Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters











Publication year range
1.
Polymers (Basel) ; 16(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38932040

ABSTRACT

Polyethylene terephthalate (PET) foams have the characteristics of being lightweight and high strength, as well as offering good heat resistance, minimal water absorption, etc., and they have been widely used in the wind power field. In addition, they are being promisingly applied in automotive, rail, marine, construction, and other related fields. Therefore, the flame retardancy(FR) of PET foams is an issue that requires investigation. The addition of flame retardants would affect the chain extension reaction, viscoelasticity, and foamability of PET. In this study, zinc diethyl hypophosphite (ZDP) and decabromodiphenylethane (DBDPE) were used to form a synergistic FR system, in which ZDP is an acid source and DBDPE is a gas source, and both of them synergistically produced an expanded carbon layer to improve the flame retardancy of PET foams. The ratio of ZDP and DBDPE is crucial for the carbon yield and the expansion and thermal stability of the char layers. At the ZDP/DBDPE ratios of 9/3 and 7/5, the thickness of the char layers is about 3-4 mm, the limiting oxygen index (LOI) values of FR modified PET are 32.7% and 33.6%, respectively, and the vertical combustion tests both reached the V-0 level. As for the extruded phosphorous/bromine synergism FR PET foams, ZDP/DBDPE ratios of 3:1 and 2:1 were applied. As a result, the vertical combustion grade of foamed specimens could still reach V-0 grade, and the LOI values are all over 27%, reaching the refractory grade.

2.
Adv Colloid Interface Sci ; 331: 103234, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38889625

ABSTRACT

Surfactants and foam have captured the interest of researchers worldwide due to their unique behavior of surface activity, the dynamic nature of foam formation, and simultaneous destruction. The present review focuses on the surfactants' classification, surfactant-solvent interaction, foam formation, characteristics, and a range of admixtures to enhance the foam performance. Although surfactants have been researched and developed for decades, recently, their sustainability has been given special attention. One such aspect is the development of green foaming agents from natural and renewable sources and assessing their suitability for different applications. Further, widely researched parameters are the type of surfactant, surfactant concentration, surfactant-solvent interaction, and foam production method on the foamability of a surfactant solution and related foam characteristics, including stability and texture. However, still, there is no rule to predict the best foam. Another vital concern is the non-standardization of foam assessment methods across industries and regions. Recently, research has progressed in identifying suitable admixtures for foam performance enhancement and utilizing them to produce stable foams for application in enhanced oil recovery, drug delivery, and manufacturing of aerated food products and foamed concrete. Although foam stabilization using various admixtures has been recognized well in the literature, the underlying mechanism requires further research. The interaction of surfactant and admixtures in solution is complicated and requires more research.

3.
Food Res Int ; 169: 112914, 2023 07.
Article in English | MEDLINE | ID: mdl-37254346

ABSTRACT

Oleofoams are plant oil based whipped systems which have drawn academic and industry attention in recent years. The aim of this study was to determine the effect of fatty acid chain length and monoacylglyceride (MAG) concentration on the performance and structural properties of MAG-based oleofoams. Four different MAGs (monolaurin, monomyrystin, monopalmitin, and monostearin) were studied at three concentration levels (5, 10, and 15 wt%). The fatty acid chain length had a statistically significant impact on the size and shape of crystals formed, while higher MAG concentrations led to higher numbers of crystals in the continuous oil phase. These differences affected the performance and physical properties of the oleofoams: compared to other MAGs, monostearin based oleofoams were harder and exhibited higher values of G' and G″, had higher overrun and showed better stability. Lastly, through microscopy techniques it was successfully proved that monostearin-based oleofoams are stabilized by both bulk and Pickering stabilization.


Subject(s)
Fatty Acids , Organic Chemicals , Organic Chemicals/chemistry , Surface-Active Agents/chemistry , Microscopy
4.
J Sci Food Agric ; 103(11): 5312-5321, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37016733

