Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 495
Filter
1.
J Cutan Pathol ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39177027

ABSTRACT

NRAS Q61 mutations are driver genetic alterations associated with common melanocytic nevi. Herein, we describe a case of NRAS-mutant melanocytic tumor with a blue nevus-like morphology. A 71-year-old Japanese man presented with a 4.6-mm nodule on his back. Histopathological examination revealed a dense distribution of spindle-shaped melanocytes in the upper dermis and a sparse distribution of dendritic melanocytes in the mid-dermis. The vertical periadnexal extension reached the deep dermis at the center of the tumor. A small junctional component, hyperpigmentation, sclerotic stroma, mild nuclear atypia, and a few mitotic figures were observed. Immunohistochemical examination revealed no PRAME expression and preserved p16 expression. Diffuse RASQ61R immunoreactivity was observed in these tumor cells. Nuclear ß-catenin expression was not observed. Targeted RNA sequencing revealed two mutations, NRAS c.182A>G (Q61R) and FGFR2 c.-157A>G, but no other pathogenic alterations such as BRAF, GNAQ, GNA11, CTNNB1, PRKAR1A, or IDH1 mutations or kinase gene fusions. The histopathology fits that of compound-type blue nevus, which is called "Kamino nevus"; however, this tumor was genetically considered to be on the spectrum of conventional acquired melanocytic nevi but not on that of blue nevi. Morphologically, NRAS-driven melanocytic nevi resemble blue nevi without IDH1R132C coexistence.

2.
Sci Rep ; 14(1): 19439, 2024 08 21.
Article in English | MEDLINE | ID: mdl-39169082

ABSTRACT

Developing new therapeutic strategies to target specific molecular pathways has become a primary focus in modern drug discovery science. Fibroblast growth factor receptor 2 (FGFR2) is a critical signaling protein involved in various cellular processes and implicated in numerous diseases, including cancer. Existing FGFR2 inhibitors face limitations like drug resistance and specificity issues. In this study, we present an integrated structure-based bioinformatics analysis to explore the potential of FGFR2 inhibitors-like compounds from the PubChem database with the Tanimoto threshold of 80%. We conducted a structure-based virtual screening approach on a dataset comprising 2336 compounds sourced from the PubChem database. Primarily, the selection of promising compounds was based on several criteria, such as drug-likeness, binding affinities, docking scores, and selectivity. Further, we conducted all-atom molecular dynamics (MD) simulations for 200 ns, followed by an essential dynamics analysis. Finally, a promising FGFR2 inhibitor with PubChem CID:507883 (1-[7-(1H-benzimidazol-2-yl)-4-fluoro-1H-indol-3-yl]-2-(4-benzoylpiperazin-1-yl)ethane-1,2-dione) was screened out from the study. This compound indicates a higher potential for inhibiting FGFR2 than the control inhibitor, Zoligratinib. The identified compound, CID:507883 shows >80% structural similarity with Zoligratinib. ADMET analysis showed promising pharmacokinetic potential of the screened compound. Overall, the findings indicate that the compound CID:507883 may have promising potential to serve as a lead candidate against FGFR2 and could be further exploited in therapeutic development.


Subject(s)
Molecular Docking Simulation , Molecular Dynamics Simulation , Receptor, Fibroblast Growth Factor, Type 2 , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/chemistry , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Humans , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Binding , Drug Development , Structure-Activity Relationship
3.
J Anat ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39096036

