Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52.199
Filter
1.
Article in English | MEDLINE | ID: mdl-38868706

ABSTRACT

Background and Aim: Endoscopic ultrasound shear wave elastography (EUS-SWE) can facilitate an objective evaluation of pancreatic fibrosis. Although it is primarily applied in evaluating chronic pancreatitis, its efficacy in assessing early chronic pancreatitis (ECP) remains underinvestigated. This study evaluated the diagnostic accuracy of EUS-SWE for assessing ECP diagnosed using the Japanese diagnostic criteria 2019. Methods: In total, 657 patients underwent EUS-SWE. Propensity score matching was used, and the participants were classified into the ECP and normal groups. ECP was diagnosed using the Japanese diagnostic criteria 2019. Pancreatic stiffness was assessed based on velocity (Vs) on EUS-SWE, and the optimal Vs cutoff value for ECP diagnosis was determined. A practical shear wave Vs value of ≥50% was considered significant. Results: Each group included 22 patients. The ECP group had higher pancreatic stiffness than the normal group (2.31 ± 0.67 m/s vs. 1.59 ± 0.40 m/s, p < 0.001). The Vs cutoff value for the diagnostic accuracy of ECP, as determined using the receiver operating characteristic curve, was 2.24m/s, with an area under the curve of 0.82 (95% confidence interval: 0.69-0.94). A high Vs was strongly correlated with the number of EUS findings (rs = 0.626, p < 0.001). Multiple regression analysis revealed that a history of acute pancreatitis and ≥2 EUS findings were independent predictors of a high Vs. Conclusions: There is a strong correlation between EUS-SWE findings and the Japanese diagnostic criteria 2019 for ECP. Hence, EUS-SWE can be an objective and invaluable diagnostic tool for ECP diagnosis.

2.
Article in English | MEDLINE | ID: mdl-38946405

ABSTRACT

BACKGROUND AND AIM: LIVERSTAT is an artificial intelligence-based noninvasive test devised to screen for and provide risk stratification for metabolic dysfunction-associated fatty liver disease (MAFLD) by using simple blood biomarkers and anthropometric measurements. We aimed to study LIVERSTAT in patients with MAFLD and to explore its role for the diagnosis of advanced fibrosis. METHODS: This is a retrospective study of data from MAFLD patients who underwent a liver biopsy. Patients with type 2 diabetes who underwent transient elastography and had liver stiffness measurement (LSM) < 5 kPa were included as patients with no fibrosis. Among these patients, controlled attenuation parameter <248 dB/m was considered as no steatosis. The LIVERSTAT results were generated based on a proprietary algorithm, blinded to the histological and LSM data. RESULTS: The data for 350 patients were analyzed (mean age 53 years, 45% male, advanced fibrosis 22%). The sensitivity, specificity, positive predictive value, negative predictive value, and misclassification rate of LIVERSTAT to diagnose advanced fibrosis were 90%, 50%, 30%, 95%, and 42%, respectively. The corresponding rates for Fibrosis-4 score (FIB4) were 56%, 83%, 44%, 89%, and 22%, respectively. When LSM was used as a second test, the corresponding rates for LIVERSTAT were 60%, 97%, 76%, 94%, and 8%, respectively, while the corresponding rates for FIB4 were 38%, 99%, 83%, 89%, and 11%, respectively. CONCLUSION: LIVERSTAT had a higher negative predictive value compared with FIB4 and a lower misclassification rate compared with FIB4 when used in a two-step approach in combination with LSM for the diagnosis of advanced fibrosis.

3.
Alzheimers Dement ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946688

ABSTRACT

BACKGROUND: We assessed the relationship of liver fibrosis score with incident dementia in a large, national sample. METHODS: For this retrospective cohort study, data of dementia-free individuals aged 40-69 years were derived from electronic records of the largest healthcare provider in Israel. The association between liver fibrosis score (FIB-4), assessed from routine laboratory measurements, and incident dementia was explored through multivariate cox regression models. RESULTS: Of the total sample (N = 826,578, mean age 55 ± 8 years at baseline), 636,967 (77%) had no fibrosis, 180,114 (21.8%) had inconclusive fibrosis status and 9497 (1.2%) had high risk for advanced fibrosis. Over a median follow-up of 17 years, 41,089 dementia cases were recorded. Inconclusive liver fibrosis and advanced fibrosis were associated with increased dementia risk (HR = 1.09, 95%CI: 1.07-1.11 and HR = 1.18, 95%CI: 1.10-1.27, respectively). This association remained robust through seven sensitivity analyses. CONCLUSIONS: Liver fibrosis assessed through a serum-based algorithm may serve as a risk factor for dementia in the general population. HIGHLIGHTS: Liver fibrosis may predict dementia diagnosis in the general population. Inconclusive liver fibrosis was associated with 9% increased dementia risk. Advanced liver fibrosis was associated with 18% increased dementia risk. Findings remained robust in sensitivity analyses and after adjustments.