ABSTRACT

BACKGROUND: The attraction of cappuccino-style beverages is attributed to the foam layer, as it greatly improves the texture, appearance, and taste of these products. Typical milk has a low concentration of free fatty acids (FFAs), but their concentration can increase due to lipolysis during processing and storage, which is detrimental to the foamability and foam stability of milk. There are contradictory results in reported studies concerning the effects of FFAs on the foaming properties of milk due to differences in milk sources, methods inducing lipolysis, and methods of creating foam. In this study, the foaming properties and foam structure of milk samples whose lipolysis was induced by ultra-turraxing, homogenisation, and microfluidisation (1.5-3.5 µ-equiv. mL-1 FFAs) were investigated. RESULTS: Compared with others, microfluidised milk samples had the smallest particle size, lowest absolute zeta potential, and highest surface tension; thus exhibited high foamability and foam stability, and very small and homogeneous air bubbles in foam structure. For all shearing methods, increasing FFA content from 1.5 to 3.5 µ-equiv. mL-1 markedly decreased the surface tension, foamability, and foam stability of milk samples. The FFA level that led to undesirable foam structure was 1.5 µ-equiv. mL-1 for ultra-turraxed milk samples and 2.5 µ-equiv. mL-1 for homogenised and microfluidised ones. CONCLUSION: Shearing-induced lipolysis greatly affected the physical properties of milk samples and subsequently their foaming properties and foam structure. At the same FFA level, lipolysis induced by microfluidisation was much less detrimental to the foaming properties of milk than lipolysis induced by ultra-turraxing and homogenisation. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Lipolysis , Milk , Animals , Milk/chemistry , Fatty Acids, Nonesterified/analysis , Particle Size
5.
J Sci Food Agric ; 103(8): 4157-4163, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36594434

ABSTRACT

BACKGROUND: The processing of sweet potatoes generates a waste by-product rich in sweet potato protein (SPP). OBJECTIVE: In this study, the effects of the concentrations of Alcalase and Ficin, hydrolysis time and pH value on the foaming properties of SPP hydrolysates (SPPHs) determined via gas sparging method were investigated. RESULTS: The results showed that SPPH prepared by Alcalase exhibited a significantly higher foaming expansion (the highest of 576%) than that of the SPP (462%) but displayed a weaker liquid volume stability compared with SPPH hydrolyzed by Ficin. The molecular weight of SPPH prepared by Alcalase was distributed in 10-30 kDa. A good microbiological quality of the SPPH prepared by Alcalase in pH 13 has been confirmed, and it is suitable for food application with respect to its microbiological safety profile. CONCLUSIONS: SPPH (pH 13) could be further safely applied in food, especially as a food additive at low concentrations to create a better organic plant-based foaming agent for the food industry. © 2023 Society of Chemical Industry.


Subject(s)
Ipomoea batatas , Protein Hydrolysates , Protein Hydrolysates/chemistry , Ficain , Ipomoea batatas/metabolism , Subtilisins/chemistry , Hydrolysis
6.
ACS Appl Mater Interfaces ; 14(40): 45966-45977, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36166428

ABSTRACT

Because of its rather low melt strength, polylactide (PLA) has yet to fulfill its promise as advanced biobased and biodegradable foams to replace fossil-based polymer foams. In this work, PLA vitrimers were prepared by two-step reactive processing from commercial PLA thermoplastics, glycerol, and diphenylmethane diisocyanate (MDI) using Zn(II)-catalyzed addition and transesterification chemistry. The transesterification reaction of PLA and glycerol occurs with zinc acetate as the catalyst, and chain scission will take place due to the alcoholysis of the PLA chains by the free hydroxyl groups from the glycerol. Long-chain PLA with hydroxyl groups can be obtained and then cross-linked with MDI. Rheological analysis shows that the formed cross-linked network can significantly improve melt strength and promote strain hardening under extensional flow. PLA vitrimers still maintain the ability of thermoplastic processing via extrusion and compression. The enhanced melt strength and the rearrangement of network topology facilitate the foaming processing. An expansion ratio as large as 49.2-fold and microcellular foam with a uniform cell morphology can be obtained for PLA vitrimers with a gel fraction of 51.8% through a supercritical carbon dioxide foaming technique. This work provides a new way with the scale-up possibility to enhance the melt strength of PLA, and the broadened range of PLA applicability brought by PLA vitrimers is truly valuable in terms of the realization of a sustainable society.