ABSTRACT

Crouzon syndrome is a congenital craniofacial disorder caused by mutations in the Fibroblast Growth Factor Receptor 2 (FGFR2). It is characterized by the premature fusion of cranial sutures, leading to a brachycephalic head shape, and midfacial hypoplasia. The aim of this study was to investigate the effect of the FGFR2 mutation on the microarchitecture of cranial bones at different stages of postnatal skull development, using the FGFR2C342Y mouse model. Apart from craniosynostosis, this model shows cranial bone abnormalities. High-resolution synchrotron microtomography images of the frontal and parietal bone were acquired for both FGFR2C342Y/+ (Crouzon, heterozygous mutant) and FGFR2+/+ (control, wild-type) mice at five ages (postnatal days 1, 3, 7, 14 and 21, n = 6 each). Morphometric measurements were determined for cortical bone porosity: osteocyte lacunae and canals. General linear model to assess the effect of age, anatomical location and genotype was carried out for each morphometric measurement. Histological analysis was performed to validate the findings. In both groups (Crouzon and wild-type), statistical difference in bone volume fraction, average canal volume, lacunar number density, lacunar volume density and canal volume density was found at most age points, with the frontal bone generally showing higher porosity and fewer lacunae. Frontal bone showed differences between the Crouzon and wild-type groups in terms of lacunar morphometry (average lacunar volume, lacunar number density and lacunar volume density) with larger, less dense lacunae around the postnatal age of P7-P14. Histological analysis of bone showed marked differences in frontal bone only. These findings provide a better understanding of the pathogenesis of Crouzon syndrome and will contribute to computational models that predict postoperative changes with the aim to improve surgical outcome.

4.
Oncologist ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39173023

ABSTRACT

BACKGROUND: Pemigatinib demonstrated efficacy in fibroblast growth factor receptor (FGFR)-altered cholangiocarcinoma (CCA) in the FIGHT-202 trial. However, limited real-world evidence exists on treatment patterns and outcomes in this setting. PATIENTS AND METHODS: Patient characteristics, treatment patterns, and outcomes of US adults who received pemigatinib for unresectable, locally advanced or metastatic CCA were collected via retrospective physician-abstracted chart review. Results were summarized using descriptive statistics. RESULTS: Data from 120 patients (49.2% male; 55.0% White; 19.2% Hispanic; median age at initial pemigatinib prescription, 64.5 years) were collected from 18 physicians/practices. At the time of prescribing, 90.0% of patients had metastatic disease. FGFR2 testing was completed for 92.5% of patients; of those, all but one (result unknown) tested positive, and 95.5% were tested using next-generation sequencing. Pemigatinib was prescribed as second- and third-line therapy among 94.2% and 5.8% of patients, respectively. The most common starting dosage was 13.5 mg daily for 14 days of 21-day cycles (87.5% of patients). Among 60 patients (50.0% of the full cohort) who discontinued pemigatinib during the 6.5-month median study follow-up period, 68.3% discontinued due to disease progression. The median real-world progression-free survival (rwPFS) from the date of pemigatinib initiation was 7.4 months (95% CI: 6.4-8.6), and the real-world overall response rate (rwORR) was 59.2% (95% CI: 50.0%-68.4%). CONCLUSION: This study complements the FIGHT-202 clinical trial by assessing the use of pemigatinib among a diverse population of patients with CCA under real-world conditions. Findings support the clinical benefit of pemigatinib demonstrated in FIGHT-202.

5.
Brain Tumor Pathol ; 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39154303

ABSTRACT

Polymorphous low-grade neuroepithelial tumor of the young (PLNTY) is a recently recognised tumor type with indolent behaviour with characteristic imaging and histomolecular features. We describe the clinical, imaging, histo-molecular features of 15 cases diagnosed as low-grade glioma suggestive of PLNTY, over a period of 3 years. Immunohistochemistry (IHC) and fluorescence in situ hybridisation were used to assess molecular alterations. The tumors were seen predominantly in children (range 5-65 years). Most of the patients presented with history of seizures. Imaging revealed cortical-subcortical well demarcated solid-cystic tumor with intratumoral calcification. Histopathology revealed a low-grade tumor with oligodendroglia-Iike cells admixed with astrocytic cells immunopositive for CD34. BRAF p.V600E mutations and FGFR2 breakapart were observed in six cases each, while three showed FGFR3 breakapart. FGFR2 breakapart positive PLNTY were seen in children exclusively. The majority of cases were seizure free post-surgery, except two patients who succumbed to the illness. PLNTY, needs to be considered as a prime differential diagnosis in a solid-cystic tumor in a young patient with history of seizures. Characteristic clinical features, radiology, histomorphology with an IHC panel of OLIG2, GFAP and CD34 correlates with one of the MAPK alterations in PLNTY (BRAF p.V600E, FGFR2/3 gene rearrangement). In a resource limited setting, this limited panel may be sufficient for a correlative diagnosis.