4.
Int J Cardiol Heart Vasc ; 53: 101426, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38946711

ABSTRACT

Background: Dilated cardiomyopathy (DCM) is distinguished by left ventricle (LV) dilation accompanied by systolic dysfunction. However, some studies suggested also a high prevalence of LV diastolic dysfunction (LVDD), similar to a general cohort of heart failure (HF) with reduced ejection fraction (LVEF). The bulk of evidence, mostly arising from basic studies, suggests a causative link between cardiac fibrosis (CF) and LVDD. However, still, there remains a scarcity of data on LVDD and CF. Therefore, the aim of the study was to investigate the association between CF and LVDD in DCM patients. Methods: The study population was composed of 102 DCM patients. Replacement CF was evaluated qualitatively (late gadolinium enhancement - LGE) and quantitively (LGE extent); interstitial cardiac fibrosis was assessed via extracellular volume (ECV). Based on echocardiography patients were divided into normal and elevated left atrial pressure (nLAP, eLAP) groups. Results: 42 % of patients had eLAP. They displayed higher troponin and NT-proBNP. Both groups did not differ in terms of LGE presence and extent; however, eLAP patients had larger ECV: 30.1 ± 5.6 % vs. 27.8 ± 3.9 %, p = 0.03. Moreover, ECV itself was found to be an independent predictor of LVDD (OR = 0.901; 95 %CI 0.810-0.999; p = 0.047; normalised for LVEF and RVOT diameter). Conclusions: More than two-in-five DCM patients had at least moderate LVDD. The mere presence or extent of replacement cardiac fibrosis is similar in patients with nLAP and eLAP. On the other hand, interstitial cardiac fibrosis is more pronounced in those with a higher grade of LVDD. ECV was found to be an independent predictor of LVDD in DCM.

5.
J Cell Commun Signal ; 18(2): e12028, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38946723

ABSTRACT

Urethral stricture (US) is a challenging problem in urology and its pathogenesis of US is closely related to the fibrotic process. Previous evidence has indicated the downregulation of microRNA (miR)-486 in injured urethral specimens of rats. This study aimed to explore the effects of miR-486-overexpressed bone marrow mesenchymal stem cells (BMSCs) on US. BMSCs were identified by detecting their multipotency and surface antigens. Lentivirus virus expressing miR-486 was transduced into rat BMSCs to overexpress miR-486. Transforming growth factor (TGF)-ß1 induced fibrotic phenotypes in urethral fibroblasts (UFs) and rat models. Western blotting showed protein levels of collagen I/III and collagen type XIII alpha 1 chain (Col13a1). Real time quantitative polymerase chain reaction was utilized for messenger RNA level evaluation. Hematoxylin-eosin, Masson's trichrome, and Von Willebrand Factor staining were conducted for histopathological analysis. Immunofluorescence staining was employed for detecting alpha smooth muscle actin (α-SMA) expression. Luciferase reporter assay verified the interaction between miR-486 and Col13a1. The results showed that miR-486-overexpressed BMSCs suppressed collagen I/III and α-SMA expression in TGF-ß1-stimulated UFs. miR-486-overexpressed BMSCs alleviated urethral fibrosis, collagen deposition, and epithelial injury in the urethral tissue of US rats. miR-486 targeted and negatively regulated Col13a1 in US rats. In conclusion, overexpression of miR-486 in BMSCs targets Col13a1 and attenuates urethral fibrosis in TGF-ß1-triggered UFs and US rats.

6.
J Cell Commun Signal ; 18(2): e12033, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38946724

ABSTRACT

Liver fibrosis is a persistent damage repair response triggered by various injury factors, which leads to an abnormal accumulation of extracellular matrix within liver tissue samples. The current clinical treatment of liver fibrosis is currently ineffective; therefore, elucidating the mechanism of liver fibrogenesis is of significant importance. Herein, the function and related mechanisms of lncRNA Snhg12 within hepatic fibrosis were investigated. Snhg12 expression was shown to be increased in mouse hepatic fibrotic tissue samples, and Snhg12 knockdown suppressed hepatic pathological injury and down-regulated the expression levels of fibrosis-associated proteins. Mechanistically, Snhg12 played a role in the early activation of mouse hepatic stellate cells (mHSCs) based on bioinformatics analysis, and Snhg12 was positively correlated with Igfbp3 expression. Further experimental results demonstrated that Snhg12 knockdown impeded mHSCs proliferation and activation and also downregulated the protein expression of Igfbp3. Snhg12 could interact with IGFBP3 and boost its protein stability, and overexpression of Igfbp3 partially reversed the inhibition of mHSCsproliferation and activation by the knockdown of Snhg12. In conclusion, LncRNA Snhg12 mediates liver fibrosis by targeting IGFBP3 and promoting its protein stability, thereby promoting mHSC proliferation and activation. Snhg12 has been identified as an underlying target for treating liver fibrosis.

7.
J Extracell Biol ; 3(6): e152, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38947170

ABSTRACT

Cardiac fibrosis is the hallmark of cardiovascular disease (CVD), which is leading cause of death worldwide. Previously, we have shown that interleukin-10 (IL10) reduces pressure overload (PO)-induced cardiac fibrosis by inhibiting the recruitment of bone marrow fibroblast progenitor cells (FPCs) to the heart. However, the precise mechanism of FPC involvement in cardiac fibrosis remains unclear. Recently, exosomes and small extracellular vesicles (sEVs) have been linked to CVD progression. Thus, we hypothesized that pro-fibrotic miRNAs enriched in sEV-derived from IL10 KO FPCs promote cardiac fibrosis in pressure-overloaded myocardium. Small EVs were isolated from FPCs cultured media and characterized as per MISEV-2018 guidelines. Small EV's miRNA profiling was performed using Qiagen fibrosis-associated miRNA profiler kit. For functional analysis, sEVs were injected in the heart following TAC surgery. Interestingly, TGFß-treated IL10-KO-FPCs sEV increased profibrotic genes expression in cardiac fibroblasts. The exosomal miRNA profiling identified miR-21a-5p as the key player, and its inhibition with antagomir prevented profibrotic signalling and fibrosis. At mechanistic level, miR-21a-5p binds and stabilizes ITGAV (integrin av) mRNA. Finally, miR-21a-5p-silenced in sEV reduced PO-induced cardiac fibrosis and improved cardiac function. Our study elucidates the mechanism by which inflammatory FPC-derived sEV exacerbate cardiac fibrosis through the miR-21a-5p/ITGAV/Col1α signalling pathway, suggesting miR-21a-5p as a potential therapeutic target for treating hypertrophic cardiac remodelling and heart failure.

8.
Front Med (Lausanne) ; 11: 1368977, 2024.
Article in English | MEDLINE | ID: mdl-38947241

ABSTRACT

Intestinal fibrosis is a common complication of chronic intestinal diseases with the characteristics of fibroblast proliferation and extracellular matrix deposition after chronic inflammation, leading to lumen narrowing, structural and functional damage to the intestines, and life inconvenience for the patients. However, anti-inflammatory drugs are currently generally not effective in overcoming intestinal fibrosis making surgery the main treatment method. The development of intestinal fibrosis is a slow process and its onset may be the result of the combined action of inflammatory cells, local cytokines, and intestinal stromal cells. The aim of this study is to elucidate the pathogenesis [e.g., extracellular matrix (ECM), cytokines and chemokines, epithelial-mesenchymal transition (EMT), differentiation of fibroblast to myofibroblast and intestinal microbiota] underlying the development of intestinal fibrosis and to explore therapeutic advances (such as regulating ECM, cytokines, chemokines, EMT, differentiation of fibroblast to myofibroblast and targeting TGF-ß) based on the pathogenesis in order to gain new insights into the prevention and treatment of intestinal fibrosis.

