Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Heliyon ; 10(4): e26442, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38420411

ABSTRACT

The reduction of carbon dioxide emissions is crucial to reduce the atmospheric greenhouse effect, fighting climate change and global warming. Electrochemical CO2 reduction is one of the most promising carbon capture and utilization technologies, that can be powered by solar energy and used to make added-value chemicals and green fuels, providing grid-stability, energy security, and environmental benefits. A two-dimensional finite-elements model for porous electrodes was developed and validated against experimental data, allowing the design and performance improvement of a porous zinc cathode morphology and its operational conditions for an electrolyzer producing syngas via the co-electrolysis of CO2 and water. Porosity, pore length, fiber geometric shape, inlet pressure, system temperature, and catholyte flow rate were explored, and these parameters were thoroughly tuned by using the smart-search Nelder-Mead's multi-parameter optimization algorithm to achieve pronouncedly higher, industrial-relevant current density values than those previously reported, up to 263.6 mA/cm2 at an applied potential of -1.1 V vs. RHE.

2.
Ann Biomed Eng ; 52(1): 71-88, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37154990

ABSTRACT

Molecular sampling with vacuum-assisted tissue electroporation is a novel, minimally invasive method for molecular profiling of solid lesions. In this paper, we report on the design of the battery-powered pulsed electric field generator and electrode configuration for an electroporation-based molecular sampling device for skin cancer diagnostics. Using numerical models of skin electroporation corroborated by the potato tissue phantom model, we show that the electroporated tissue volume, which is the maximum volume for biomarker sampling, strongly depends on the electrode's geometry, needle electrode skin penetration depths, and the applied pulsed electric field protocol. In addition, using excised human basal cell carcinoma (BCC) tissues, we show that diffusion of proteins out of human BCC tissues into water strongly depends on the strength of the applied electric field and on the time after the field application. The developed numerical simulations, confirmed by experiments in potato tissue phantoms and excised human cancer lesions, provide essential tools for the development of electroporation-based molecular markers sampling devices for personalized skin cancer diagnostics.


Subject(s)
Electroporation , Skin Neoplasms , Humans , Electroporation/methods , Electricity , Skin , Skin Neoplasms/diagnosis , Biopsy
3.
Small Methods ; 7(4): e2201516, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36775977

ABSTRACT

Thermoelectric conversion may take a significant share in future energy technologies. Oxide-based thermoelectric composite ceramics attract attention for promising routes for control of electrical and thermal conductivity for enhanced thermoelectric performance. However, the variability of the composite properties responsible for the thermoelectric performance, despite nominally identical preparation routes, is significant, and this cannot be explained without detailed studies of thermal transport at the local scale. Scanning thermal microscopy (SThM) is a scanning probe microscopy method providing access to local thermal properties of materials down to length scales below 100 nm. To date, realistic quantitative SThM is shown mostly for topographically very smooth materials. Here, methods for SThM imaging of bulk ceramic samples with relatively rough surfaces are demonstrated. "Jumping mode" SThM (JM-SThM), which serves to preserve the probe integrity while imaging rough surfaces, is developed and applied. Experiments with real thermoelectric ceramics show that the JM-SThM can be used for meaningful quantitative imaging. Quantitative imaging is performed with the help of calibrated finite-elements model of the SThM probe. The modeling reveals non-negligible effects associated with the distributed nature of the resistive SThM probes used; corrections need to be made depending on probe-sample contact thermal resistance and probe current frequency.