6.
J Mol Med (Berl) ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158595

ABSTRACT

Crouzon syndrome (CS), a syndromic craniosynostosis, is a craniofacial developmental deformity caused by mutations in fibroblast growth factor receptor 2 (FGFR2). Previous CS mouse models constructed using traditional gene editing techniques faced issues such as low targeting efficiency, extended lineage cycles, and inconsistent and unstable phenotypes. In this study, a CRISPR/Cas9-mediated strategy was employed to induce a functional augmentation of the Fgfr2 point mutation in mice. Various techniques, including bone staining, micro-CT, histological methods, and behavioral experiments, were employed to systematically examine and corroborate phenotypic disparities between mutant mice (Fgfr2C361Y/+) and their wild-type littermates. Confirmed via PCR-Sanger sequencing, we successfully induced the p.Cys361Tyr missense mutation in the Fgfr2 IIIc isoform of the extracellular domain (corresponding to the p.Cys342Tyr mutation in humans) based on Fgfr2-215 transcript (ENSMUST00000122054.8). Fgfr2C361Y/+ mice exhibited characteristics consistent with the phenotypic features associated with CS, including skull-vault craniosynostosis, skull deformity, shallow orbits accompanied by exophthalmos, midface hypoplasia with malocclusion, and shortened skull base, notably without any apparent limb defects. Furthermore, mutant mice displayed behavioral abnormalities encompassing deficits in learning and memory, social interaction, and motor dysfunction, without anxiety-related disorders. Histopathological examination of the hippocampal region revealed structural abnormalities, suggesting possible brain development impairment secondary to craniosynostosis. In conclusion, we constructed a novel gene-edited Fgfr2C361Y/+ mice strain based on CRISPR/Cas9, which displayed skull and behavioral abnormalities, serving as a new model for studying genetic molecular mechanisms and exploring treatments for CS. KEY MESSAGES: CRISPR/Cas9 crafted a Crouzon model by enhancing Fgfr2-C361Y in mice. Fgfr2C361Y/+ mice replicate CS phenotypes-craniosynostosis and midface anomalies. Mutant mice show diverse behavioral abnormalities, impacting learning and memory. Fgfr2C361Y/+ mice offer a novel model for cranial suture studies and therapeutic exploration.

7.
Curr Oncol ; 31(8): 4305-4317, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39195304

ABSTRACT

Gastric cancer (GC) represents a major global health challenge as a highly prevalent disease with high mortality whose global incidence and mortality are predicted to worsen over the coming years. To date, our standard of care for advanced gastric cancer of combination chemotherapy and immunotherapy has a 1-year overall survival rate of 55%. Significant efforts have gone into identifying targetable alterations in gastric cancer, ultimately yielding the Fibroblast Growth Factor Receptors (FGFRs) family, specifically FGFR2 as a promising target. FGFR2 is overexpressed in GC, particularly diffuse-type GC, and is associated with poor prognostic outcomes. In recent years, there has been an increasing number of small molecule inhibitors and monoclonal antibodies targeting FGFR2 that have entered into clinical trials. Specifically for GC, these agents are currently being trialed in various phases as monotherapies or with standard-of-care treatments to make a clinically meaningful impact on what appears to be an important biological axis of GC. In this review, we outline the underlying biology of FGFR2, its putative role in GC, and the various FGFR2-targeted agents currently in clinical trials for gastric cancer patients as well as postulate some challenges in adopting these therapeutics for clinically meaningful benefit.


Subject(s)
Receptor, Fibroblast Growth Factor, Type 2 , Stomach Neoplasms , Stomach Neoplasms/drug therapy , Stomach Neoplasms/therapy , Humans , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Molecular Targeted Therapy/methods , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
8.
Oncologist ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38986528