9.
World J Gastroenterol ; 30(22): 2839-2842, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38947289

ABSTRACT

Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most prevalent chronic liver condition worldwide. Current liver enzyme-based screening methods have limitations that may missed diagnoses and treatment delays. Regarding Chen et al, the risk of developing MAFLD remains elevated even when alanine aminotransferase levels fall within the normal range. Therefore, there is an urgent need for advanced diagnostic techniques and updated algorithms to enhance the accuracy of MAFLD diagnosis and enable early intervention. This paper proposes two potential screening methods for identifying individuals who may be at risk of developing MAFLD: Lowering these thresholds and promoting the use of noninvasive liver fibrosis scores.


Subject(s)
Liver , Mass Screening , Non-alcoholic Fatty Liver Disease , Humans , Liver/pathology , Liver/enzymology , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/blood , Mass Screening/methods , Alanine Transaminase/blood , Algorithms , Biomarkers/blood , Liver Cirrhosis/diagnosis , Liver Cirrhosis/blood , Risk Factors , Early Diagnosis
10.
Front Immunol ; 15: 1429946, 2024.
Article in English | MEDLINE | ID: mdl-38947318

ABSTRACT

Introduction: Chronic obstructive pulmonary disease (COPD) is currently listed as the 3rd leading cause of death in the United States. Accumulating data shows the association between COPD occurrence and the usage of electronic nicotine delivery systems (ENDS) in patients. However, the underlying pathogenesis mechanisms of COPD have not been fully understood. Methods: In the current study, bENaC-overexpressing mice (bENaC mice) were subjected to whole-body ENDS exposure. COPD related features including emphysema, mucus accumulation, inflammation and fibrosis are examined by tissue staining, FACS analysis, cytokine measurement. Cell death and ferroptosis of alveolar epithelial cells were further evaluated by multiple assays including staining, FACS analysis and lipidomics. Results: ENDS-exposed mice displayed enhanced emphysema and mucus accumulation, suggesting that ENDS exposure promotes COPD features. ENDS exposure also increased immune cell number infiltration in bronchoalveolar lavage and levels of multiple COPD-related cytokines in the lungs, including CCL2, IL-4, IL-13, IL-10, M-CSF, and TNF-α. Moreover, we observed increased fibrosis in ENDS-exposed mice, as evidenced by elevated collagen deposition and a-SMA+ myofibroblast accumulation. By investigating possible mechanisms for how ENDS promoted COPD, we demonstrated that ENDS exposure induced cell death of alveolar epithelial cells, evidenced by TUNEL staining and Annexin V/PI FACS analysis. Furthermore, we identified that ENDS exposure caused lipid dysregulations, including TAGs (9 species) and phospholipids (34 species). As most of these lipid species are highly associated with ferroptosis, we confirmed ENDS also enhanced ferroptosis marker CD71 in both type I and type II alveolar epithelial cells. Discussion: Overall, our data revealed that ENDS exposure exacerbates features of COPD in bENaC mice including emphysema, mucus accumulation, abnormal lung inflammation, and fibrosis, which involves the effect of COPD development by inducing ferroptosis in the lung.


Subject(s)
E-Cigarette Vapor , Ferroptosis , Nicotine , Pulmonary Disease, Chronic Obstructive , Animals , Pulmonary Disease, Chronic Obstructive/chemically induced , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/etiology , Mice , Nicotine/adverse effects , Nicotine/toxicity , Nicotine/administration & dosage , E-Cigarette Vapor/adverse effects , Disease Models, Animal , Cytokines/metabolism , Mice, Inbred C57BL , Electronic Nicotine Delivery Systems , Male , Mice, Transgenic
11.
Open Life Sci ; 19(1): 20220896, 2024.
Article in English | MEDLINE | ID: mdl-38947768

ABSTRACT

Membrane-associated proteins are important membrane readers that mediate and facilitate the signaling and trafficking pathways in eukaryotic membrane-bound compartments. The protein members in the Phafin family are membrane readers containing two phosphoinositide recognition domains: the Pleckstrin Homology domain and the FYVE (Fab1, YOTB, Vac1, and early endosome antigen 1) domain. Phafin proteins, categorized into two subfamilies, Phafin1 and Phafin2, associate with cellular membranes through interactions involving membrane-embedded phosphoinositides and phosphoinositide-binding domains. These membrane-associated Phafin proteins play pivotal roles by recruiting binding partners and forming complexes, which contribute significantly to apoptotic, autophagic, and macropinocytotic pathways. Elevated expression levels of Phafin1 and Phafin2 are observed in various cancers. A recent study highlights a significant increase in Phafin1 protein levels in the lungs of idiopathic pulmonary fibrosis patients compared to normal subjects, suggesting a crucial role for Phafin1 in the pathogenesis of pulmonary fibrosis. Additionally, phosphatidylinositol-3-phosphate-binding 2 (Pib2), a close relative of the Phafin1 protein, functions as an amino acid sensor activating the TOCR1 pathway in yeasts. This review focuses on delineating the involvement of Phafin proteins in cellular signaling and their implications in diseases and briefly discusses the latest research findings concerning Pib2.

12.
World J Clin Pediatr ; 13(2): 93341, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38948001

ABSTRACT

BACKGROUND: Fecal calprotectin is a valuable biomarker for assessing intestinal inflammation in pediatric gastrointestinal diseases. However, its role, pros, and cons in various conditions must be comprehensively elucidated. AIM: To explore the role of fecal calprotectin in pediatric gastrointestinal diseases, including its advantages and limitations. METHODS: A comprehensive search was conducted on PubMed, PubMed Central, Google Scholar, and other scientific research engines until February 24, 2024. The review included 88 research articles, 56 review articles, six meta-analyses, two systematic reviews, two consensus papers, and two letters to the editors. RESULTS: Fecal calprotectin is a non-invasive marker for detecting intestinal inflammation and monitoring disease activity in pediatric conditions such as functional gastrointestinal disorders, inflammatory bowel disease, coeliac disease, coronavirus disease 2019-induced gastrointestinal disorders, gastroenteritis, and cystic fibrosis-associated intestinal pathology. However, its lack of specificity and susceptibility to various confounding factors pose challenges in interpretation. Despite these limitations, fecal calprotectin offers significant advantages in diagnosing, monitoring, and managing pediatric gastrointestinal diseases. CONCLUSION: Fecal calprotectin holds promise as a valuable tool in pediatric gastroenterology, offering insights into disease activity, treatment response, and prognosis. Standardized protocols and guidelines are needed to optimize its clinical utility and mitigate interpretation challenges. Further research is warranted to address the identified limitations and enhance our understanding of fecal calprotectin in pediatric gastrointestinal diseases.

13.
Theranostics ; 14(9): 3603-3622, 2024.
Article in English | MEDLINE | ID: mdl-38948058

ABSTRACT

Background: Myofibroblasts (MYFs) are generally considered the principal culprits in excessive extracellular matrix deposition and scar formation in the pathogenesis of lung fibrosis. Lipofibroblasts (LIFs), on the other hand, are defined by their lipid-storing capacity and are predominantly found in the alveolar regions of the lung. They have been proposed to play a protective role in lung fibrosis. We previously reported that a LIF to MYF reversible differentiation switch occurred during fibrosis formation and resolution. In this study, we tested whether WI-38 cells, a human embryonic lung fibroblast cell line, could be used to study fibroblast differentiation towards the LIF or MYF phenotype and whether this could be relevant for idiopathic pulmonary fibrosis (IPF). Methods: Using WI-38 cells, Fibroblast (FIB) to MYF differentiation was triggered using TGF-ß1 treatment and FIB to LIF differentiation using Metformin treatment. We also analyzed the MYF to LIF and LIF to MYF differentiation by pre-treating the WI-38 cells with TGF-ß1 or Metformin respectively. We used IF, qPCR and bulk RNA-Seq to analyze the phenotypic and transcriptomic changes in the cells. We correlated our in vitro transcriptome data from WI-38 cells (obtained via bulk RNA sequencing) with the transcriptomic signature of LIFs and MYFs derived from the IPF cell atlas as well as with our own single-cell transcriptomic data from IPF patients-derived lung fibroblasts (LF-IPF) cultured in vitro. We also carried out alveolosphere assays to evaluate the ability of the proposed LIF and MYF cells to support the growth of alveolar epithelial type 2 cells. Results: WI-38 cells and LF-IPF display similar phenotypical and gene expression responses to TGF-ß1 and Metformin treatment. Bulk RNA-Seq analysis of WI-38 cells and LF-IPF treated with TGF-ß1, or Metformin indicate similar transcriptomic changes. We also show the partial conservation of the LIF and MYF signature extracted from the Habermann et al. scRNA-seq dataset in WI-38 cells treated with Metformin or TGF-ß1, respectively. Alveolosphere assays indicate that LIFs enhance organoid growth, while MYFs inhibit organoid growth. Finally, we provide evidence supporting the MYF to LIF and LIF to MYF reversible switch using WI-38 cells. Conclusions: WI-38 cells represent a versatile and reliable model to study the intricate dynamics of fibroblast differentiation towards the MYF or LIF phenotype associated with lung fibrosis formation and resolution, providing valuable insights to drive future research.