7.
Polymers (Basel) ; 14(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35808737

ABSTRACT

Lignin was chemically modified with oligomeric polyethylene (oPE) to form oPE-grafted lignin (oPE-g-lignin) via lignin surface acylation and a radical coupling reaction with oPE. Then, pristine lignin and oPE-g-lignin were successfully compounded with low-density polyethylene (LDPE) through a typical compounding technique. Due to the oligomeric polyethylene chains grafted to the lignin's surface, the interfacial adhesion between the lignin particles and the LDPE matrix was considerably better in the oPE-g-lignin/LDPE biocomposite than in the pristine-lignin/LDPE one. This demonstrated that oPE-g-lignin can serve as both a biodegradable reinforcing filler, which can be loaded with a higher lignin content at 50 wt-%, and a nucleating agent to increase the crystallization temperature and improve the tensile characteristics of its LDPE biocomposites. Moreover, the foamability of the lignin-reinforced LDPE biocomposites was studied in the presence of a chemical blowing agent (azodicarbonamide) with dicumyl peroxide; for an oPE-g-lignin content up to 20 wt-%, the cell size distribution was quite uniform, and the foam expansion ratios (17.69 ± 0.92) were similar to those of the neat LDPE foam (17.04 ± 0.44).

8.
Food Res Int ; 156: 111341, 2022 06.
Article in English | MEDLINE | ID: mdl-35651088

ABSTRACT

The social isolation settings derived from the COVID-19 pandemic affected the standard sensory evaluation techniques used in the food and beverage industry. This situation forced companies and researchers to assess other options to continue conducting these tests in remote contactless locations. This study aimed to evaluate two sets of samples (i) six images from Geneva affective picture database (GAPED) and (ii) six videos of beer pouring using traditional self-reported sensory data and emotional response from consumers biometrics. Specifically, four research questions (RQ) arouse from this study: RQ1: are there significant differences between GAPED images and beers in unconscious and self-reported responses from consumers?, RQ2: are there any correlations between subconscious and self-reported responses from consumers when assessing beer?, RQ3: can consumers differentiate positive, neutral and negative images based on subconscious and self-reported responses?, RQ4: are there any relationships between subconscious and self-reported responses when assessing GAPED images and beers, and how are samples associated with variables? A total of 113 Mexican beer consumers participated in the virtual sensory session using an online videoconference software to record videos of participants during the session. Results showed there were significant differences (p < 0.05) between samples, especially for self-reported responses (RQ1), and several correlations between variables, such as positive correlations between the perceived quality of beers and happy emoji (r = 0.84), and negative correlation with confused emoji (r = -0.97; RQ2). Besides, using the proposed methods, consumers were able to correctly differentiate through elicited emotions the positive, neutral and negative GAPED images (RQ3). Regarding RQ4, several relationships were found between variables in both GAPED images and beers; however, it was found that different emotions were elicited depending of the stimuli used. The proposed method showed to be a reliable and practical option to conduct visual and potentially tasting sensory tests in isolation and recruit participants from different countries without travelling to collect their responses.


Subject(s)
Beer , COVID-19 , Biometry , Emotions , Humans , Pandemics , Visual Perception
9.
J Sci Food Agric ; 102(13): 5875-5882, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35426457

ABSTRACT

BACKGROUND: In this study, the foamability and foam stability of nitrogen-infused cold brew coffee, as affected by coffee variety (Arabica and Robusta), degree of roast (light, medium, dark), brewing temperature (4, 20, 35 °C), brew ratio (1:5-1:15 w/w; coffee/water), ground particle size (712, 647 and 437 µm volume mean diameter) and beverage temperature (4, 20 and 35 °C), were investigated. RESULTS: Dynamic surface tension of cold brew, as determined from bubble tensiometry, decreased from 65-70 mN m-1 to about 60 mN m-1 as the bubble lifetime increased from 0.1 s to 1 s. Infusing the cold brew coffee (70 mL) with nitrogen gas for 30 s at 50 mL min-1 generated 30-40 mL of foam head. At the same degree of roast, brews prepared from Arabica beans had more stable foam than those from Robusta. Foam stability increased with increasing degree of roast, increasing brewing temperature, decreasing particle size, and decreasing the beverage temperature. By contrast, brew ratio had relatively less effect on foaming properties. Nitrogen-containing constituents present in the 80% (v/v) ethanol-soluble fraction (55.9% of total dissolved solids) of the brew samples were important contributors to foaming, while the 80% (v/v) ethanol-insoluble fraction (42.3% of total dissolved solids) that contained polysaccharides was important in stabilizing the foam. CONCLUSION: The foamability and foam stability of cold brew coffee are significantly affected by coffee variety, degree of roast, brewing temperature, ground particle size, and beverage temperatures. The foam properties are dictated by the low-molecular-weight nitrogen-containing compounds and high-molecular-weight polysaccharides present in the cold brew coffee. © 2022 Society of Chemical Industry.