ABSTRACT

Increasing evidence highlights that fibroblast growth factor receptor 2 (FGFR2) fusion/rearrangement shows important therapeutic value for patients with intrahepatic cholangiocarcinoma (ICC). This study aims to explore the association of FGFR2 status with the prognosis and immune cell infiltration profiles of patients with ICC. A total of 226 ICC tissue samples from patients who received surgery at the Department of Liver Surgery at Zhongshan Hospital, Fudan University, were collected retrospectively and assigned to a primary cohort (n = 152) and validation cohort (n = 74) group. Fluorescence in situ hybridization was performed to determine FGFR2 status. Multiplex immunofluorescence (mIF) staining and immunohistochemistry were performed to identify immune cells. Thirty-two (14.2%) ICC tissues presented with FGFR2 fusion/rearrangement. FGFR2 fusion/rearrangement was associated with low levels of carcinoembryonic antigen (CEA, P = .026) and gamma glutamyl transferase (γ-GGT, P = .003), low TNM (P = .012), CNLC (P = .008) staging as well as low tumor cell differentiation (P = .016). Multivariate COX regression analyses revealed that FGFR2 fusion/rearrangement was an independent protective factor for both overall survival (OS) and relapse-free survival in patients with ICC. Furthermore, correlation analysis revealed that an FGFR2 fusion/rearrangement was associated with low levels of Tregs and N2 neutrophils and high levels of N1 neutrophils infiltrating into tumors but not with CD8+ T-cell or macrophage tumor infiltration. FGFR2 fusion/rearrangement may exert a profound impact on the prognosis of ICC patients and reprogram the tumor microenvironment to be an immune-activated state. FGFR2 status may be used for ICC prognostic stratification and as an immunotherapeutic target in patients with ICC.

9.
Int Cancer Conf J ; 13(3): 240-244, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38962030

ABSTRACT

Comprehensive genome profiling (CGP) is expected to widen the scope of cancer drug options by identifying the genes involved in carcinogenesis. However, a few patients can access recommended treatments following CGP. Herein, we report a case in which pemigatinib, a selective fibroblast growth factor receptor (FGFR) inhibitor, was used as last-line therapy to treat a patient with advanced gastric cancer exhibiting FGFR2 genomic alterations, as determined by CGP testing. The patient (male, 52 years old) was diagnosed with advanced gastric cancer (cStage IV, cT4aN3M1 [LYM], por, HER2 0, microsatellite stable) and received docetaxel + cisplatin + S-1 (7 cycles), irinotecan + ramucirumab (11 cycles), and nivolumab (3 cycles), but experienced progressive disease (PD). Subsequently, FoundationOne Liquid CDx testing was conducted, revealing FGFR2 rearrangement and amplification; however, no clinical trials on genotype-matched therapies for FGFR2 alterations were available. After three cycles of TAS-102, the patient experienced PD and provided consent for the off-label use of pemigatinib. The Cancer Genomics Medical Committee of our hospital approved the self-funded treatment. The patient had markedly decreased CEA and CA19-9 levels after treatment initiation, but experienced PD after five courses. Over the treatment course, grade 1 hyperphosphatemia and onychomadesis were observed. To the best of our knowledge, this is the first reported case of pemigatinib therapy employed in a patient with advanced gastric cancer exhibiting FGFR2 gene alterations. This case could serve as a notable example of tumor-agnostic therapy to broaden treatment options for gastric cancer patients with rare genetic alterations.

10.
Cancer Med ; 13(13): e7369, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38970209

ABSTRACT

BACKGROUND: The diagnosis of glioma has advanced since the release of the WHO 2021 classification with more molecular alterations involved in the integrated diagnostic pathways. Our study aimed to present our experience with the clinical features and management of astrocytoma, IDH mutant based on the latest WHO classification. METHODS: Patients diagnosed with astrocytoma, IDH-mutant based on the WHO 5th edition classification of CNS tumors at our center from January 2009 to January 2022 were included. Patients were divided into WHO 2-3 grade group and WHO 4 grade group. Integrate diagnoses were retrospectively confirmed according to WHO 2016 and 2021 classification. Clinical and MRI characteristics were reviewed, and survival analysis was performed. RESULTS: A total of 60 patients were enrolled. 21.67% (13/60) of all patients changed tumor grade from WHO 4th edition classification to WHO 5th edition. Of these, 21.43% (6/28) of grade II astrocytoma and 58.33% (7/12) of grade III astrocytoma according to WHO 4th edition classification changed to grade 4 according to WHO 5th edition classification. Sex (p = 0.042), recurrent glioma (p = 0.006), and Ki-67 index (p < 0.001) of pathological examination were statistically different in the WHO grade 2-3 group (n = 27) and WHO grade 4 group (n = 33). CDK6 (p = 0.004), FGFR2 (p = 0.003), and MYC (p = 0.004) alterations showed an enrichment in the WHO grade 4 group. Patients with higher grade showed shorter mOS (mOS = 75.9 m, 53.6 m, 26.4 m for grade 2, 3, and 4, respectively, p = 0.01). CONCLUSIONS: Patients diagnosed as WHO grade 4 according to the 5th edition WHO classification based on molecular alterations are more likely to have poorer prognosis. Therefore, treatment should be tailored to their individual needs. Further research is needed for the management of IDH-mutant astrocytoma is needed in the future.


Subject(s)
Astrocytoma , Magnetic Resonance Imaging , Mutation , Neoplasm Grading , World Health Organization , Humans , Astrocytoma/genetics , Astrocytoma/classification , Astrocytoma/pathology , Astrocytoma/diagnostic imaging , Male , Female , Retrospective Studies , Middle Aged , Adult , Magnetic Resonance Imaging/methods , Prognosis , Isocitrate Dehydrogenase/genetics , Central Nervous System Neoplasms/classification , Central Nervous System Neoplasms/genetics , Central Nervous System Neoplasms/pathology , Central Nervous System Neoplasms/diagnostic imaging , Aged , Young Adult , Brain Neoplasms/classification , Brain Neoplasms/genetics , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Brain Neoplasms/mortality , Adolescent
11.
Mol Ther ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033323

ABSTRACT

Patients with cancer of unknown primary (CUP) carry the double burden of an aggressive disease and reduced access to therapies. Experimental models are pivotal for CUP biology investigation and drug testing. We derived two CUP cell lines (CUP#55 and #96) and corresponding patient-derived xenografts (PDXs), from ascites tumor cells. CUP cell lines and PDXs underwent histological, immune-phenotypical, molecular, and genomic characterization confirming the features of the original tumor. The tissue-of-origin prediction was obtained from the tumor microRNA expression profile and confirmed by single-cell transcriptomics. Genomic testing and fluorescence in situ hybridization analysis identified FGFR2 gene amplification in both models, in the form of homogeneously staining region (HSR) in CUP#55 and double minutes in CUP#96. FGFR2 was recognized as the main oncogenic driver and therapeutic target. FGFR2-targeting drug BGJ398 (infigratinib) in combination with the MEK inhibitor trametinib proved to be synergic and exceptionally active, both in vitro and in vivo. The effects of the combined treatment by single-cell gene expression analysis revealed a remarkable plasticity of tumor cells and the greater sensitivity of cells with epithelial phenotype. This study brings personalized therapy closer to CUP patients and provides the rationale for FGFR2 and MEK targeting in metastatic tumors with FGFR2 pathway activation.

12.
Curr Oncol ; 31(7): 3615-3629, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39057138

ABSTRACT

Biliary tract cancers (BTCs) are rare and aggressive malignancies with an increasing incidence and poor prognosis. The standard systemic treatment for BTCs has evolved to include immune checkpoint inhibitors associated with gemcitabine-cisplatin as first-line therapies. However, survival rates remain low, highlighting the critical need for personalized treatment strategies based on molecular profiling. Currently, significant advancements have been made in the molecular characterization of BTCs, where genetic alterations, such as IDH1 mutations and FGFR2 fusions, provide targets for therapy. Molecular profiling is crucial early in the management process to identify potential candidates for clinical trials and guide treatment strategy. The integration of these molecular insights into clinical practice has allowed for the development of targeted therapies, although many of them are still in the phase 2 trial stage without definitive survival benefits demonstrated in phase 3 trials. This integration of comprehensive molecular profile insights with traditional treatment approaches offers a new horizon in the personalized medicine landscape for BTCs, with the aim of significantly improving patient outcomes through precision oncology.


Subject(s)
Biliary Tract Neoplasms , Precision Medicine , Humans , Biliary Tract Neoplasms/drug therapy , Biliary Tract Neoplasms/genetics , Biliary Tract Neoplasms/therapy , Precision Medicine/methods , Molecular Targeted Therapy/methods
13.
J Pers Med ; 14(7)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39063983

ABSTRACT

Cutaneous squamous cell carcinoma (cSCC) is a common and increasingly prevalent form of skin cancer, posing significant health challenges. Understanding the molecular mechanisms involved in cSCC progression is crucial for developing effective treatments. The primary aim of this research was to evaluate the activation of NOTCH1 and FGFR2 oncogenes in inducing skin cancer in FVB/N mice through a stepwise chemical process. Forty female FVB/N mice, aged four weeks, were randomly divided into a control group (n = 8) and two experimental groups (group A: n = 16, group B: n = 16). This study involved subjecting the groups to a two-stage carcinogenesis procedure. This included an initial application of 97.4 nmol DMBA on shaved skin on their backs, followed by applications of 32.4 nmol TPA after thirteen weeks for group A and after twenty weeks for group B. The control group did not receive any treatment. Their skin conditions were monitored weekly to detect tumor development. After the experiment, the animals were euthanized for further tissue sampling. The examination of skin lesions in the experimental groups showed a correlation with tumor progression, ranging from dysplasia to carcinoma. Tumor samples were assessed both histologically and immunohistochemically. Notably, FGFR2 expression was higher in benign, precancerous, and malignant tumors compared to normal tissue. NOTCH1 expression was only elevated in benign tumors compared to normal tissue. This study demonstrates a clear correlation of FGFR2 expression and the progression of cutaneous neoplasms, while NOTCH 1 expression is inversely correlated in FVB/N mice. This suggests an early involvement of these oncogenes in the development of skin tumors.

14.
J Neuropathol Exp Neurol ; 83(7): 567-578, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38833313

ABSTRACT

We report the novel clinical presentation of a primary brain neoplasm in a 30-year-old man with a mass-like area in the anteromedial temporal lobe. Histopathological analysis revealed a low-grade neuroepithelial tumor with cytologically abnormal neurons and atypical glial cells within the cerebral cortex. Molecular analysis showed a previously undescribed FGFR2::DLG5 rearrangement. We discuss the clinical significance and molecular implications of this fusion event, shedding light on its potential impact on tumor development and patient prognosis. Additionally, an extensive review places the finding in this case in the context of protein fusions in brain tumors in general and highlights their diverse manifestations, underlying molecular mechanisms, and therapeutic implications.


Subject(s)
Brain Neoplasms , Neoplasms, Neuroepithelial , Receptor, Fibroblast Growth Factor, Type 2 , Humans , Male , Adult , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Receptor, Fibroblast Growth Factor, Type 2/genetics , Neoplasms, Neuroepithelial/genetics , Neoplasms, Neuroepithelial/pathology , Oncogene Proteins, Fusion/genetics
15.
Cell Rep ; 43(6): 114340, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38865239

ABSTRACT

Whole salivary gland generation and transplantation offer potential therapies for salivary gland dysfunction. However, the specific lineage required to engineer complete salivary glands has remained elusive. In this study, we identify the Foxa2 lineage as a critical lineage for salivary gland development through conditional blastocyst complementation (CBC). Foxa2 lineage marking begins at the boundary between the endodermal and ectodermal regions of the oral epithelium before the formation of the primordial salivary gland, thereby labeling the entire gland. Ablation of Fgfr2 within the Foxa2 lineage in mice leads to salivary gland agenesis. We reversed this phenotype by injecting donor pluripotent stem cells into the mouse blastocysts, resulting in mice that survived to adulthood with salivary glands of normal size, comparable to those of their littermate controls. These findings demonstrate that CBC-based salivary gland regeneration serves as a foundational experimental approach for future advanced cell-based therapies.


Subject(s)
Blastocyst , Hepatocyte Nuclear Factor 3-beta , Pluripotent Stem Cells , Salivary Glands , Animals , Salivary Glands/cytology , Salivary Glands/metabolism , Blastocyst/metabolism , Blastocyst/cytology , Mice , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Hepatocyte Nuclear Factor 3-beta/metabolism , Hepatocyte Nuclear Factor 3-beta/genetics , Cell Lineage , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Receptor, Fibroblast Growth Factor, Type 2/genetics
16.
Hum Pathol ; 150: 36-41, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38914167