Subject(s)
Cell Differentiation , Fibroblasts , Idiopathic Pulmonary Fibrosis , Myofibroblasts , Transforming Growth Factor beta1 , Humans , Myofibroblasts/metabolism , Fibroblasts/metabolism , Cell Line , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Lung/pathology , Lung/cytology , Transcriptome , Metformin/pharmacology , Cell Plasticity/drug effects , Phenotype
14.
Theranostics ; 14(9): 3486-3508, 2024.
Article in English | MEDLINE | ID: mdl-38948064

ABSTRACT

Rationale: Device implantation frequently triggers cardiac remodeling and fibrosis, with monocyte-driven inflammatory responses precipitating arrhythmias. This study investigates the role of m6A modification enzymes METTL3 and METTL14 in these responses and explores a novel therapeutic strategy targeting these modifications to mitigate cardiac remodeling and fibrosis. Methods: Peripheral blood mononuclear cells (PBMCs) were collected from patients with ventricular septal defects (VSD) who developed conduction blocks post-occluder implantation. The expression of METTL3 and METTL14 in PBMCs was measured. METTL3 and METTL14 deficiencies were induced to evaluate their effect on angiotensin II (Ang II)-induced myocardial inflammation and fibrosis. m6A modifications were analyzed using methylated RNA immunoprecipitation followed by quantitative PCR. NF-κB pathway activity and levels of monocyte migration and fibrogenesis markers (CXCR2 and TGF-ß1) were assessed. An erythrocyte microvesicle-based nanomedicine delivery system was developed to target activated monocytes, utilizing the METTL3 inhibitor STM2457. Cardiac function was evaluated via echocardiography. Results: Significant upregulation of METTL3 and METTL14 was observed in PBMCs from patients with VSD occluder implantation-associated persistent conduction block. Deficiencies in METTL3 and METTL14 significantly reduced Ang II-induced myocardial inflammation and fibrosis by decreasing m6A modification on MyD88 and TGF-ß1 mRNAs. This disruption reduced NF-κB pathway activation, lowered CXCR2 and TGF-ß1 levels, attenuated monocyte migration and fibrogenesis, and alleviated cardiac remodeling. The erythrocyte microvesicle-based nanomedicine delivery system effectively targeted inflamed cardiac tissue, reducing inflammation and fibrosis and improving cardiac function. Conclusion: Inhibiting METTL3 and METTL14 in monocytes disrupts the NF-κB feedback loop, decreases monocyte migration and fibrogenesis, and improves cardiac function. Targeting m6A modifications of monocytes with STM2457, delivered via erythrocyte microvesicles, reduces inflammation and fibrosis, offering a promising therapeutic strategy for cardiac remodeling associated with device implantation.


Subject(s)
Fibrosis , Methyltransferases , Monocytes , NF-kappa B , Humans , Methyltransferases/metabolism , Methyltransferases/genetics , Monocytes/metabolism , Male , Animals , NF-kappa B/metabolism , Erythrocytes/metabolism , Adenosine/analogs & derivatives , Adenosine/metabolism , Female , Methylation , Mice , Transforming Growth Factor beta1/metabolism , Cell-Derived Microparticles/metabolism , Leukocytes, Mononuclear/metabolism , Angiotensin II/metabolism , Receptors, Interleukin-8B/metabolism , Receptors, Interleukin-8B/genetics , Ventricular Remodeling , Myocardium/metabolism , Myocardium/pathology , Nanomedicine/methods
15.
World J Stem Cells ; 16(6): 670-689, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38948098