Subject(s)
Coffea , Coffee , Coffea/chemistry , Coffee/chemistry , Cold Temperature , Ethanol , Hot Temperature , Nitrogen , Particle Size
10.
Crit Rev Food Sci Nutr ; 62(17): 4800-4820, 2022.
Article in English | MEDLINE | ID: mdl-33527840

ABSTRACT

For many dairy products such as cappuccino-style beverages, the top foam layer determines the overall product quality (e.g. their appearance, texture, mouthfeel and coffee aroma release rate) and the consumer acceptance. Proteins in milk are excellent foaming agents, but the foaming properties of milk are greatly affected by several factors such as the protein content, ratio of caseins to whey proteins, casein micelle size, pH, minerals, proteolysis, presence of low molecular weight compounds (lipids and their hydrolyzed products) and high molecular weight compounds (polysaccharides); milk processing conditions (e.g. homogenization, heat treatment and aging); and foaming method and temperature. These factors either induce changes in the molecular structure, charge and surface activity of the milk proteins; or interfere and/or compete with milk proteins in the formation of highly viscoelastic film to stabilize the foam. Some factors affect the foamability while others determine the foam stability. In this review, functionality of milk proteins in the production and stabilization of liquid foam, under effects of these factors is comprehensively discussed. This will help to control the foaming process of milk on demand for a particular application, which still is difficult and challenging for researchers and the dairy industry.


Subject(s)
Milk Proteins , Milk , Animals , Caseins/analysis , Caseins/chemistry , Micelles , Milk/chemistry , Milk Proteins/chemistry , Whey Proteins/chemistry
11.
Food Chem ; 367: 130733, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34375890

ABSTRACT

We used computational molecular dynamics (MD) to assess molecular conformations of apo- and holo-forms (respectively without and with Ca2+) of bovine α-lactalbumin (α-La) at different temperatures, and to correlate them with the protein's foaming properties. At 4 °C and 25 °C no major protein conformation changes occurred. At 75 °C, lots of changes were evidenced: the Ca2+ depletion triggered the complete loss of h2b, h3c helices and S1, S2 and S3 ß-sheets, and partial losses of H1, H2 and H3 α-helices. The absence of Ca2+ in apo-α-La and its leaving from holo-α-La triggered electrostatic repulsion among Asp82, Asp84 and Asp87, leading to the formation of a hydrophobic cluster involving Phe9, Phe31, Ile1, Va42, Ile55, Phe80 and Leu81. These conformational changes were related to an interfacial tension decrease and to a foaming capacity increase, for both apo-α-La and holo-α-La. This study exemplifies how powerful MD is as a tool to provide a better understanding of the molecular origins of food proteins' techno-functionalities.


Subject(s)
Lactalbumin , Molecular Dynamics Simulation , Animals , Cations , Cattle , Protein Structure, Secondary , Temperature
12.
Int J Cosmet Sci ; 43(6): 636-652, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34608651