ABSTRACT

Intraductal tubulopapillary neoplasms (ITPNs) are rare pancreatic tumors with distinct histological and molecular features. Distinction of ITPN from other pancreatic neoplasms is crucial given the known favorable prognosis and the high frequency and diversity of potentially targetable fusions in ITPN. While the histological features of ITPN are well documented, there are few reports on the cytological features, and molecular characterization of ITPN. The authors reported three cases diagnosed in their laboratory between 2016 and 2021. Clinical data, cytomorphological and histological features, with immunophenotypic and molecular characterizations of these cases are described and compared with those reported in the literature. All 3 cases were diagnosed as ITPN based on the microscopic presence of intraductal nodules composed of tightly packed small tubular glands lined by cuboidal cells lacking apparent mucin. On molecular profiling KRAS and TP53 variants were found in Case 1, FGFR2-INA fusion in Case 2, and STARD3NL-BRAF fusion was detected in Case 3. Immunohistochemistry (IHC) revealed that the neoplastic cells in Case 1 were MUC2 positive and MUC6 negative, but in Cases 2 and 3, were negative for MUC2 and positive for MUC6. These results demonstrate the immunophenotypic and molecular variabilities of histologically similar pancreatic neoplasms. The absence of alterations characteristic of more common pancreatic neoplasms should prompt the consideration of fusion studies in morphologically relevant cases. The combination of morphological, IHC, and molecular analyses is important for reliable identification of ITPN given its potential clinical management implications.


Subject(s)
Biomarkers, Tumor , Pancreatic Intraductal Neoplasms , Pancreatic Neoplasms , Humans , Male , Middle Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis , Female , Aged , Pancreatic Intraductal Neoplasms/pathology , Pancreatic Intraductal Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Immunohistochemistry
17.
Oncologist ; 29(8): 672-680, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38902956

ABSTRACT

PURPOSE: In addition to the existing biomarkers HER2 and PD-L1, FGFR2b has become an area of interest for the development of new targeted-based treatment. Given that clinical evaluation of FGFR2 targeted therapy is underway, we sought to elucidate the genomic landscape of FGFR2amp in gastroesophageal cancer (GEC) using a circulating tumor DNA (ctDNA) platform. MATERIALS AND METHODS: We retrospectively evaluated the Guardant Health database from 2017 to 2022 for patients with GECs with Guardant360 ctDNA next-generation sequencing (NGS) performed. We assessed co-occurring genetic alterations for patients who harbored FGFR2amp versus FGFR2null. We also explored real-world evidence database with Guardant Health, publicly available genomic databases (MSK cohort using cBioPortal), and pooled clinical data from large-volume cancer centers for FGFR2amp GECs. RESULTS: Less than 4% of patients with GEC in the Guardant Health database were identified to be FGFR2amp. The most commonly co-occurring gene mutations were TP53, CTNNB1, CDH1, and RHOA. Upon interrogation of the MSK cohort, these same genes were not significant on tissue NGS in the FGFR2amp cohort of GEC. In the pooled institutional cohort, we noted that FGFR2amp tumors were most commonly involving the gastroesophageal junction (GEJ). The overall survival of these patients was noted at 13.1 months. CONCLUSION: FGFR2 is a validated target in GECs, and the contexture of FGFR2amp will be important in defining patient subgroups with responses to FGFR2-directed therapy. Using ctDNA to provide a more detailed genomic landscape in patients with GECs will allow the advancement of targeted therapy in the near future for these aggressive cancers.


Subject(s)
Circulating Tumor DNA , Esophageal Neoplasms , Receptor, Fibroblast Growth Factor, Type 2 , Stomach Neoplasms , Humans , Receptor, Fibroblast Growth Factor, Type 2/genetics , Circulating Tumor DNA/genetics , Circulating Tumor DNA/blood , Esophageal Neoplasms/genetics , Esophageal Neoplasms/blood , Esophageal Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/blood , Stomach Neoplasms/pathology , Female , Male , Retrospective Studies , Middle Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Aged , High-Throughput Nucleotide Sequencing/methods , Mutation , Adult
18.
Gastric Cancer ; 27(5): 1046-1057, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38861192

ABSTRACT

BACKGROUND: In the FIGHT study (NCT03694522) bemarituzumab, a humanized monoclonal antibody selective for fibroblast growth factor receptor 2b (FGFR2b), plus mFOLFOX6 showed clinically meaningful efficacy in patients with FGFR2b-positive (2+/3+ membranous staining by immunohistochemistry) locally advanced unresectable/metastatic gastric/gastroesophageal cancer (G/GEJC). A meaningful proportion of patients in FIGHT were enrolled in East Asia, reflecting global epidemiology of G/GEJC. METHODS: This subgroup analysis of the global, phase 2, double-blind FIGHT study included all patients enrolled in East Asian sites. Patients were randomized 1:1 to bemarituzumab-mFOLFOX6 (15 mg/kg and one 7.5 mg/kg dose on cycle 1, day 8) or matching placebo-mFOLFOX6. The primary endpoint was investigator-assessed progression-free survival (PFS). Secondary endpoints included overall survival (OS), objective response rate, and safety. Efficacy was evaluated after a minimum follow-up of 24 months. RESULTS: The East Asian subgroup comprised 89 patients (57% of overall study population); 45 were randomized to bemarituzumab-mFOLFOX6 and 44 to placebo-mFOLFOX6. Median PFS (95% confidence interval [CI]) was 12.9 months (8.8-17.9) with bemarituzumab-mFOLFOX6 and 8.2 months (5.6-10.3) with placebo-mFOLFOX6 (HR 0.50, 95% CI 0.29-0.87); median OS (95% CI) was 24.7 months (13.8-33.1) vs 12.9 months (9.3-21.4), respectively (HR 0.56, 95% CI 0.32-0.96). Treatment benefit was more pronounced in patients with FGFR2b-positive G/GEJC in ≥ 10% of tumor cells. No new safety signals were reported. CONCLUSION: In East Asian patients with FGFR2b-positive advanced/metastatic G/GEJC enrolled in the global FIGHT study, bemarituzumab-mFOLFOX6 showed clinically meaningful outcomes over placebo-mFOLFOX6.


Subject(s)
Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols , Esophagogastric Junction , Fluorouracil , Leucovorin , Organoplatinum Compounds , Receptor, Fibroblast Growth Factor, Type 2 , Stomach Neoplasms , Humans , Male , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Stomach Neoplasms/mortality , Female , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Fluorouracil/administration & dosage , Fluorouracil/therapeutic use , Leucovorin/therapeutic use , Leucovorin/administration & dosage , Middle Aged , Antibodies, Monoclonal, Humanized/therapeutic use , Aged , Esophagogastric Junction/pathology , Organoplatinum Compounds/therapeutic use , Organoplatinum Compounds/administration & dosage , Adult , Double-Blind Method , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/pathology , Asia, Eastern , Aged, 80 and over , Survival Rate , East Asian People
20.
Eur J Med Chem ; 275: 116612, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38908103

ABSTRACT

Aberrant activation of fibroblast growth factor receptors (FGFRs) contributes to the development and progression of multiple types of cancer. Although many FGFR inhibitors have been approved by the FDA, their long-term therapeutic efficacy is hampered by acquired resistance to gatekeeper mutations and low subtype selectivity. FGFR2 has been found to be frequently amplified or mutated in many tumors. In this study, we designed several PROTACs with different E3 ligands based on LY2874455. By screening the length of the linker and the binding site in various degraders, we obtained a novel and highly efficient FGFR2-selective degrader 28e (DC50 = 0.645 nM, DCmax = 86 %). Compound 28e selectively degraded FGFR2 and essentially avoided degradation of FGFR1,3,4 isoforms (DC50 > 300 nM). Compound 28e significantly inhibited the proliferation of FGFR2-overexpressing cell lines, including KATOIII, SNU16, and AN3CA (IC50 = 0.794 nM/0.207 nM/4.626 nM), comparable to parental inhibitors. At the same time, the preferred compound showed superiority over the parental inhibitor in kinase inhibitory activity against the gatekeeper mutant isoform FGFR2V564F (IC50 = 0.121 nM). In summary, we identified 28e as a novel selective degrader of FGFR2 with high potency and high potential to overcome resistance to gatekeeper mutation. The discovery of 28e provides new evidence for the strategy of pan-inhibitor-based development of selective degrading agents.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Drug Design , Mutation , Protein Kinase Inhibitors , Receptor, Fibroblast Growth Factor, Type 2 , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Cell Proliferation/drug effects , Structure-Activity Relationship , Drug Screening Assays, Antitumor , Molecular Structure , Dose-Response Relationship, Drug , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL