Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters











Publication year range
1.
Glob Chang Biol ; 30(9): e17462, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39234688

ABSTRACT

Methane (CH4) is a potent greenhouse gas (GHG) with atmospheric concentrations that have nearly tripled since pre-industrial times. Wetlands account for a large share of global CH4 emissions, yet the magnitude and factors controlling CH4 fluxes in tidal wetlands remain uncertain. We synthesized CH4 flux data from 100 chamber and 9 eddy covariance (EC) sites across tidal marshes in the conterminous United States to assess controlling factors and improve predictions of CH4 emissions. This effort included creating an open-source database of chamber-based GHG fluxes (https://doi.org/10.25573/serc.14227085). Annual fluxes across chamber and EC sites averaged 26 ± 53 g CH4 m-2 year-1, with a median of 3.9 g CH4 m-2 year-1, and only 25% of sites exceeding 18 g CH4 m-2 year-1. The highest fluxes were observed at fresh-oligohaline sites with daily maximum temperature normals (MATmax) above 25.6°C. These were followed by frequently inundated low and mid-fresh-oligohaline marshes with MATmax ≤25.6°C, and mesohaline sites with MATmax >19°C. Quantile regressions of paired chamber CH4 flux and porewater biogeochemistry revealed that the 90th percentile of fluxes fell below 5 ± 3 nmol m-2 s-1 at sulfate concentrations >4.7 ± 0.6 mM, porewater salinity >21 ± 2 psu, or surface water salinity >15 ± 3 psu. Across sites, salinity was the dominant predictor of annual CH4 fluxes, while within sites, temperature, gross primary productivity (GPP), and tidal height controlled variability at diel and seasonal scales. At the diel scale, GPP preceded temperature in importance for predicting CH4 flux changes, while the opposite was observed at the seasonal scale. Water levels influenced the timing and pathway of diel CH4 fluxes, with pulsed releases of stored CH4 at low to rising tide. This study provides data and methods to improve tidal marsh CH4 emission estimates, support blue carbon assessments, and refine national and global GHG inventories.


Subject(s)
Greenhouse Gases , Methane , Wetlands , Methane/analysis , Methane/metabolism , United States , Greenhouse Gases/analysis , Temperature , Environmental Monitoring , Seasons
2.
Sci Total Environ ; 954: 176243, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39278477

ABSTRACT

Tree stems exchange greenhouse gases with the atmosphere but the magnitude, variability and drivers of these fluxes remain poorly understood. Here, we report stem fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) in a boreal riparian forest, and investigate their spatiotemporal variability and ecosystem level importance. For two years, we measured CO2 and CH4 fluxes on a monthly basis in 14 spruces (Picea abies) and 14 birches (Betula pendula) growing near a headwater stream affected by historic ditching. We also measured N2O fluxes on three occasions. All tree stems were net emitters of CO2 and CH4, while N2O fluxes were around zero. CO2 fluxes correlated strongly with air temperature and peaked in summer. CH4 fluxes correlated modestly with air temperature and solar radiation and peaked in late winter and summer. Trees with larger stem diameter emitted more CO2 and less CH4 and trees closer to the stream emitted more CO2 and CH4. The CO2 and CH4 fluxes did not differ between spruce and birch, but correlations of CO2 fluxes with stem diameter and distance to stream differed between the tree species. The absence of vertical trends in CO2 and CH4 fluxes along the stems and their low correlation with groundwater levels and soil CO2 and CH4 partial pressures suggest tree internal production as the primary source of stem emissions. At the ecosystem level, the stem CO2, CH4 and N2O emissions represented 52 ± 16 % of the forest floor CO2 emissions and 3 ± 1 % and 11 ± 40 % of the forest floor CH4 and N2O uptake, respectively, during the snow-free period (median ± SE). The six month snow-cover period contributed 11 ± 45 % and 40 ± 29 % to annual stem CO2 and CH4 emissions, respectively. Overall, the stem gas fluxes were more typical for upland rather than wetland ecosystems likely due to historic ditching and subsequent groundwater level decrease.