4.
Neurosurg Focus ; 40(1): E6, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26721580

ABSTRACT

OBJECTIVE The long-term effects on adjacent-segment pathology after nonfusion dynamic stabilization is unclear, and, in particular, changes at the adjacent facet joints have not been reported in a clinical study. This study aims to compare changes in the adjacent facet joints after lumbar spinal surgery. METHODS Patients who underwent monosegmental surgery at L4-5 with nonfusion dynamic stabilization using the Dynesys system (Dynesys group) or transforaminal lumbar interbody fusion with pedicle screw fixation (fusion group) were retrospectively compared. Facet joint degeneration was evaluated at each segment using the CT grading system. RESULTS The Dynesys group included 15 patients, while the fusion group included 22 patients. The preoperative facet joint degeneration CT grades were not different between the 2 groups. Compared with the preoperative CT grades, 1 side of the facet joints at L3-4 and L4-5 had significantly more degeneration in the Dynesys group. In the fusion group, significant facet joint degeneration developed on both sides at L2-3, L3-4, and L5-S1. The subjective back and leg pain scores were not different between the 2 groups during follow-up, but functional outcome based on the Oswestry Disability Index improved less in the fusion group than in the Dynesys group. CONCLUSIONS Nonfusion dynamic stabilization using the Dynesys system had a greater preventative effect on facet joint degeneration in comparison with that obtained using fusion surgery. The Dynesys system, however, resulted in facet joint degeneration at the instrumented segments and above. An improved physiological nonfusion dynamic stabilization system for lumbar spinal surgery should be developed.


Subject(s)
Internal Fixators , Lumbar Vertebrae/surgery , Spinal Fusion/methods , Spinal Stenosis/surgery , Zygapophyseal Joint/surgery , Aged , Bone Screws , Female , Follow-Up Studies , Humans , Lumbar Vertebrae/diagnostic imaging , Male , Middle Aged , Radiography , Retrospective Studies , Spinal Fusion/instrumentation , Spinal Stenosis/diagnostic imaging , Zygapophyseal Joint/diagnostic imaging
5.
Spine J ; 13(10): 1321-30, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23755919

ABSTRACT

BACKGROUND CONTEXT: The influence of the posterior pelvic ring ligaments on pelvic stability is poorly understood. Low back pain and sacroiliac joint (SIJ) pain are described being related to these ligaments. Computational approaches involving finite element (FE) modeling may aid to determine their influence. Previous FE models lacked in precise ligament geometries and material properties, which might have influence on the results. PURPOSE AND STUDY DESIGN: The aim of this study is to investigate ligamentous influence in pelvic stability by means of FE using precise ligament material properties and morphometries. METHODS: An FE model of the pelvis bones was created from computer tomography, including the pubic symphysis joint (PSJ) and the SIJ. Ligament data were used from 55 body donors: anterior (ASL), interosseous (ISL), and posterior (PSL) sacroiliac ligaments; iliolumbar (IL), inguinal (IN), pubic (PL), sacrospinous (SS), and sacrotuberous (ST) ligaments; and obturator membrane (OM). Stress-strain data were gained from iliotibial tract specimens. A vertical load of 600 N was applied. Pelvic motion related to altered ligament and cartilage stiffness was determined in a range of 50% to 200%. Ligament strain was investigated in the standing and sitting positions. RESULTS: Tensile and compressive stresses were found at the SIJ and the PSJ. The center of sacral motion was at the level of the second sacral vertebra. At the acetabula and the PSJ, higher ligament and cartilage stiffnesses decrease pelvic motion in the following order: SIJ cartilage>ISL>ST+SS>IL+ASL+PSL. Similar effects were found for the sacrum (SIJ cartilage>ISL>IL+ASL+PSL) but increased ST+SS stiffnesses increased sacral motion. The influence of the IN, OM, and PL was less than 0.1%. Compared with standing, total ligament strain was reduced to 90%. Increased strains were found for the IL, ISL, and PSL. CONCLUSIONS: Posterior pelvic ring cartilage and ligaments significantly contribute to pelvic stability. Their effects are region- and stiffness dependent. While sitting, load concentrations occur at the IL, ISL, and PSL, which goes in coherence with the clinical findings of these ligaments serving as generators of low back pain.


Subject(s)
Biomechanical Phenomena/physiology , Finite Element Analysis , Ligaments/physiology , Pelvis/physiology , Compressive Strength , Humans , Male , Sacroiliac Joint , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL