Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.527
Filter
1.
Article in English | MEDLINE | ID: mdl-38950772

ABSTRACT

OBJECTIVE: Aortic root replacement requires construction of a composite valve-graft and reimplantation of coronary arteries. This study assessed the feasibility of valve-in-valve transcatheter aortic valve implantation after aortic root replacement. METHODS: A retrospective review was conducted on 74 consecutive patients who received a composite valve-graft at a single institution from 2019 to 2021. Forty patients had bioprosthetic valves with adequate postoperative gated computed tomographic angiography scans. Computational simulations of balloon and self-expanding transcatheter valve deployments were performed. The modeled coronary distances were compared to traditional, manually measured valve-to-coronary distances. RESULTS: There was a statistically significant difference in the modeled versus manual measurements of valve to coronary distances were for all patients regardless of valve type or coronary artery analyzed (p <0. 05). Most patients are low risk for coronary obstruction per three-dimensional modeling including those with a valve-to-coronary distance <4 millimeters. Only one patient (2.5%) was at risk for coronary obstruction for the left coronary artery using a ballonvalve. No other valve combination was considered high risk of coronary obstruction. Five patients (12.5%) were at risk for possible valve stent deformation at the outflow, due to angulation at the graft anastomosis. CONCLUSIONS: Following aortic root replacement, all patients were candidates for Valve-in-Valve using one or both types of transcatheter heart valves. Self-expanding valves may be at higher risk for stent frame deformation at graft anastomotic lines and balloon-expandable valves may be at higher risk of coronary obstruction.

2.
Turk J Orthod ; 37(2): 98-103, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38952257

ABSTRACT

Objective: To determine the optimum miniscrew head design in orthodontic treatments for primary stability and compare stress distribution on a representative bone structure. Methods: Miniscrews with cross heads, mushroom-shaped heads, button heads, bracket heads, and through-hole heads were compared using finite element analysis. Miniscrews, whose three-dimensional drawings were completed using the SolidWorks computer-aided software package, were inserted in the bone block. Orthodontic force was applied to the head, and stress distributions, strains, and total deformations were investigated. Results: The lowest von Mises stress of 5.67 MPa was obtained using the bracket head. On the other hand, the highest von Mises stress of 22.4 MPa was found with the button head. Through mesh convergence analysis, the most appropriate mesh size was determined to be 0.5 mm; approximately 230,000 elements were formed for each model. Conclusion: Because the need for low stress is substantial for the primary stability of the miniscrew, this study demonstrated that the bracket head miniscrew is the optimal head design. In addition, it is posited that the success rate of orthodontic anchorage treatments will increase when bracket head miniscrews are used.

3.
Turk J Orthod ; 37(2): 122-129, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38952300

ABSTRACT

Objective: To evaluate the effect of continuous arch and piggyback mechanics in a straight wire appliance (SWA) for the alignment of buccal and variably vertically positioned maxillary canines. Methods: A three-dimensional finite element model with near-normal occlusion and buccal and vertically displaced maxillary canines was used. Two groups were created to simulate two commonly used SWAs techniques, continuous archwire (Group 1) and piggyback models (Group 2). Each group had three subgroups with varying vertical displacement of the canine from 2 to 6 mm from the occlusal plane. The displacement and stress distribution were noted in each group. Results: As the vertical displacement increased in Group 1, the concentration of von Mises stress increased progressively at the incisal third (0.36, 0.41 and 0.44 MPa) at 2, 4, and 6 mm, respectively, with decreased maximum occlusal movement in the vertical plane with respect to the canine. Group 2 exhibited a similar pattern but greater occlusal movement of the canine compared with Group 1. Conclusion: A vertical displacement of 4 mm is the optimal level at which continuous arch mechanics should be considered. For displacements beyond 4 mm, the piggyback wire technique is a suitable alternative.

4.
PeerJ ; 12: e17501, 2024.
Article in English | MEDLINE | ID: mdl-38952987

ABSTRACT

Stridulation is used by male katydids to produce sound via the rubbing together of their specialised forewings, either by sustained or interrupted sweeps of the file producing different tones and call structures. There are many species of Orthoptera that remain undescribed and their acoustic signals are unknown. This study aims to measure and quantify the mechanics of wing vibration, sound production and acoustic properties of the hearing system in a new genus of Pseudophyllinae with taxonomic descriptions of two new species. The calling behaviour and wing mechanics of males were measured using micro-scanning laser Doppler vibrometry, microscopy, and ultrasound sensitive equipment. The resonant properties of the acoustic pinnae of the ears were obtained via µ-CT scanning and 3D printed experimentation, and numerical modelling was used to validate the results. Analysis of sound recordings and wing vibrations revealed that the stridulatory areas of the right tegmen exhibit relatively narrow frequency responses and produce narrowband calls between 12 and 20 kHz. As in most Pseudophyllinae, only the right mirror is activated for sound production. The acoustic pinnae of all species were found to provide a broadband increased acoustic gain from ~40-120 kHz by up to 25 dB, peaking at almost 90 kHz which coincides with the echolocation frequency of sympatric bats. The new genus, named Satizabalus n. gen., is here derived as a new polytypic genus from the existing genus Gnathoclita, based on morphological and acoustic evidence from one described (S. sodalis n. comb.) and two new species (S. jorgevargasi n. sp. and S. hauca n. sp.). Unlike most Tettigoniidae, Satizabalus exhibits a particular form of sexual dimorphism whereby the heads and mandibles of the males are greatly enlarged compared to the females. We suggest that Satizabalus is related to the genus Trichotettix, also found in cloud forests in Colombia, and not to Gnathoclita.


Subject(s)
Orthoptera , Wings, Animal , Animals , Male , Wings, Animal/physiology , Wings, Animal/anatomy & histology , Colombia , Orthoptera/physiology , Orthoptera/anatomy & histology , Animal Communication , Forests , Vocalization, Animal/physiology , Acoustics , Female , Vibration
5.
Cureus ; 16(5): e61403, 2024 May.
Article in English | MEDLINE | ID: mdl-38947589

ABSTRACT

AIM: To analyze the effects of the maxillary second molar and third molar eruption stages on the distalization of first molars with a modified palatal anchorage plate (MPAP) and Beneslider using three-dimensional (3D) finite element analysis. MATERIALS AND METHOD: Six finite element models (FEMs) of individual maxillary molar distalization and six FEM models of en-masse maxillary arch distalization (EMAD) at different stages of the maxillary molar eruption were created from cone-beam computed tomography (CBCT) images of the maxillary complex, and 3D displacements of the maxillary first and second molars were evaluated with MPAP and Beneslider. RESULTS: On individual molar distalization, Beneslider showed first molar distal translation during the second and third molar follicular stages, while MPAP showed distal tipping of the first molar. With EMAD, either of the appliances showed distal tipping of the first molars. There was palatal rolling and extrusion of the first molars. The second molar showed buccal drifting with intrusion, and the incisors showed palatal displacement along with extrusion. CONCLUSIONS: Second and third molar eruption stages had no adverse influence on first molar and en-masse maxillary arch distalization. Beneslider showed distal translation of the first molar, while distal tipping was seen with MPAP.

6.
J Biomech ; 172: 112199, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38959821

ABSTRACT

This study investigates the effects of fall configurations on hip fracture risk with a focus on pelvic soft tissue shape. This was done by employing a whole-body finite element (FE) model. Soft tissue thickness around the pelvis was measured using a standing CT system, revealing a trend of increased trochanteric soft tissue thickness with higher BMI and younger age. In the lateroposterior region from the greater trochanter, the soft tissues of elderly females were thin with a concave shape. Based on the THUMS 5F model, an elderly female FE model with a low BMI was developed by morphing the soft tissue shape around the pelvis based on the CT data. FE simulation results indicated that the lateroposterior fall led to a higher femoral neck force for the elderly female model compared to the lateral fall. One reason may be related to the thin soft tissue of the pelvis in the lateroposterior region. Additionally, the effectiveness of interventions that can help mitigating hip fractures in lateroposterior falls on the thigh-hip and hip region was assessed using the elderly female model. The attenuation rate of the femoral neck force by the hip protector was close to zero in the thigh-hip fall and high in the hip fall, whereas the attenuation rate of the compliant floor was high in both falls. This study highlights age-related changes in the soft tissue shape of the pelvis in females, particularly in the lateroposterior regions, which may influence force mitigation for the hip joint during lateroposterior falls.

7.
Sci Rep ; 14(1): 15199, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956190

ABSTRACT

To address the problems of the conventional composite supporting structures (CCSSs) such as insufficient anti-dislocation performance and deformation capacity, this study used Engineered Cementitious Composite (ECC) lining sections instead of the traditional lining sections and optimized support design parameters, resulting in the development of novel ECC-RC composite supporting structures (ECSSs) of tunnels passing through active fault. The dislocation response characteristics and their parameter sensitivity of the ECSS was revealed by way of 1/25-scale fault dislocation model tests and finite element analysis. The test results show that the mechanical response characteristics and the failure modes of the CCSS and the ECSS are similar under reverse fault dislocation. Compared with the CCSS, the anti-dislocation performance of the ECSS is significantly improved by introducing of the ECC lining and optimizing the design parameters. The vertical deformation of the ECSS and the range of influence under the same dislocation are significantly decreased, and the strain are reduced to different degrees. This phenomenon shows that by improving the material properties, shortening the spacing of aseismatic joints and optimising the thickness of the shock absorption layer, the stress conditions and applicability under deformation of the structure are improved. The ECSS benefits from the crack resistance and toughening effect of fibres, the degree and scope of cracking of the ECSS are significantly reduced compared with those of the CCSS, and internal and external through cracks and local spalling are absent. The results of finite element analysis show that the overall damage degree of the ECSS is decreased and the damage range is increased by decreasing the strength of the surrounding rock in the fault zone. The fault dislocation response pattern of the ECSS varies depending on the fault type. The damage degree caused by different fault types follows the order of normal fault, strike-slip fault, and reverse fault from large to small. However, the damage range caused by the strike-slip fault is significantly larger compared to normal fault and reverse fault. In the design of fault resistance, the surrounding rock conditions of the fault zone and the form of fault dislocation should be considered.

8.
BMC Oral Health ; 24(1): 758, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956625

ABSTRACT

BACKGROUND: The intrusion of maxillary anterior teeth is often required and there are various intrusion modes with mini-implants in clear aligner treatment. The objective of this study was to evaluate the effectiveness of maxillary anterior teeth intrusion with different intrusion modes, aiming to provide references for precise and safe intrusion movements in clinical practice. METHODS: Cone-beam computed tomography and intraoral optical scanning data of a patient were collected. Finite element models of the maxilla, maxillary dentition, periodontal ligaments (PDLs), clear aligner (CA), attachments, and mini-implants were established. Different intrusion modes of the maxillary anterior teeth were simulated by changing the mini-implant site (between central incisors, between central and lateral incisor, between lateral incisor and canine), loading site (between central incisors, on central incisor, between central and lateral incisor, between lateral incisor and canine), and loading mode (labial loading and labiolingual loading). Ten conditions were generated and intrusive forces of 100 g were applied totally. Then displacement tendency of the maxillary anterior teeth and CA, and stress of the PDLs were analyzed. RESULTS: For the central incisor under condition L14 and for the canine under conditions L11, L13, L23, and L33, the intrusion amount was negative. Under other conditions, the intrusion amount was positive. The labiolingual angulation of maxillary anterior teeth exhibited positive changes under all conditions, with greater changes under linguoincisal loading. The mesiodistal angulation of canine exhibited positive changes under labial loading, while negative changes under linguoincisal loading except for condition L14. CONCLUSIONS: The intrusion amount, labiolingual and mesiodistal angulations of the maxillary anterior teeth were affected by the mini-implant site, loading site, and loading mode. Labial and linguoincisal loading may have opposite effects on the intrusion amount of maxillary anterior teeth and the mesiodistal angulation of canine. The labiolingual angulation of the maxillary incisors would increase under all intrusion modes, with greater increases under linguoincisal loading.


Subject(s)
Cone-Beam Computed Tomography , Dental Implants , Finite Element Analysis , Incisor , Maxilla , Orthodontic Anchorage Procedures , Periodontal Ligament , Tooth Movement Techniques , Humans , Tooth Movement Techniques/methods , Tooth Movement Techniques/instrumentation , Orthodontic Anchorage Procedures/instrumentation , Orthodontic Anchorage Procedures/methods , Periodontal Ligament/diagnostic imaging , Imaging, Three-Dimensional/methods , Cuspid/diagnostic imaging , Orthodontic Appliance Design , Dental Stress Analysis , Biomechanical Phenomena , Orthodontic Appliances, Removable
9.
Front Bioeng Biotechnol ; 12: 1395197, 2024.
Article in English | MEDLINE | ID: mdl-38962665