ABSTRACT

BACKGROUND: Pulmonary fibrosis (PF) is a chronic interstitial lung disease characterized by fibroblast proliferation and extracellular matrix formation, causing structural damage and lung failure. Stem cell therapy and mesenchymal stem cells-extracellular vesicles (MSC-EVs) offer new hope for PF treatment. AIM: To investigate the therapeutic potential of MSC-EVs in alleviating fibrosis, oxidative stress, and immune inflammation in A549 cells and bleomycin (BLM)-induced mouse model. METHODS: The effect of MSC-EVs on A549 cells was assessed by fibrosis markers [collagen I and α-smooth muscle actin (α-SMA), oxidative stress regulators [nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), and inflammatory regulators [nuclear factor-kappaB (NF-κB) p65, interleukin (IL)-1ß, and IL-2]. Similarly, they were assessed in the lungs of mice where PF was induced by BLM after MSC-EV transfection. MSC-EVs ion PF mice were detected by pathological staining and western blot. Single-cell RNA sequencing was performed to investigate the effects of the MSC-EVs on gene expression profiles of macrophages after modeling in mice. RESULTS: Transforming growth factor (TGF)-ß1 enhanced fibrosis in A549 cells, significantly increasing collagen I and α-SMA levels. Notably, treatment with MSC-EVs demonstrated a remarkable alleviation of these effects. Similarly, the expression of oxidative stress regulators, such as Nrf2 and HO-1, along with inflammatory regulators, including NF-κB p65 and IL-1ß, were mitigated by MSC-EV treatment. Furthermore, in a parallel manner, MSC-EVs exhibited a downregulatory impact on collagen deposition, oxidative stress injuries, and inflammatory-related cytokines in the lungs of mice with PF. Additionally, the mRNA sequencing results suggested that BLM may induce PF in mice by upregulating pulmonary collagen fiber deposition and triggering an immune inflammatory response. The findings collectively highlight the potential therapeutic efficacy of MSC-EVs in ameliorating fibrotic processes, oxidative stress, and inflammatory responses associated with PF. CONCLUSION: MSC-EVs could ameliorate fibrosis in vitro and in vivo by downregulating collagen deposition, oxidative stress, and immune-inflammatory responses.

16.
Regen Ther ; 26: 180-187, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38948131

ABSTRACT

Background: Skeletal muscle injury (SMI) is often treated conservatively, although it can lead to scar tissue formation, which impedes muscle function and increases muscle re-injury risk. However, effective interventions for SMIs are yet to be established. Hypothesis: The administration of Silk Elastin® (SE), a novel artificial protein, to the SMI site can suppress scar formation and promote tissue repair. Study design: A controlled laboratory study. Methods: In vitro: Fibroblast migration ability was assessed using a scratch assay. SE solution was added to the culture medium, and the fibroblast migration ability was compared across different concentrations. In vivo: An SMI model was established with Sprague-Dawley rats, which were assigned to three groups based on the material injected to the SMI site: SE gel (SE group; n = 8), atelocollagen gel (Atelo group; n = 8), and phosphate buffer saline (PBS group; n = 8). Histological evaluations were performed at weeks 1 and 4 following the SMI induction. In the 1-week model, we detected the expression of transforming growth factor (TGF)-ß1 in the stroma using immunohistological evaluation and real-time polymerase chain reaction analysis. In the 4-week model, we measured tibialis anterior muscle strength upon peroneal nerve stimulation as a functional assessment. Results: In vitro: The fibroblast migration ability was suppressed by SE added at a concentration of 104 µg/mL in the culture medium. In vivo: In the 1-week model, the SE group exhibited significantly lower TGFß -1 expression than the PBS group. In the 4-week model, the SE group had a significantly larger regenerated muscle fiber diameter and smaller scar formation area ratio than the other two groups. Moreover, the SE group was superior to the other two groups in terms of regenerative muscle strength. Conclusion: Injection of SE gel to the SMI site may inhibit tissue scarring by reducing excessive fibroblast migration, thereby enhancing tissue repair. Clinical relevance: The findings of this study may contribute to the development of an early intervention method for SMIs.

17.
PeerJ ; 12: e17611, 2024.
Article in English | MEDLINE | ID: mdl-38948207

ABSTRACT

Objective: This study aimed to assess the accuracy of Mac-2 binding protein glycosylation isomer (M2BPGi) in predicting the stage of liver fibrosis. Methods: Articles published until October 10, 2023, were searched in the PubMed, Embase, Web of Science, and Cochrane Library databases. Pooled sensitivity, specificity, diagnostic odds ratio (DOR), summary receiver-operator curves (SROC), and Spearman's rank correlation coefficient were used to examine the accuracy of M2BPGi in predicting the stage of liver fibrosis. A 95% confidence interval (CI) was provided for each estimate. Results: Twenty-four studies were included in this meta-analysis, including 3,839 patients with liver fibrosis, 409 of whom progressed to stage 4 or above. The pooled sensitivity, specificity, and area under the ROC (AUC) for M2BPGi predicting liver fibrosis ≥F3 were 0.74 (95% CI [0.65-0.82]), 0.84 (95% CI [0.76-0.89]), and 14.99 (95% CI [9.28-24.21]), respectively. The pooled sensitivity, specificity, and AUC for ≥F4 were 0.80 (95% CI [0.70-0.88]), 0.80 (95% CI [0.73-0.86]), and 16.43 (95% CI [0.84-0.90]), respectively. Conclusion: Among different sample partitions, M2BPGi has the best diagnostic performance for liver fibrosis stage ≥4. Furthermore, the cutoff of 1-2 is more accurate than that of 0-1 or 2-3 for fibrosis ≥ F3 and ≥ F4. Registration: CRD42023483260.


Subject(s)
Biomarkers , Liver Cirrhosis , Humans , Liver Cirrhosis/diagnosis , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Biomarkers/metabolism , Glycosylation , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/analysis , ROC Curve , Sensitivity and Specificity , Membrane Glycoproteins
18.
J Pak Med Assoc ; 74(6): 1207-1209, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38949009

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is the most common progressive form of interstitial lung disease (ILD) that leads to gradual deterioration of lung function and ultimately death. Data from low- and middle-income countries (LMIC) on IPF is scarce. In this communication, we report the challenges encountered in managing IPF from Pakistan's largest tertiary care centre. A total of 108 patients with IPF were evaluated at the Aga Khan University Hospital in Karachi, Pakistan from January 2017 to March 2020. A significant concern was that most patients with IPF presented late during their disease. A bigger challenge encountered in clinical practice was the cost and nonavailability of antifibrotic therapy in the country until mid-2020. Successfully addressing these limitations, it is anticipated that better care will be available for the patients suffering from IPF in this part of the world.


Subject(s)
Developing Countries , Idiopathic Pulmonary Fibrosis , Humans , Idiopathic Pulmonary Fibrosis/therapy , Idiopathic Pulmonary Fibrosis/diagnosis , Pakistan , Female , Male , Middle Aged , Aged , Antifibrotic Agents/therapeutic use , Pyridones/therapeutic use , Health Services Accessibility , Lung Transplantation , Indoles
19.
Article in English | MEDLINE | ID: mdl-38949181

ABSTRACT

INTRODUCTION: Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease of unknown cause with a dismal prognosis. Nintedanib and Pirfenidone are approved worldwide for the treatment of IPF but they only slow the rate of functional decline and disease progression. Therefore, there is an urgent need for more efficacious and better tolerated drugs. AREAS COVERED: αvß6 and αvß1 are two integrins overexpressed in fibrotic tissue, which play a critical role in the development of lung fibrosis. They act by converting transforming growth factor (TGF)-ß, one of the most important profibrotic cytokine, in its active form. Here, we summarize and critically discuss the potential of a dual αvß6/αvß1 integrin inhibitor for the treatment of IPF. EXPERT OPINION: Bexotegrast, a dual αvß6/αvß1 integrin inhibitor, has the potential to slow or even halt disease progression in IPF. Indeed, the strong pre-clinical rationale and promising early phase clinical trial data have raised expectations.

20.
Radiologie (Heidelb) ; 2024 Jun 29.
Article in German | MEDLINE | ID: mdl-38949668

ABSTRACT

Interstitial lung abnormalities (ILA) are incidental findings on computed tomography (CT), particularly in elderly patients and smokers. They describe mild interstitial abnormalities that can be progressive and turn into overt interstitial lung disease (ILD). In recent years, ILA have increasingly come into focus because several large cohort studies have shown poorer clinical outcomes and increased mortality for patients with ILA compared to those without ILA. The radiological classification into nonsubpleural, subpleural nonfibrotic and subpleural fibrotic as well as the assessment over time can-together with clinical risk factors-help estimate clinical outcome. Clinical management of patients with ILA includes exclusion of ILD and risk-adapted control intervals, especially in the presence of risk factors.

SELECTION OF CITATIONS
SEARCH DETAIL
...