provides insights into the diversity, composition, and potential functions of these fungi, offering practical implications for optimising composting processes and enhancing sustainable waste management practices. Various organic composts were collected, including leaf litter composts, from different sources in Delhi-National Capital Region, India, and fungal microbiome composition were characterised through ITS profiling. Results revealed that leaf litter composts and cow dung manure had the highest fungal read counts, while kitchen waste compost had the lowest. Alpha diversity indices, including Chao1 and Shannon, exhibited differences in species richness and diversity among composts, though statistical significance was limited. The leaf composts had relatively higher alpha diversity than the other organic waste composts analysed. The study also identified dominant fungal genera specifically, Wallemia, Geotrichum, Pichia, Mycothermus, Mortierella, Aspergillus, Fusarium, and Basidiobolus, across the compost samples. The presence of beneficial fungal genera like Pichia, Geotrichum, Trichoderma, Mortierella, Basidiobolus, Aspergillus, and others were detected in leaf waste compost and the other organic waste composts. There was also presence of some pathogenic genera viz. Alternaria, Fusarium, and Acremonium, in these composts which underscored the need for proper composting practices and source selection to optimise soil fertility and minimise disease risks in agriculture. Remarkably, leaf compost has highest proportion of beneficial genera with least observed abundance of pathogens. On the other hand, the municipal organic waste compost has least proportion of beneficial genera with higher abundance of pathogens. Overall, these findings contributed to characterisation of composting processes, advancing waste management practices, and enhancing the use of leaf compost as a bio-organic fertiliser. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-04028-0.

20.
Front Plant Sci ; 15: 1402945, 2024.
Article in English | MEDLINE | ID: mdl-39114472

ABSTRACT

The 'Okitsu No. 58' citrus variety is highly prone to fruit cracking, which jeopardizes yield and results in economic losses. In this study, we investigated the impacts of spraying 5 distinct concentrations (0.1, 0.2, 0.3, 0.4, and 0.5 g/L) of chelated calcium (Ca) or silicon (Si) fertilizers at the young fruit stage (60-90 days after flowering, DAF) on fruit cracking and quality in the citrus variety 'Okitsu No. 58'. The results showed either Ca or Si fertilizer treatments reduced fruit cracking. We found that all Ca and partial Si treatments (0.4 and 0.5 g/L) significantly promoted the accumulation of Ca content in the peel. Notably, Ca or Si treatments significantly reduced polygalacturonase (PG) activity and inhibited the production of water-soluble pectin (WSP) in the peel. Additionally, Ca or Si treatments elevated the superoxide dismutase (SOD) activity and decreased the malondialdehyde (MDA) content of the peels. Changes in these parameters likely contributed to strengthening the durability of peel cell wall constituents, thus enhancing the fruit's resistance to fruit cracking. Overall, except for the C3 (0.3 g/L of Ca), Ca or Si fertilizers contributed to fruit conventional quality, mainly in terms of higher soluble sugars (SS) and SS/TA (titratable acid). Therefore, our findings will provide a reference for the prevention and control of citrus fruit cracking and the development of new fertilizers.

SELECTION OF CITATIONS
SEARCH DETAIL