ABSTRACT

Objective: This study aimed to investigate the biomechanical characteristics of the tandem spinal external fixation (TSEF) for treating multilevel noncontiguous spinal fracture (MNSF) using finite element analysis and provide a theoretical basis for clinical application. Methods: We constructed two models of L2 and L4 vertebral fractures that were fixed with the TSEF and the long-segment spinal inner fixation (LSIF). The range of motion (ROM), maximum stresses at L2 and L4 vertebrae, the screws and rods, and the intervertebral discs of the two models were recorded under load control. Subsequently, the required torque, the maximum stress at L2 and L4 vertebrae, the screws and rods, and the intervertebral discs were analyzed under displacement control. Results: Under load control, the TSEF model reserved more ROM than the LSIF model. The maximum stresses of screws in the TSEF model were increased, while the maximum stresses of rods were reduced compared to the LSIF model. Moreover, the maximum stresses of L2 and L4 vertebrae and discs in the TSEF model were increased compared to the LSIF model. Under displacement control, the TSEF model required fewer moments (N·mm) than the LSIF model. Compared to the LSIF model, the maximum stresses of screws and rods in the TSEF model have decreased; the maximum stresses at L2 and L4 in the TSEF model were increased. In the flexion condition, the maximum stresses of discs in the TSEF model were less than the LSIF model, while the maximum stresses of discs in the TSEF model were higher in the extension condition. Conclusion: Compared to LSIF, the TSEF has a better stress distribution with higher overall mobility. Theoretically, it reduces the stress concentration of the connecting rods and the stress shielding of the fractured vertebral bodies.

10.
Front Bioeng Biotechnol ; 12: 1305837, 2024.
Article in English | MEDLINE | ID: mdl-38966191

ABSTRACT

Background and objective: Artificial vertebral implants have been widely used for functional reconstruction of vertebral defects caused by tumors or trauma. However, the evaluation of their biomechanical properties often neglects the influence of material anisotropy derived from the host bone and implant's microstructures. Hence, this study aims to investigate the effect of material anisotropy on the safety and stability of vertebral reconstruction. Material and methods: Two finite element models were developed to reflect the difference of material properties between linear elastic isotropy and nonlinear anisotropy. Their biomechanical evaluation was carried out under different load conditions including flexion, extension, lateral bending and axial rotation. These performances of two models with respect to safety and stability were analyzed and compared quantitatively based on the predicted von Mises stress, displacement and effective strain. Results: The maximum von Mises stress of each component in both models was lower than the yield strength of respective material, while the predicted results of nonlinear anisotropic model were generally below to those of the linear elastic isotropic model. Furthermore, the maximum von Mises stress of natural vertebra and reconstructed system was decreased by 2-37 MPa and 20-61 MPa, respectively. The maximum reductions for the translation displacement of the artificial vertebral body implant and motion range of whole model were reached to 0.26 mm and 0.77°. The percentage of effective strain elements on the superior and inferior endplates adjacent to implant was diminished by up to 19.7% and 23.1%, respectively. Conclusion: After comprehensive comparison, these results indicated that the finite element model with the assumption of linear elastic isotropy may underestimate the safety of the reconstruction system, while misdiagnose higher stability by overestimating the range of motion and bone growth capability.

11.
Sci Rep ; 14(1): 15867, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982141

ABSTRACT

The optimal configuration of a customized implant abutment is crucial for bone remodeling and is influenced by various design parameters. This study introduces an optimization process for designing two-piece zirconia dental implant abutments. The aim is to enhance bone remodeling, increase bone density in the peri-implant region, and reduce the risk of late implant failure. A 12-month bone remodeling algorithm subroutine in finite element analysis to optimize three parameters: implant placement depth, abutment taper degree, and gingival height of the titanium base abutment. The response surface analysis shows that implant placement depth and gingival height significantly impact bone density and uniformity. The taper degree has a smaller effect on bone remodeling. The optimization identified optimal values of 1.5 mm for depth, 35° for taper, and 0.5 mm for gingival height. The optimum model significantly increased cortical bone density from 1.2 to 1.937 g/cm3 in 2 months, while the original model reached 1.91 g/cm3 in 11 months. The standard deviation of density showed more uniform bone apposition, with the optimum model showing values 2 to 6 times lower than the original over 12 months. The cancellous bone showed a similar trend. In conclusion, the depth and taper have a significant effect on bone remodeling. This optimized model significantly improves bone density uniformity.


Subject(s)
Bone Remodeling , Finite Element Analysis , Humans , Dental Implant-Abutment Design/methods , Bone Density , Titanium/chemistry , Crowns , Zirconium/chemistry , Dental Abutments , Dental Implants
12.
Front Bioeng Biotechnol ; 12: 1392448, 2024.
Article in English | MEDLINE | ID: mdl-38988865

ABSTRACT

Purpose: The study aims to develop a finite element model of the pelvic floor and thighs of elderly men to quantitatively assess the impact of different pelvic floor muscle trainings and the urinary and defecation control ability. Methods: A finite element model of the pelvic floor and thighs of elderly men was constructed based on MRI and CT. Material properties of pelvic floor tissues were assigned through literature review, and the relative changes in waistline, retrovesical angle (RVA) and anorectad angulation (ARA) to quantitatively verify the effectiveness of the model. By changing the material properties of muscles, the study analyzed the muscle strengthening or impairment effects of the five types of rehabilitation training for four types of urination and defecation dysfunction. The changes in four outcome indicators, including the retrovesical angle, anorectad angulation, stress, and strain, were compared. Results: This study indicates that ARA and RVA approached their normal ranges as material properties changed, indicating an enhancement in the urinary and defecation control ability, particularly through targeted exercises for the levator ani muscle, external anal sphincter, and pelvic floor muscles. This study also emphasizes the effectiveness of personalized rehabilitation programs including biofeedback, exercise training, electrical stimulation, magnetic stimulation, and vibration training and advocates for providing optimized rehabilitation training methods for elderly patients. Discussion: Based on the results of computational biomechanics, this study provides foundational scientific insights and practical recommendations for rehabilitation training of the elderly's urinary and defecation control ability, thereby improving their quality of life. In addition, this study also provides new perspectives and potential applications of finite element analysis in elderly men, particularly in evaluating and designing targeted rehabilitation training.

13.
Front Bioeng Biotechnol ; 12: 1368492, 2024.
Article in English | MEDLINE | ID: mdl-38974654

ABSTRACT

Background: The integrity of the lateral wall in femoral intertrochanteric fractures significantly impacts fracture stability and internal fixation. In this study, we compared the outcomes of treating intertrochanteric fractures with lateral wall involvement using the ortho-bridge system (OBS) combined with proximal femoral nail antirotation (PFNA) versus simple PFNA from a biomechanical perspective. Methods: Finite-element models of femoral intertrochanteric fractures with lateral wall involvement were subjected to fixation with OBS combined with PFNA and simple PFNA. Von Mises stress measurements and corresponding displacement assessments for each component of the model, including the proximal femur and lateral wall, were used to evaluate the biomechanical effects of OBS fixation on bone and intramedullary nail stability. Results: Using PFNA alone to fix intertrochanteric fractures with lateral wall involvement resulted in von Mises stress levels on the lateral wall exceeding safe stress tolerances for bone growth. OBS fixation significantly reduced stress on the lateral wall of the femur and minimized the stress on each part of the intramedullary nail, reducing the overall displacement. Conclusion: In cases of intertrochanteric fractures with lateral wall involvement, PFNA fixation alone may compromise the biomechanical integrity of the lateral femoral wall, increasing the risk of postoperative complications. The addition of OBS to PFNA significantly reduces stress on the lateral femoral wall. Consequently, OBS should be considered for lateral wall fixation when managing intertrochanteric fractures combined with lateral wall fractures.

14.
Cureus ; 16(6): e61765, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38975391

ABSTRACT

Although Oxford unicompartmental knee arthroplasty is often used to successfully treat patients with knee osteoarthritis isolated at the medial compartment, we present a case of fracture just below the tibial keel caused by either a shift in medial loading position or an increased amount of tibial osteotomy. Finite element analysis was used to determine which factor was more important. First, a 3D-surface model of the patient's tibia and the implant shape were created using computed tomography-Digital Imaging and Communications in Medicine (CT-DICOM) data taken preoperatively. The finite element analysis found that following unicompartmental knee arthroplasty, the cortical stress (normal, 5.8 MPa) on the medial tibial metaphyseal cortex increased as the load point moved medially (3 and 12 mm medially: 7.0 and 10.7 MPa, respectively) but was mild with increased tibial bone resection (2 and 6 mm lower: 6.1 and 6.5 MPa, respectively). Implanting the femoral component more medially than the preoperative plan increases stresses in the medial cortex of the tibia and may cause fractures.

15.
Injury ; 55(10): 111657, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39002321

ABSTRACT

PURPOSE: Although hook plate fixation is popularly used, concerns exist regarding periprosthetic fractures and the necessity to remove the plate to prevent subacromial erosion and subsequent acromion fracture, due to its non-anatomical design. We hypothesized that a low profile 2.7 mm distal locking hook plate would provide comparable stability to a properly used 3.5 mm distal locking hook plate MATERIALS AND METHODS: A 3.5 mm distal locking plate (type 1) and a low profile 2.7 mm plate (type 2) were assessed by finite element analysis. Peak von Mises stress (PVMS) was calculated on the acromion's undersurface, clavicle shaft, and hook, focusing on how these stresses varied with the number and placement of distal locking screws. RESULTS: Increased distal screws in both types led to lower PVMS on the acromion's undersurface and the hook, with the lowest acromion PVMS observed in type 2 with three distal screws, and on the hook in type 1 with two distal screws. Increasing the number of distal screws similarly reduced PVMS on the clavicle shaft, with the lowest in type 1 with two distal screws. In both plate types, the most posterior distal locking screw played a crucial role in distributing stress across the acromion and the hook. CONCLUSION: The low profile 2.7 mm distal locking hook plate showed comparable biomechanical results to the 3.5 mm distal locking hook plate. Increasing the number of distal locking screws showed less stress concentration on the bone and hook in both models. The most posterior distal locking screw showed an essential role in stress distribution.

16.
Injury ; 55(10): 111717, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39002322

ABSTRACT

INTRODUCTION: Several internal fixation devices are available for treating Pauwels type I, II and III femoral neck fractures. The present study compared various fixation implants for all Pauwels fracture types using a CT-based subject-specific finite element model of the femur and determined the most effective implant for each fracture type. MATERIALS AND METHODS: The analysis included four different configurations of cannulated screw models, Femoral Neck System, Dynamic Hip Screw and Dynamic Condylar Screw (with and without anti-rotational screw). Ti-alloy was considered as the implant material. Heterogeneous bone material property was assigned based on CT grey value. Frictional contact was assumed in the contact interfaces. Peak loading corresponding to normal walking and stair-climbing were considered. Equivalent strain in bone, equivalent stress in the implants, femoral head deformation and rotation, micromotion in the contact interfaces, and strain-shielding in bone were evaluated for each implanted model. RESULTS: Stresses generated in the implants were within the yield limit of the implant material. In Pauwels I and II, the micromotion predicted at the contact regions in all the implanted models was within 100 µm, which is suitable for bone integration. However, in Pauwels III fracture, most of the implanted models other than DHS with AR-screw model exhibited micromotion of more than 150 µm in the contact regions, which is expected to inhibit bone growth. CONCLUSIONS: The DHS with AR-screw implanted model was identified as the most effective in treating Pauwels I and III fractures. However, for Pauwels type II, DCS with an AR-screw implant was deemed superior to the other configurations.

17.
J Biomech ; 172: 112209, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38986274

ABSTRACT

Micro-Finite Element analysis (µFEA) has become widely used in biomechanical research as a reliable tool for the prediction of bone mechanical properties within its microstructure such as apparent elastic modulus and strength. However, this method requires substantial computational resources and processing time. Here, we propose a computationally efficient alternative to FEA that can provide an accurate estimation of bone trabecular mechanical properties in a fast and quantitative way. A lattice element method (LEM) framework based on the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) open-source software package is employed to calculate the elastic response of trabecular bone cores. A novel procedure to handle pore-material boundaries is presented, referred to as the Firm and Floppy Boundary LEM (FFB-LEM). Our FFB-LEM calculations are compared to voxel- and geometry-based FEA benchmarks incorporating bovine and human trabecular bone cores imaged by micro Computed Tomography (µCT). Using 14 computer cores, the apparent elastic modulus calculation of a trabecular bone core from a µCT-based input with FFB-LEM required about 15 min, including conversion of the µCT data into a LAMMPS input file. In contrast, the FEA calculations on the same system including the mesh generation, required approximately 30 and 50 min for voxel- and geometry-based FEA, respectively. There were no statistically significant differences between FFB-LEM and voxel- or geometry-based FEA apparent elastic moduli (+24.3% or +7.41%, and +0.630% or -5.29% differences for bovine and human samples, respectively).

18.
Article in English | MEDLINE | ID: mdl-38987509

ABSTRACT

INTRODUCTION: The precise mechanism of rupture in abdominal aortic aneurysms (AAAs) has not yet been uncovered. The phenomenological failure criterion of the coefficient of proportionality between von Mises stress and tissue strength does not account for any mechanistic foundation of tissue fracture. Experimental studies have shown that arterial failure is a stepwise process of fibrous delamination (mode II) and kinking (mode I) between layers. Such a mechanism has not previously been considered for AAA rupture. METHODS: In the current study we consider both von Mises stress in the wall, in addition to interlayer tractions and delamination using cohesive zone models. Firstly, we present a parametric investigation of the influence of a range of AAA anatomical features on the likelihood of elevated interlayer traction and delamination. RESULTS: We observe in several cases that the location of peak von Mises stress and tangential traction coincide. Our simulations also reveal however, that peak von Mises and intramural tractions are not coincident for aneurysms with Length/Radius less than 2 (short high-curvature aneurysms) and for aneurysms with symmetric intraluminal thrombus (ILT). For an aneurysm with (L/R = 2.0), the peak σ vm moves slightly towards the origin while the peak T t is near the peak bulge with a separation distance of ~ 17 mm. Additionally, we present three patient-specific AAA models derived directly from CT scans, which also illustrate that the location of von Mises stress does not correlate with the point of interlayer delamination. CONCLUSION: This study suggests that incorporating cohesive zone models into clinical based FE analyses may capture a greater proportion of ruptures in-silico.

19.
Dent Traumatol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990009

ABSTRACT

BACKGROUND: The aim of this study was to calculate the stress distribution of fiberglass post associated with resin composite crown restoration and fiberglass posts with zirconia restorations in mature and immature endodontically treated central maxillary incisor under various loading conditions. MATERIALS AND METHODS: The study created six different study models in a virtual environment: healthy mature maxillary central teeth, intact immature maxillary central teeth, mature maxillary central teeth with fiberglass post associated with resin composite crown restoration, immature maxillary central teeth with fiberglass post associated with resin composite crown restoration, mature maxillary central teeth with fiberglass posts and zirconia restoration, and immature maxillary central teeth with fiberglass posts and zirconia restoration. Loading conditions simulating mastication, trauma, and bruxism were applied to each of the models at different angles and amounts. The von Mises and the maximum and minimum principal stress values in tooth structures (dentin) and support structures (bone, PDL) and materials were observed using finite element stress analysis. RESULTS: The highest stress values in the tissue and the restoration structure were observed for masticating force and crowns rehabilitated with zirconia restorations. None of the compared loading conditions and restorations showed destructive stress values on periodontal ligament or bone. CONCLUSION: The mature and immature endodontically treated central maxillary incisors can be better rehabilitated using fiberglass post associated with resin composite crown restoration and may be preferred to zirconia restorations in order to reduce the stresses on the surrounding tissues and teeth. However, further clinical studies are needed to fully explore this topic.

20.
Biomed Tech (Berl) ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38997228

ABSTRACT

OBJECTIVES: Due to the dynamic character of the stomatognathic system, fatigue life experiments simulating the cyclic loading experienced by implant-supported restorations are critical consideration. The aim of this study was to examine the effect of different crown and abutment materials on fatigue failure of single implant-supported crowns. METHODS: Models were created for 10 different designs of implant-supported single crowns including two zirconia-reinforced lithium silicates (crystallized and precrystallized), monolithic lithium disilicate, polymer-infiltrated ceramic networks, and polyetheretherketone supported by zirconia and titanium abutments. A cyclic load of 179 N with a frequency of 1 Hz was applied on palatal cusp of a maxillary first premolar at a 30° angle in a buccolingual direction. RESULTS: In the models with titanium abutments, the polymer-infiltrated ceramic network model had a lower number of cycles to fatigue failure values in the implant (5.07), abutment (2.30), and screw (1.07) compared to others. In the models with zirconia abutments, the crystallized zirconia-reinforced lithium silicate model had a higher number of cycles to fatigue failure values in the abutment (8.52) compared to others. Depending on the fatigue criteria, polyetheretherketone implant crown could fail in less than five year while the other implant crowns exhibits an infinite life on all models. CONCLUSIONS: The type of abutment material had an effect on the number of cycles to fatigue failure values for implants, abutments, and screws, but had no effect on crown materials. The zirconia abutment proved longer fatigue lifetime, and should thus be considered for implant-supported single crowns.

SELECTION OF CITATIONS
SEARCH DETAIL