ABSTRACT

OBJECTIVE: The main objective of this paper is to analyse the composition of a sulphate-free binary or ternary surfactant system with alkyl olefin sulfonate (AOS), alkyl polyglucoside (APG) and lauryl hydroxysultaine (Sultaine). The composition was optimized by observing critical parameters such as surface activity and rheological properties while varying the concentration of APG in a ternary system, varying the ratio of AOS and Sultaine in a binary system and studying the effect of sodium chloride addition. The experimental results can provide an alternative, sulphate-free surfactant system to replace the common system containing sodium laureth sulfate (SLES) and cocamidopropyl betaine (CapB), without compromising on the parameters previously mentioned. METHODS: A DuNouy Ring was utilized on a tensiometer to measure the surface tension of the samples. To observe foaming abilities of samples, a visual foaming study was conducted and recorded by taking pictures. A TA instruments mechanical rheometer was used to measure the viscosity. RESULTS: Studying the effect of APG concentration on surface tension illustrated that as APG concentration decreases, surface tension decreases as well. The minimum surface tension was found to be 26.587 for 7.5 wt.% AOS and 7.5 wt.% Sultaine. When the ratio between AOS and Sultaine changed, the 1:1 system produced the lowest surface tension value again. As the concentration of AOS decreased in the ratio, the surface tension increased. When the ratio was held constant, and APG was introduced into the system, the systems containing APG had higher surface tension values compared with the systems with the same ratios but did not have APG added. As the concentration of salt increased, the surface tension decreased for AOS, increased for the binary mixture and had no effect on Sultaine. Foaming has a direct correlation with surface tension so a decrease in surface tension led to better foaming abilities; therefore, the 1:1 ratio of AOS:Sultaine had the best foaming qualities. The AOS/Sultaine system exhibited Maxwellian behaviour, suggesting the presence of worm-like micellar structures. As the concentration of APG increased, the viscosity decreased and at a concentration of 2.5 wt.% AOS, 5 wt.% APG and 7.5 wt.% Sultaine, the system changed from shear thinning non-Newtonian fluid to Newtonian. Varying the ratio of AOS:Sultaine in the binary system, showed as the ratio changed, the viscosity decreased, and at a ratio of 1:3 AOS:Sultaine, the system was primarily Newtonian. As the ratio remained constant and APG was added, the viscosity continued to decrease and the 1:3 ratio was completely Newtonian. The addition of salt had no effect on the viscosity of Sultaine, but the viscosity of AOS increased at a salt concentration of 2 wt.%. The binary mixture saw as the concentration of salt increased, the viscosity profile decreased, even though the system remained non-Newtonian and shear thinning. CONCLUSION: The surface activity and rheological study of the sulfate-free surfactant systems unveil a strong synergistic interaction between AOS and Sultaine specifically at a ratio of 1:1 resulting in high surface activity and corresponding good foaming and formation of entangled wormlike micelles resulting in excellent viscosity build in the system. If introducing a biobased surfactant into this system is desired without completely compromising the performance properties, the ternary surfactant system 4.5 wt.% AOS, 3 wt.% APG and 7.5 wt.% Sultaine should be considered optimal. Any further addition of APG or changing the ratio results in detrimental reductions of all performance controlling physio-chemical parameters.


OBJECTIF: l'objectif principal de cet article est d'analyser la composition d'un système de surfactant binaire ou ternaire sans sulfate utilisant l'alkyle sulfonate oléfine (alkyl olefin sulfonate, AOS), l'alkyle polyglucoside (APG) et le lauryl hydroxysultaïne (sultaïne). La composition a été optimisée en observant des paramètres critiques tels que l'activité de surface et les propriétés rhéologiques tout en faisant varier la concentration d'APG dans un système ternaire, le rapport d'AOS et de sultaïne dans un système binaire et en étudiant l'effet de l'ajout de chlorure de sodium. Les résultats expérimentaux peuvent fournir un système de surfactant alternatif sans sulfate pour remplacer le système courant contenant le laureth sulfate de sodium (sodium laureth sulfate, LES) et de la camidopropyle bétaïne (cocamidopropyl betaine, CapB), sans compromettre les paramètres précédemment mentionnés. MÉTHODES: un anneau de DuNouy a été utilisé sur un tensiomètre pour mesurer la tension superficielle des échantillons. Pour observer les capacités de formation de mousse des échantillons, une étude visuelle de formation de mousse a été menée et les résultats enregistrés en prenant des photos. Un rhéomètre mécanique TA Instruments a été utilisé pour mesurer la viscosité. RÉSULTATS: l'étude de l'effet de la concentration d'APG sur la tension superficielle a illustré qu'à mesure que la concentration d'APG diminue, la tension superficielle diminue également. La tension superficielle minimale s'est avérée être de 26,587 pour une concentration d'AOS de 7,5 % en poids et de sultaïne de 7,5 % en poids. Lorsque le rapport entre l'AOS et la sultaïne a été modifié, le système à un rapport de 1:1 a de nouveau produit la valeur de tension superficielle la plus basse. À mesure que la concentration d'AOS diminuait dans le rapport, la tension superficielle augmentait. Lorsque le rapport a été maintenu constant, et que l'APG a été introduit dans le système, les systèmes contenant l'APG présentaient des valeurs de tension superficielle plus élevées que les systèmes ayant les mêmes rapports, mais n'ont pas fait l'objet d'ajout d'APG. À mesure que la concentration de sel augmentait, la tension superficielle diminuait pour l'AOS, augmentait pour le mélange binaire et n'avait aucun effet sur la sultaïne. La formation de mousse est directement corrélée à la tension superficielle, de sorte qu'une diminution de la tension superficielle a entraîné de meilleures capacités de formation de mousse ; par conséquent, le rapport AOS/sultaïne de 1:1 présentait les meilleures qualités de formation de mousse. Le système AOS/sultaïne a montré un comportement maxwellien, suggérant la présence de structures micellaires en forme de ver. À mesure que la concentration d'APG augmentait, la viscosité diminuait, et à une concentration d'AOS de 2,5 % en poids, d'APG de 5 % en poids et de sultaïne de 7,5 % en poids, le système est passé d'un fluide non Newtonien par cisaillement (Rhéofluidification) à un fluide Newtonien. En variant le rapport d'AOS/sultaïne dans le système binaire, on a montré que le rapport changeait, la viscosité diminuait et, à un rapport d'AOS/sultaïne de 1:3, le système était principalement Newtonien. Lorsque le rapport est resté constant et que l'APG a été ajouté, la viscosité a continué à diminuer et le rapport 1:3 était complètement Newtonien. L'ajout de sel n'a eu aucun effet sur la viscosité de la sultaïne, mais la viscosité de l'AOS a augmenté à une concentration en sel de 2 % en poids. Le mélange binaire montrait qu'à mesure que la concentration de sel augmentait, le profil de viscosité diminuait, même si le système restait non Newtonien par cisaillement (Rhéofluidification). CONCLUSION: l'étude de l'activité de surface et rhéologique des systèmes de surfactant sans sulfate dévoile une forte interaction synergique entre l'AOS et la sultaïne, spécifiquement à un rapport de 1:1, qui entraîne une activité de surface élevée et une bonne formation correspondante de mousse et de micelles enchevêtrées, ce qui aboutit à une excellente formation de viscosité dans le système. Si on souhaite introduire un surfactant biosourcé dans ce système sans compromettre complètement les propriétés de performance, le système de surfactant ternaire à une concentration d'AOS de 4,5 % en poids, d'APG de 3 % en poids et de sultaïne de 7,5 % en poids doit être considéré comme optimal. Tout ajout supplémentaire d'APG ou toute modification du rapport entraîne des réductions préjudiciables de toutes les performances contrôlant les paramètres physicochimiques.


Subject(s)
Cosmetics/chemistry , Rheology , Surface Tension , Surface-Active Agents/chemistry , Humans
13.
J Food Sci Technol ; 58(12): 4666-4673, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34629531

ABSTRACT

Given the non-linearity of many protein properties with a short range of concentration which cannot be predicted a priori, and due to the lack of references in the food industry, we proceeded to analyze the foaming ones. The existing bibliography belongs to other fields of research but it is scarcely found for this area. For the food industry, ultrasound is considered one of the most environment-friendly processing. In addition, heating combination would alter their results considerably by synergistic or additive phenomena. Native soy protein isolate was obtained in our laboratory to use it as starting material; ultrasound with temperature was applied at 2, 4 and 6%w/w protein concentrations. Therefore, the objective of this paper was to determine the effect of ultrasound+temperature (50 or 90 °C) simultaneously applied, on the foamability by relating with the relative viscoelasticity, aggregates particle size distribution and their surface charge by zeta potential. The results indicated that treatments promoted changes on the functional parameters depending on the protein concentration. The analysis showed that at 4%wt/wt was adequate to improve foam formation and stability at same time. Dynamic rheology of continuous phase was relation with foamability showing the higher relative viscoelasticity at 4% of concentration after the combined treatment. Light scattering studies could partially explain this observation, taking into account both, the bulk viscosity and the low number of large particles formed after treating. Surface charge was increased for all concentrations equally leading to the aggregates formation of greater colloidal stability for all concentration and treatment conditions investigated. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1007/s13197-020-04954-w).

14.
J Food Sci Technol ; 58(11): 4252-4262, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34538908

ABSTRACT

The investigation dealt with the effect of the replacement of a part of wheat flour by pea flour on the properties of batters and cakes. As the protein composition of pea flour differs from that of wheat, the effect of its incorporation on batter formation and cake properties was monitored throughout the different steps of cake processing. The incorporation of air, which influences the cell structure and density of the cake, was the subject of particular attention. Four orders of incorporation were first investigated to identify their effects on a standard recipe made with 100% wheat flour. Mixing first egg and sugar together allows introducing air, but most of it is lost after oil and flour introduction. Whatever the order of incorporation, the density of the batter ends around 1.1 ± 0.2 g.cm-1. However, batter consistencies are significantly different and resulting cakes show different crumb structures. These results are discussed in terms of physicochemical mechanisms, and a schematic representation of the phenomena occurring at the different steps of mixing depending on the order of ingredient incorporation is proposed. When 20 and 40% of the wheat flour was replaced by pea flour using the two most energy-efficient orders of incorporation, more air was incorporated into the batter. However, the resulting cakes were denser, but surprisingly softer. Differences in cell structure explain this apparent contradiction.

15.
J Oleo Sci ; 70(6): 807-816, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33967168

ABSTRACT

A detailed study on the foamability, foam stability, foam liquid-carrying capacity, and foam morphology of two N-acyl amino acid surfactants with bovine serum albumin (BSA) and gelatin were performed by foam scanning. The results showed that the foamability of the mixed system increased gradually and then tended to be stable with increasing surfactant concentration. The foamability of the high-concentration BSA system was stronger than that of the low-concentration BSA system. The foamability and foam stability of sodium N-lauroyl phenylpropanoic acid (N-C12P)/BSA were better than those of sodium N-lauroyl propylamino acid (N-C12A)/BSA, and the foamability and foam stability of N-C12A/gelatin was better than those of N-C12P/gelatin. The liquid-carrying capacity of the foam initially increased and then decreased with increasing time, and the maximum liquid-carrying capacity increased with increasing surfactant concentration. When the concentration of the surfactant was 8 mM, the drainage rate of N-C12A/protein was higher than that of N-C12P/protein. The morphology of the bubble gradually changed from spherical to polyhedron and the number of bubbles gradually decreased with time increasing. Differences in surfactant structure and protein type had an important effect on the number and area of foam.


Subject(s)
Gelatin/chemistry , Glycine/analogs & derivatives , Lauric Acids/chemistry , Phenylalanine/analogs & derivatives , Serum Albumin, Bovine/chemistry , Surface-Active Agents/chemistry , Animals , Cattle
16.
Crit Rev Food Sci Nutr ; 61(10): 1704-1724, 2021.
Article in English | MEDLINE | ID: mdl-32410507

ABSTRACT

Coffee foam is the frothy layer that forms above the liquid phase of espresso and instant coffee beverages. While the carbon dioxide formed during roasting is responsible for crema formation in espresso, gasification is the established foaming approach in instant coffee. The protein-like fractions and polysaccharides extracted from roasted coffee promote foamability and foam stability, respectively. Crema of consolidated texture retains the volatile aromatic substances and prevents the espresso from cooling too rapidly. Further, an inverse relationship has been observed between foam persistence and volatility of aroma molecules above the cup. Gasified spray-dried instant coffee exhibited an accelerated delivery rate of hydrophobic aroma compounds. Thus, foam is the signature of a high-quality cup of coffee. Despite its various functionalities, coffee foam is scarcely investigated owing to its metastable nature. Only recently, the chemical, structural, and interfacial rheology properties of the coffee foam have been looked at. The current study intends to review the scientific knowledge acquired on coffee foam, thus far. The initial sections describe the general attributes and functions of espresso and instant coffee foam. Further, the mechanisms of formation and stabilization of coffee foam are detailed, followed by the factors influencing the same. The following discussions focus on the role of coffee foam in determining the sensory and aroma release characteristics of the beverages. The scope for future research in this field of study is highlighted in the concluding section.


Subject(s)
Coffee , Odorants , Beverages , Carbon Dioxide , Odorants/analysis , Volatilization
17.
Food Chem ; 344: 128613, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33243561

ABSTRACT

All coffee brews are prepared with roasted coffee and water, giving origin to espresso, instant, or filtered coffee, exhibiting distinct physicochemical properties, depending on the extraction conditions. The different relative content of compounds in the brews modulates coffee body, aroma, and colour. In this study it was hypothesized that a coffee infusion allows to obtain extracts that resemble espresso coffee (EC) physicochemical properties. Carbohydrates (content and composition) were the target compounds as they are organoleptically important for EC due to their association to foam stability and viscosity. The freeze-drying of the extracts allowed better dissolution properties than spray-drying. Instant coffee powders were obtained with chemical overall composition resembling espresso, although with lower lipids content. The extracts were able to produce the characteristic foam through CO2 injection or salts addition. Their redissolution at espresso concentration allowed a viscosity, foamability and volatile profile representative of an espresso coffee, opening new exploitation possibilities.


Subject(s)
Carbohydrates/analysis , Coffee/chemistry , Carbohydrates/chemistry , Carbon Dioxide/chemistry , Coffea/chemistry , Coffea/metabolism , Freeze Drying , Gas Chromatography-Mass Spectrometry , Hydrogen-Ion Concentration , Plant Extracts/chemistry , Principal Component Analysis , Viscosity , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Water
18.
J Food Sci ; 85(12): 4312-4318, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33190246

ABSTRACT

This study aims to optimize the ultrasound-irradiation combined pretreatment conditions to enhance the liquid egg white (LEW) foamability and investigate the changing mechanism about the physical and structural properties of LEW during the processing. Results indicated that the foamability of the LEW was increased by ultrasound-irradiation combined pretreatment to the highest value of 92.6% (irradiation dose = 33 kGy, ultrasound time = 6 min, and ultrasound power = 300 W). Three significant proteins in LEW (ovalbumin, ovotransferrin, and lysozyme) were chosen to explore the change law on their physical and structural properties. Results indicated that ultrasound-irradiation combined pretreatment increased the solubility and reduced the pH and particle size of ovalbumin and lysozyme, thus enhancing the foamability of LEW. Furthermore, the fluorescence spectra changes implied the un-folding and destruction of ovalbumin, ovotransferrin, and lysozyme during the ultrasound-irradiation combined pretreatment. Moreover, circular dichroism spectroscopy analysis revealed that the pretreatment decreased α-helix and ß-sheet of the ovalbumin, ovotransferrin, and lysozyme, which bring out the improvement of LEW foamability. The present study indicated that ultrasound-irradiation combined pretreatment had the potential to be implemented to enhance the foamability of LEW.


Subject(s)
Conalbumin/chemistry , Egg White/chemistry , Food Handling , Muramidase/chemistry , Ovalbumin/chemistry , Ultrasonic Waves , Animals , Chickens , Conalbumin/radiation effects , Egg White/radiation effects , Muramidase/radiation effects , Ovalbumin/radiation effects , Phase Transition , Protein Conformation , Solubility
19.
Foods ; 9(9)2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32854326

ABSTRACT

Chitosan is a polysaccharide admitted in winemaking as clarifying, antimicrobial and chelating agent. In addition, evidence about its antioxidant and radical scavenging activities have been recently reported in wine conditions. As an insoluble adjuvant, chitosan efficacy also depends on the duration of its contact with the matrix. In the case of sparkling wines obtained following the traditional method, for instance, the addition of chitosan before the secondary fermentation would permit a prolonged contact of the polymer with wine and yeast lees. However, information on the effects of this practice on final products is totally unknown. In this work, the addition of chitosan during the secondary fermentation of a traditional sparkling wine production method has been investigated for its effects on both the physicochemical and sensory characteristics of the resulting wine. After 12 months of "sur lie" maturation, chitosan was found to increase the protein and amino acid content of wines up to about 50% and 9%, respectively, with limited change of phenolics and organic acids. Volatile compounds, particularly esters, were increased as well, which was reflected by higher values for fruity character and aroma intensity after sensory tests. Foaming features, evaluated by sensory and physical measurements, were also positively affected.

20.
Foods ; 9(5)2020 May 25.
Article in English | MEDLINE | ID: mdl-32466206

ABSTRACT

Flaxseed gum (FG) is a by-product of flax (Linum usitatissimum L.) meal production that is useful as a food thickener, emulsifier, and foaming agent. FG is typically recovered by hot-water extraction from flaxseed hull or whole seed. However, FG includes complex polymer structures that contain bioactive compounds. Therefore, extraction temperature can play an important role in determining its functional properties, solution appearance, and solution stability during storage. These characteristics of FG, including FG quality, determine its commercial value and utility. In this study, FG solution functional properties and storage stability were investigated for solutions prepared at 70 and 98 °C. Solutions of FG prepared at 98 °C had lower initial viscosity than solutions extracted at 70 °C; though the viscosity of these solutions was more stable during storage. Solutions prepared by extraction at both tested temperatures exhibited similar tolerance to 0.1 mol/L salt addition and freeze-thaw cycles. Moreover, the higher extraction temperature produced a FG solution with superior foaming and emulsification properties, and these properties were more stable with storage. Foams and emulsions produced from FG extracted at higher temperatures also had better stability. FG extracted at 98 °C displayed improved stability and consistent viscosity, foamability, and emulsification properties in comparison to solutions prepared at 70 °C. Therefore, the FG solution extracted at 98 °C had more stable properties and, potentially, higher commercial value. This result indicates that FG performance as a commercial food additive can influence food product quality.

SELECTION OF CITATIONS
SEARCH DETAIL