3.
Heliyon ; 10(1): e23822, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38192865

ABSTRACT

A measurement campaign was conducted on San Domino Island, part of the Tremiti Islands archipelago, located in Foggia, Italy. The area is almost entirely covered by vegetation, dominated by the following main species: Juniperus turbinata, Helichrysum italicum, Myrtus communis, Rosmarinus officinalis, Pistacia lentiscus and Pinus halepensis.This study focused on the BVOCs emitted by plants and the ground, employing a simple, economical, and efficient sampling and analysis method. The main known BVOC species emitted by Mediterranean plant species as α-pinene, ß-pinene, camphene and limonene were detected. The measurements highlighted a daily complementarity between plant and soil emissions. The daily variations in BVOCs emitted by both plants and the soil are differ, ensuring an almost constant concentration throughout the day. At the same time, the composition of sea spray aerosol (SSA) was also measured. The measurement sites were selected based on botanical characterization to account for the predominant species on San Domino Island, and the sampling was conducted at human height to accurately identify the species for potential use. The combination of beneficial effects of the substances emitted by plant species and soil, along with the simultaneous presence of SSA, are factors that could enhance the effectiveness of forest therapy in a previously unexplored location.

4.
Environ Pollut ; 332: 121926, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37268218

ABSTRACT

The northern Adriatic Sea is well known for mercury (Hg) contamination mainly due to historical Hg mining which took place in Idrija (Slovenia). The formation of dissolved gaseous mercury (DGM) and its subsequent volatilisation can reduce the amount of Hg available in the water column. In this work, the diurnal patterns of both DGM production and gaseous elemental Hg (Hg0) fluxes at the water-air interface were seasonally evaluated in two selected environments within this area, a highly Hg-impacted, confined fish farm (VN: Val Noghera, Italy) and an open coastal zone less impacted by Hg inputs (PR: Bay of Piran, Slovenia). A floating flux chamber coupled with a real-time Hg0 analyser was used for flux estimation in parallel with DGM concentrations determination through in-field incubations. Substantial DGM production was observed at VN (range = 126.0-711.3 pg L-1) driven by both strong photoreduction and possibly dark biotic reduction, resulting in higher values in spring and summer and comparable concentrations throughout both day and night. Significantly lower DGM was observed at PR (range = 21.8-183.4 pg L-1). Surprisingly, comparable Hg0 fluxes were found at the two sites (range VN = 7.43-41.17 ng m-2 h-1, PR = 0-81.49 ng m-2 h-1), likely due to enhanced gaseous exchanges at PR thanks to high water turbulence and to the strong limitation of evasion at VN by water stagnation and expected high DGM oxidation in saltwater. Slight differences between the temporal variation of DGM and fluxes indicate that Hg evasion is more controlled by factors such as water temperature and mixing conditions than DGM concentrations alone. The relative low Hg losses through volatilisation at VN (2.4-4.6% of total Hg) further confirm that static conditions in saltwater environments negatively affect the ability of this process in reducing the amount of Hg retained in the water column, therefore potentially leading to a greater availability for methylation and trophic transfer.


Subject(s)
Mercury , Water Pollutants, Chemical , Mercury/analysis , Gases/analysis , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Water
5.
Sci Total Environ ; 856(Pt 2): 159111, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36183762

ABSTRACT

This study investigated the odor emission rate from different areas of a municipal solid waste landfill. The surface odor emission rate (SOER) of eight odorous compound groups were determined by flux chamber method. The SOER of working face, seams of daily cover, membrane surface of daily cover, seams of temporary cover, membrane surface of temporary cover, seams of intermediate cover, membrane surface of intermediate cover were 138.34, 49.83, 13.56, 90.35, 14.48, 4.05, and 8.14 µg/(m2·s), respectively. Therefore, odor emission hotspots were at seams of daily and temporary cover areas. Converting the odor emissions at emission hotspots to the entire membrane cover surface, the average SOER of working face, daily cover area, temporary cover area and intermediate cover area were 138.34, 17.95, 22.43, and 6.24 µg/(m2·s), respectively. Combined with the size of each landfill area, the total odor emissions of the four above areas of a landfill zone were 830, 108, 1346, and 5175 mg/s, respectively, suggesting the necessity to control the odor emission of membrane cover stages especially for large-scale landfills. In terms of odor components, alcohols (38.7 %), sulfur compounds (22.9 %) and aldehydes (15.7 %) were major odorous groups.


Subject(s)
Air Pollutants , Refuse Disposal , Solid Waste/analysis , Odorants/analysis , Air Pollutants/analysis , Waste Disposal Facilities
6.
Environ Pollut ; 318: 120921, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36565908

ABSTRACT

High amounts of mercury (Hg) can be released into the atmosphere from soil surfaces of legacy contaminated areas as gaseous elemental mercury (Hg0). The alluvial plain of the Isonzo River (NE Italy) suffered widespread Hg contamination due to the re-distribution of Hg-enriched material discharged by historical cinnabar mining at the Idrija mine (Slovenia), but an assessment of Hg0 releases from the soils of this area is still lacking. In this work, Hg0 fluxes at the soil-air interface were evaluated using a non-steady state flux chamber coupled with a real-time Hg0 analyser at 6 sites within the Isonzo River plain. Measurements were performed in summer, autumn, and winter both on bare and grass-covered soil plots at regular time intervals during the diurnal period. Moreover, topsoils were analysed for organic matter content and Hg total concentration and speciation. Overall, Hg0 fluxes tracked the incident UV radiation during the sampling periods with daily averages significantly higher in summer (62.4 ± 14.5-800.2 ± 178.8 ng m-2 h-1) than autumn (15.2 ± 4.7-280.8 ± 75.6 ng m-2 h-1) and winter (16.9 ± 7.9-187.8 ± 62.7 ng m-2 h-1) due to higher irradiation and temperature, which favoured Hg reduction reactions. In summer and autumn significant correlations were observed between Hg0 fluxes and soil Hg content (78-95% cinnabar), whereas this relationship was not observed in winter likely due to relatively low emissions found in morning measurements in all sites coupled with low temperatures. Finally, vegetation cover effectively reduced Hg0 releases in summer (∼9-68%) and autumn (∼41-78%), whereas the difference between fluxes from vegetated and bare soils was not evident during winter dormancy due to scarce soil shading. These results suggest the opportunity of more extended spatial monitoring of Hg0 fluxes particularly in the croplands covering most of the Isonzo River alluvial plain and where bare soils are frequently disturbed by agricultural practices and directly exposed to radiation.


Subject(s)
Mercury , Soil Pollutants , Mercury/analysis , Soil , Rivers , Poaceae , Environmental Monitoring/methods , Soil Pollutants/analysis , Italy
7.
Waste Manag ; 154: 146-159, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36242816

ABSTRACT

Methane flux and emissions were obtained at a California landfill concurrently using field measurements, inventory analyses, and modeling. Measured fluxes ranged from -3.7 to 828 g/m2-day and generally decreased from daily to intermediate to final covers. Soil covers with high-plasticity clay had the lowest fluxes. Whole-site emissions ranged from 406 to 47,414 tonnes/year (11,368 to 1,327,592 tonnes CO2-eq./year), and were dominated by intermediate covers with high relative surface area. Emissions estimates from flux chamber tests and California Landfill Methane Inventory Model (CALMIM) with oxidation were similar and low, whereas emissions from aerial measurements and CALMIM without oxidation were similar and high. The inventory analyses provided intermediate emissions and a new Gaussian plume model based on ground cavity ring-down spectrometer measurements provided the highest emissions. The assumptions used and the inherent strengths and limitations of the different approaches resulted in the flux and emissions differences. With varied attributes (experimental/modeling; flux/emissions; whole-site/cover-specific, top-down/bottom-up), the approaches provide envelopes of methane emissions and can be used selectively for the two main purposes of landfill methane emissions analysis: to mechanistically determine the factors that control/limit surface emissions and to provide data for atmospheric methane analysis. To reduce emissions, progression from temporary to permanent cover areas can be accelerated and covers with coarser materials can be amended with plastic fines.

8.
Article in English | MEDLINE | ID: mdl-35805807

ABSTRACT

Gaseous exchanges of mercury (Hg) at the water-air interface in contaminated sites strongly influence its fate in the environment. In this study, diurnal gaseous Hg exchanges were seasonally evaluated by means of a floating flux chamber in two freshwater environments impacted by anthropogenic sources of Hg, specifically historical mining activity (Solkan Reservoir, Slovenia) and the chlor-alkali industry (Torviscosa dockyard, Italy), and in a pristine site, Cavazzo Lake (Italy). The highest fluxes (21.88 ± 11.55 ng m-2 h-1) were observed at Solkan, coupled with high dissolved gaseous mercury (DGM) and dissolved Hg (THgD) concentrations. Conversely, low vertical mixing and saltwater intrusion at Torviscosa limited Hg mobility through the water column, with higher Hg concentrations in the deep layer near the contaminated sediments. Consequently, both DGM and THgD in surface water were generally lower at Torviscosa than at Solkan, resulting in lower fluxes (19.01 ± 12.65 ng m-2 h-1). However, at this site, evasion may also be limited by high atmospheric Hg levels related to dispersion of emissions from the nearby chlor-alkali plant. Surprisingly, comparable fluxes (15.56 ± 12.78 ng m-2 h-1) and Hg levels in water were observed at Cavazzo, suggesting a previously unidentified Hg input (atmospheric depositions or local geology). Overall, at all sites the fluxes were higher in the summer and correlated to incident UV radiation and water temperature due to enhanced photo production and diffusivity of DGM, the concentrations of which roughly followed the same seasonal trend.


Subject(s)
Mercury , Water Pollutants, Chemical , Environmental Monitoring/methods , Fresh Water , Gases , Mercury/analysis , Water , Water Pollutants, Chemical/analysis
9.
Environ Sci Pollut Res Int ; 29(10): 14961-14974, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34622408

ABSTRACT

Hydrogen sulfide (H2S) is commonly used as an indicator for odorous gas emission monitoring in wastewater treatment plants. The H2S emission estimations can be performed using algebraic mathematical models or carrying out measurements at the source, with the dynamic flux chamber, for example. This work brings together these two methodologies in a computational fluid dynamics analysis. Fifteen liquid-phase mass transfer coefficient ([Formula: see text]) models were initially evaluated in establishing, at the liquid-gas interface in a flux chamber, an H2S emission flux based on the friction velocity field from three different inlet flows (2, 5, and 10 L min-1). Ten [Formula: see text] models were fully simulated, and the numerical results were compared with available experimental data. The higher the inlet flow, the higher the friction velocity at the interface, and the higher the H2S emission. The H2S emission was also strongly dependent on the constant coefficients of the existing [Formula: see text] models. Small variability on those coefficients generates considerable changes in emissions at the interface. Few and different models performed well in describing the available concentration data at the outlet sampling probe for different inlet flows, which shows there is still no single model capable of representing all simulated friction velocity ranges (0.005 to 0.017 m s-1).


Subject(s)
Hydrogen Sulfide , Hydrodynamics , Models, Theoretical , Odorants
10.
Biology (Basel) ; 10(9)2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34571793

ABSTRACT

Mercury (Hg) is a global pollutant that may potentially have serious impacts on human health and ecologies. The gaseous elemental mercury (GEM) exchanges between terrestrial surfaces and the atmosphere play important roles in the global Hg cycle. This study investigated GEM exchange fluxes over two land cover types (including Artemisia anethifolia coverage and removal and bare soil) using a dynamic flux chamber attached to the LumexR RA915+ Hg analyzer during the growing season from May to September of 2018, in which the interactive effects of plant coverage and meteorological conditions were highlighted. The daily mean ambient levels of GEM and the total mercury concentrations of the soil (TSM) were determined to be 12.4 ± 3.6 to 16.4 ± 5.6 ng·m-3 and 32.8 to 36.2 ng·g-1, respectively, for all the measurements from May to September. The GEM exchange fluxes (ng·m-2·h-1) during the five-month period for the three treatments included the net emissions from the soil to the atmosphere (mean 5.4 to 7.1; range of -27.0 to 47.3), which varied diurnally, with releases occurring during the daytime hours and depositions occurring during the nighttime hours. Significant differences were observed in the fluxes between the vegetation coverage and removal during the growing months (p < 0.05). In addition, it was determined that the Hg fluxes were positively correlated with the solar radiation and air/soil temperature levels and negatively correlated with the air relative humidity and soil moisture under all the conditions (p < 0.05). Overall, the results obtained in this study demonstrated that the grassland soil served as both a source and a sink for atmospheric Hg, depending on the season and meteorological factors. Furthermore, the plants played an important inhibiting role in the Hg exchanges between the soil and the atmosphere.

11.
J Environ Manage ; 280: 111677, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33243624

ABSTRACT

This study evaluated the transport mechanisms and emission rates of landfill gas (LFG) from 200- (vegetated with short grass), 300- (vegetated with short grass), and 450-mm-thick (non-vegetated) interim cover soils within a municipal solid waste landfill. LFG emission and diffusion mechanisms were evaluated using static flux chambers and laboratory-scale diffusion columns. Overall, the greatest CH4 and CO2 emissions were consistently observed from the 200-mm-thick cover soil with an average flux rate of 39.2 mg m-2 h-1 and 3.07 × 103 mg m-2 h-1, respectively. In addition to CH4 and CO2, H2S migration through a 450-mm interim cover soil was also evaluated. The H2S emission rate was relatively more uniform at an average of 2.47 × 10-5 mg m-2 h-1. Long-term LFG emission was predicted using an emission model based on a first-order decomposition rate equation and compared with the static flux chamber method. The field-measured CO2, CH4 and H2S emissions were less than the estimated emissions from the emission model, by 22%, 85%, and 91%, respectively. Further, the diffusion coefficients of CH4, CO2, and H2S for the interim cover soils were determined using a laboratory-scale diffusion column test and compared with a three-parameter diffusion model. The measured and estimated diffusion coefficients for the three landfill gases were within the 10% variation limits. Based on these findings, the LFG emission rate varied depending on the physical-chemical properties of the cover soil (e.g., cover thickness, moisture content, compaction ratio, uneven distribution of soil), organic material content and age of buried refuse, and seasonal environmental conditions (such as temperature). Test results showed that fugitive CH4 emissions can be reduced one fourth by utilizing an appropriate cover soil (300-mm to 450-mm, CL) compared to cases with a thinner cover soil.


Subject(s)
Refuse Disposal , Soil , Gases/analysis , Methane , Waste Disposal Facilities
12.
Mar Pollut Bull ; 150: 110750, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31780085

ABSTRACT

Deposits of fibrous sediment, which include fiberbanks and fiber-rich sediments, are known to exist on the Swedish seafloor adjacent to coastally located former pulp and paper industries. These deposits contain concentrations of hazardous substances that exceed national background levels and contravene national environmental quality objectives (EQOs). In this study of metal fluxes from fibrous sediments using benthic flux chamber measurements (BFC) in situ we obtained detected fluxes of Co, Mo, Ni and Zn, but no fluxes of Pb, Hg and Cr. The absence of fluxes of some of the analyzed metals indicates particle bound transport of Pb, Cr and Hg from fiberbanks even though Hg might become methylated under anoxic conditions and, in that case, may enter the food chain. We found less metal fluxes than expected and thus emphasize the importance of in-situ flux measurements as a compliment to sediment metal concentrations within risk assessments of contaminated sediments.


Subject(s)
Environmental Monitoring , Metals/analysis , Water Pollutants, Chemical , Geologic Sediments , Sweden
13.
Sci Total Environ ; 679: 185-195, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31082592

ABSTRACT

CO2 and CH4 flux measurements over a septic tank soakaway located in a northern maritime climate (Ireland) were conducted for a period of 81 days using a multi-chamber automated soil gas flux chamber system with high spatial and temporal resolution. Overall median CO2 fluxes were 7.28; 6.40 µmol CO2 m-2 s-1 from the soakaway and control soil, respectively. Overall median CH4 fluxes were - 0.28; -0.67 nmol CH4 m-2 s-1 from the soakaway and control soil, respectively. While CO2 fluxes expressed strong diurnal variability driven by soil temperature, CH4 fluxes were less affected by environmental factors and effectively limited to the first few meters from the septic tank. However, localised CH4 degassing events were observed during drying conditions with up to 60-times higher fluxes compared to the overall median. The soakaway was found to be a net emitter of both CO2 and CH4, releasing a total of 7.327 kg CO2 yr-1 and 0.033 kg CO2Eq. yr-1, respectively. The apparent spatio-temporal heterogeneity of observed soil gas fluxes identified in this study emphasises the importance of integrating measurements with both high spatial and temporal resolution from on-site installations as engineered nature-based solutions.

14.
J Contam Hydrol ; 219: 50-60, 2018 12.
Article in English | MEDLINE | ID: mdl-30409437

ABSTRACT

The changing landscape of fuel consumption related, in part, to increased engine efficiency and the inexpensive supply of natural gas, has led to the closure of multiple refineries. As the operational lifetime of many refineries exceeds 100 years, historical releases of oil and refined products is common. To evaluate remediation and rehabilitation options, there is a need to understand the rate and distribution of natural hydrocarbon mass losses across these large properties. Here, surficial CO2 flux measurements were used to evaluate naturally occurring hydrocarbon mass losses at a large-scale former refinery that has been closed since 1982. Natural source zone depletion (NSZD) rates over a five-year period (2012-2016) were derived from surficial CO2 efflux measurements on a high-resolution grid (N > 80). Results demonstrate substantial variations of mass loss rates across the site. Average site-wide mass loss rates ranged from 1.1-5.4 g TPH m-2 d-1 as C10H22 with a multi-year average of 4.0 g TPH m-2 d-1 as decane (C10H22), consistent with observations at other sites. Statistical analysis demonstrated that the same average mass loss rates would have been obtained with fewer measurement locations (N = 20-30). Comparing NSZD rates to site metadata show CO2 fluxes to be a reasonably good proxy for zones of subsurface hydrocarbon contamination - particularly with respect to vadose zone impacts. It is hypothesized that the observed decline of NSZD rates over the study period is related to rise of groundwater levels, leading to increased submergence of the smear zone. Overall, mass loss rates calculated from CO2 fluxes show NSZD can result in substantial contaminant removal, which may rival that obtained from engineered remediation, under some conditions.


Subject(s)
Carbon Dioxide , Hydrocarbons , Water Pollutants, Chemical , Alkanes , Carbon Dioxide/analysis , Groundwater/chemistry , Water Pollutants, Chemical/analysis
15.
Glob Chang Biol ; 24(12): 5961-5971, 2018 12.
Article in English | MEDLINE | ID: mdl-30152082

ABSTRACT

The physical controlling factors on coastal plant communities are among the most dynamic of known ecosystems, but climate change alters coastal surface and subsurface hydrologic regimes, which makes rapid measurement of greenhouse gas fluxes critical. Greenhouse gas exchange rates in these terrestrial-aquatic ecosystems are highly variable worldwide with climate, soil type, plant community, and weather. Therefore, increasing data collection and availability should be a priority. Here, we demonstrate and validate physical and analytical modifications to automated soil-flux chamber measurement methods for unattended use in tidally driven wetlands, allowing the high-frequency capture of storm surge and day/night dynamics. Winter CO2 flux from Sarcocornia perennis marsh to the atmosphere was significantly greater during the day (2.8 mmol m-2  hr-1 ) than the night (2.2 mmol m-2  hr-1 ; p < 0.001), while CH4 was significantly greater during the night (0.16 µmol m-2  hr-1 ) than the day (-0.13 µmol m-2  hr-1 ; p = 0.04). The magnitude of CO2 flux during the day and the frequency of CH4 flux were reduced during a surge (p < 0.001). Surge did not significantly affect N2 O flux, which without non-detects was normally distributed around -24.2 nmol m-2  hr-1 . Analysis with sustained-flux global potentials and increased storm surge frequency scenarios, 2020 to 2100, suggested that the marsh in winter remains an atmospheric CO2 source. The modeled results showed an increased flux of CO2 to the atmosphere, while in soil, the uptake of CH4 increased and N2 O uptake decreased. We present analytical routines to correctly capture gas flux curves in dynamic overland flooding conditions and to flag data that are below detection limits or from unobserved chamber-malfunction situations. Storm surge is an important phenomenon globally, but event-driven, episodic factors can be poorly estimated by infrequent sampling. Wider deployment of this system would permit inclusion of surge events in greenhouse gas estimates.


Subject(s)
Climatic Processes , Greenhouse Gases , Seasons , Wetlands , Atmosphere/analysis , Carbon Dioxide/analysis , Climate Change , Ecosystem , Nitrous Oxide/analysis , Plants/metabolism , Soil
16.
Sci Total Environ ; 633: 140-144, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-29573680

ABSTRACT

Treatment of nutrient-rich wastewater potentially results in direct release of greenhouse gases (GHGs) such as CO2, N2O or CH4 - and thus affects Waste Water Treatment Plant's carbon footprint. Accurate CO2 quantification is challenging due to various chemical, physical and operational conditions. A floating chamber equipped with a nondispersive infrared, single beam, dual wavelength sensor has been evaluated for a pilot approach to quantify fugitive CO2 emissions above different wastewater treatment units. Total average CO2 flux was 1182gCO2·m-2·d-1 with minimum and maximum fluxes of 829gCO2·m-2·d-1 and 1493gCO2·m-2·d-1, respectively. Total observed CO2 emissions were in 7 to 17kgCO2·PE-1·a-1 (average 12kgCO2·PE-1·a-1). The nitrification tank accounted for about 94.3% of the emissions, followed by secondary clarification (ca. 4.3%) and denitrification (ca. 1.4%), based on those average annual CO2 emissions per population equivalent (PE).

17.
Sci Total Environ ; 627: 860-868, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29426211

ABSTRACT

A common method for treating the aqueous phase (produced water) brought to the surface along with oil and natural gas is to discharge it into surface impoundments, also known as produced water ponds. Here we analyze data on the concentration of organic compounds in the water and on the flux of the same compounds into the atmosphere. Flux data extending from about 5 × 10-2 to 10+3 mg m-2 h-1 are consistent with mass-transfer laws given by the WATER9 semi-empirical algorithm, although empirical data display a noise level of about one order of magnitude and predictions by WATER9 are biased high. The data suggest partitioning between hydrocarbons in aqueous solution and in suspension, especially at higher overall concentrations. Salinity of the produced water does not have a detectable effect on hydrocarbon fluxes. Recently impounded waters are stronger emitters of hydrocarbons, while emissions of older waters are dominated by CO2. This aging effect can be explained by assuming, first, poor vertical mixing in the ponds, and second, gradual oxidation of hydrocarbons to CO2. Our measurements account for about 25% of the produced water ponds in the Uinta Basin, Eastern Utah, and when extrapolated to all ponds in the basin, account for about 4% to 14% of all organic compound emissions by the oil and natural gas sector of the basin, depending on the emissions inventory, and about 13% and 58%, respectively, of emissions of aromatics and alcohols.

18.
Waste Manag Res ; 35(10): 1034-1044, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28784047

ABSTRACT

The first aim of this work is the definition and the study of a suitable sampling method for the measurement of landfill gas (LFG) emissions from landfill surfaces, since, up to now, there are no codified nor universally accepted sampling methods for this specific task. The studied sampling method is based on the use of a static hood. The research work involves a preliminary theoretical study for the hood design, experimental tests for the definition of the optimal sampling procedures, and simulations of the hood fluid-dynamics for the system validation. The second aim of this study is the investigation of the correlations between LFG emissions and meteorological conditions, whose identification would be very useful in terms of effective landfill management and pollution control. This involved a wide literature study for the selection of those parameters that seem to have an influence on LFG emission, and the collection of a great number of experimental data on a target site, which led to the conclusion that atmospheric pressure and soil humidity are the parameters that mostly affect LFG emissions.


Subject(s)
Methane , Refuse Disposal , Waste Disposal Facilities , Air Pollutants , Hydrodynamics , Models, Theoretical
19.
Sci Total Environ ; 586: 485-491, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28222926

ABSTRACT

Here, we present the first attempt to quantify long-term and diurnal variations of CO2 fluxes from a soakaway of an on-site wastewater treatment system serving a single house located in a northern maritime climate (Ireland). An automated soil gas flux chamber system was deployed semi-continuously over a period of 17months, recording hourly flux measurements from the soakaway (Fsoak) and a control site (Fcontrol). Soil gas fluxes expressed seasonal and diurnal variations: Fsoak and Fcontrol ranged from 0.43 to 100.26µmolCO2m-2s-1 and 0.45 to 19.92µmolCO2m-2s-1 with median fluxes of 6.86 and 5.05µmolCO2m-2s-1, respectively. While temperature, soil water content, and atmospheric pressure were identified as the most significant environmental factors correlated to the release of CO2 from the control site, fluxes from the soakaway showed weaker correlations in regard to environmental factors. Assuming homogeneous spatial flux distributions, the soakaway emitted 15.0kgyr-1 more CO2 into the atmosphere in total compared to a similarly sized control site.

20.
Waste Manag ; 63: 345-353, 2017 May.
Article in English | MEDLINE | ID: mdl-27769653

ABSTRACT

The aim of this study is related to the assessment of odour emissions from landfill surfaces. Up to now, there is not a widely accepted method to quantify odour emissions from this particular kind of source. Five different methods were developed and investigated. These methods can be considered as based on three distinct approaches, both experimental and computational. The first approach provides to use models for the estimation the landfill gas production, whereby the second and the third approach are based on direct measurement campaigns on the landfill surface: for the determination of the methane concentration or for the direct measurement of the odour concentration, respectively. The methods were then compared in terms of specific odour emission rates by referring to other literature data. Finally, dispersion modelling was applied in order to allow a further comparison of the resulting odour impacts with other olfactometric data from independent monitoring campaigns on the studied site.


Subject(s)
Air Pollutants/analysis , Air Pollution/statistics & numerical data , Environmental Monitoring/methods , Odorants/analysis , Refuse Disposal , Waste Disposal Facilities , Methane/analysis , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL