Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 976
Filter
1.
Food Res Int ; 194: 114873, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39232512

ABSTRACT

This study investigates the metabolome of high-quality hazelnuts (Corylus avellana L.) by applying untargeted and targeted metabolome profiling techniques to predict industrial quality. Utilizing comprehensive two-dimensional gas chromatography and liquid chromatography coupled with high-resolution mass spectrometry, the research characterizes the non-volatile (primary and specialized metabolites) and volatile metabolomes. Data fusion techniques, including low-level (LLDF) and mid-level (MLDF), are applied to enhance classification performance. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) reveal that geographical origin and postharvest practices significantly impact the specialized metabolome, while storage conditions and duration influence the volatilome. The study demonstrates that MLDF approaches, particularly supervised MLDF, outperform single-fraction analyses in predictive accuracy. Key findings include the identification of metabolites patterns causally correlated to hazelnut's quality attributes, of them aldehydes, alcohols, terpenes, and phenolic compounds as most informative. The integration of multiple analytical platforms and data fusion methods shows promise in refining quality assessments and optimizing storage and processing conditions for the food industry.


Subject(s)
Corylus , Metabolome , Metabolomics , Principal Component Analysis , Corylus/chemistry , Metabolomics/methods , Artificial Intelligence , Least-Squares Analysis , Discriminant Analysis , Food Quality , Nuts/chemistry , Food Analysis/methods , Volatile Organic Compounds/analysis
2.
Sci Rep ; 14(1): 21621, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39285258

ABSTRACT

Modern food supply chains are intrinsically sophisticated due to their multi-participant and multi-echelon structure, which are challenging to handle high turbulent business environment. The development of Perishable Food Supply Chains (PFSC) has to be strong enough to manage any type of disruptions in the food industry. At the same time, the food processing industry must also take responsibility for the social and environmental consequences of their deeds. This has further led to performance deterioration and intensified design complexity. Recently, digitalization and Blockchain technology (BCT) have brought unfathomed rebellions in PFSC. Despite the potential and market hype, the application of BCT to track the perishable products and status of in-transit shipments is still a challengingtask for the food industry due to privacy and security issues, restricted transactional and scalability performance, deficiency of industry standards and managerial abilities, etc. However, integrating the BCT with the eventual benefits of the Internet of Things (IoT) (i.e., Chain of Things (CoT)) increases the performance of good traceability in any supply chain. The proposed CoT-based Track and Trace system (CoT-TTS) employs a set of IoT devices, BCT, and Adaptive Neuro-Fuzzy Inference System (ANFIS). The performance of CoT-TTS is evaluated through a case study using an EOSIO platform. The effectiveness of the proposed system is evaluated in terms of depth, breadth, access, and precision of the transactions.

3.
Heliyon ; 10(17): e36472, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39296098

ABSTRACT

In the food industry, meeting food quality demands is challenging. The quality of wheat flour, one of the most commonly used ingredients, depends on the extent of debranning done to remove the aleurone layer before milling. Therefore, the end product management can be simplified by predicting the properties of wheat flour during the debranning stage. Therefore, the chemical and rheological properties of grains were analyzed at different debranning durations (0, 30, 60 s). Then the images of wheat grain were taken to develop a regression model for predicting the chemical quality (i.e., ash, starch, fat, and protein contents) of the wheat flour. The resulting regression model comprises a convolutional neural network and is evaluated using the coefficient of determination (R 2), root-mean-square error, and mean absolute error as metrics. The results demonstrated that wheat flour contained more fat and protein and less ash with increasing debranning time. The model proved reliable in terms of root-mean-square error, mean absolute error, and R 2 for predicting ash content but not starch, fat, or protein contents, which can be attributed to the lack of features in the collected images of wheat kernels during debranning. In addition, the selected method, debranning, was beneficial to the rheological characteristics of wheat flour. The proportion of fine particles increased with the debranning time. The study experimentally revealed that the end product diversity for wheat flour can be controlled to provide selectable ingredients to customers.

4.
Heliyon ; 10(17): e37604, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39296220

ABSTRACT

One of the major causes of the high prevalence of young children suffering from malnutrition in developed countries is inadequate complementary feeding practices, and especially the low quality of homemade complementary foods. The present study aimed to use available local plant foods to formulate a complementary flour Which can be able to meet energy and nutrients requirements of children aged from 6 to 23 months. To achieve this goal, pumpkin was fermented, soybean soaked and roasted, and spinach steamed. The pre-treated ingredients were ground to obtain individual flours, which were blended in various proportions to obtain four complementary flours (PSS1, PSS2, PSS3, PSS4). The proximate and micronutrient composition, and the energy value of the blends were determined, and based on the results, two of them, that is; (PSS1 [Pumpkin 70 %/Soybean 25 %/Spinach 5 %], and PSS2 [Pumpkin 65 %/Soybean 25 %/Spinach 10 %]) were selected to pursue the Study. The functional properties (water absorption capacity, water solubility index, bulk density) and pasting properties of these two flours were then evaluated. Gruels were prepared from the flours and their energy densities, physical as well as sensory properties were evaluated. Moisture, ash, protein, fat, and sugar contents of PSS1 and PSS2 met the FAO/WHO standards. Fiber content in both flours was higher than the recommendation. Vitamin A and iron were sufficient in PSS2, while PSS1 had low iron content. Calcium, phosphorus, and magnesium content of PSS1 and PSS2 were significantly higher than the standards. PSS1 and PSS2 had good water absorption capacity and solubility index, with low viscosity values (213 and 173 cP respectively), interesting functional properties for complementary flours. The gruels prepared with PSS1 and PSS2 flours had good fluidity and energy densities. They were fairly appreciated based on their organoleptic characteristics, with scores of 5.96 and 5.75 for overall acceptability. PSS2 could be recommended as infant flour rich in iron, vitamin A, and protein, with good nutritional values and functional properties.

5.
Food Chem ; 463(Pt 1): 141102, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39278147

ABSTRACT

Liquid egg products are typically exposed to a defined thermal load to achieve the required safety level, under which their functional properties can be adversely affected. In this study, manothermosonication (MTS) (132 µm, 300 kPa) was investigated as alternative preservation for liquid whole egg (LWE) compared to thermal pasteurisation (60 °C, 3.5 min), assessing results against untreated (fresh) LWE in terms of selected physico-chemical properties. Results showed that MTS resulted in improved LWE foaming properties, increasing foam capacity by a 3.2-fold factor compared to thermal treatment. Emulsion stability was also enhanced after MTS, exhibiting smaller droplet size, and a higher elasticity of gels was obtained. Regarding the protein properties, favourable protein changes (protein unfolding) were identified for MTS through direct (asymmetric flow field flow fractionation) and indirect (surface hydrophobicity and sulfhydryl group content) measurements. In addition, an increase in protein solubility of 11.4 % was observed in MTS compared to thermal treatment.

6.
Foods ; 13(17)2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39272492

ABSTRACT

BACKGROUND: The need for efficient and simplified techniques for seafood traceability is growing. This study proposes the Biolog EcoPlate assay as an innovative method for assessing wild and farmed Sparus aurata traceability, offering advantages over other molecular techniques in terms of technical simplicity. METHODS: The Biolog EcoPlate assay, known for its high-throughput capabilities in microbial ecology, was utilized to evaluate the functional diversity of microbial communities from various organs of S. aurata (seabream) from the Mediterranean area. Samples were taken from the anterior and posterior gut, cloaca swabs and gills to distinguish between farmed and wild-caught individuals. The analysis focused on color development in OmniLog Units for specific carbon sources at 48 h. RESULTS: Gills provided the most accurate clusterization of sample origin. The assay monitored the development of color for carbon sources such as α-cyclodextrin, D-cellobiose, glycogen, α-D-lactose, L-threonine and L-phenylalanine. A mock experiment using principal component analysis (PCA) successfully identified the origin of a blind sample. Shannon and Simpson indexes were used to statistically assess the diversity, reflecting the clusterization of different organ samples; Conclusions: The Biolog EcoPlate assay proves to be a quick, cost-effective method for discriminate S. aurata traceability (wild vs. farmed), demonstrating reliable reproducibility and effective differentiation between farmed and wild-caught seabream.

7.
Foods ; 13(17)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39272516

ABSTRACT

Foodstuffs, particularly perishable ones such as meat, are frequently discarded once the best-before date has been reached, despite the possibility of their continued suitability for human consumption. The implementation of intelligent packaging has the potential to contribute to a reduction in food wastage by enabling the monitoring of meat freshness during storage time independently of the best-before date. The process of meat spoilage is associated with the formation of specific degradation products, some of which can be potentially utilized as spoilage indicators in intelligent packaging. The aim of the review is to identify degradation products whose concentration correlates with meat shelf life and to evaluate their potential use as spoilage indicators in intelligent packaging. To this end, a comprehensive literature research was conducted to identify the factors influencing meat spoilage and the eight key degradation products (carboxylic acids, biogenic amines, total volatile basic nitrogen, aldehydes, alcohols, ketones, sulfur compounds, and esters) associated with this process. These degradation products were analyzed for their correlation with meat shelf life at different temperatures, atmospheres, and meat types and for their applicability in intelligent packaging. The review provides an overview of these degradation products, comparing their potential to indicate spoilage across different meat types and storage conditions. The findings suggest that while no single degradation product universally indicates spoilage across all meat types and conditions, compounds like carboxylic acids, biogenic amines, and volatile basic nitrogen warrant further investigation. The review elucidates the intricacies inherent in identifying a singular spoilage indicator but underscores the potential of combining specific degradation products to expand the scope of applications in intelligent packaging. Further research (e.g., storage tests in which the concentrations of these substances are specifically examined or research on which indicator substance responds to these degradation products) is recommended to explore these combinations with a view to broadening their applicability.

8.
Elife ; 132024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235964

ABSTRACT

To survive in challenging environments, animals must develop a system to assess food quality and adjust their feeding behavior accordingly. However, the mechanisms that regulate this chronic physiological food evaluation system, which monitors specific nutrients from ingested food and influences food-response behavior, are still not fully understood. Here, we established a low-quality food evaluation assay system and found that heat-killed E. coli (HK-E. coli), a low-sugar food, triggers cellular UPRER and immune response. This encourages animals to avoid low-quality food. The physiological system for evaluating low-quality food depends on the UPRER (IRE-1/XBP-1) - Innate immunity (PMK-1/p38 MAPK) axis, particularly its neuronal function, which subsequently regulates feeding behaviors. Moreover, animals can adapt to a low-quality food environment through sugar supplementation, which inhibits the UPRER -PMK-1 regulated stress response by increasing vitamin C biosynthesis. This study reveals the role of the cellular stress response pathway as physiological food evaluation system for assessing nutritional deficiencies in food, thereby enhancing survival in natural environments.


We quickly learn to steer clear of eating the moldy apple, the foul-smelling piece of chicken or the leftovers that taste a little 'off'. This survival instinct is shared across most animal species ­ even those with extremely simple and limited visual or taste systems, like the tiny worm Caenorhabditis elegans. Indeed, assessing the safety and quality of available food items can also rely on cells activating built-in cascades of molecular reactions. However, it remains unclear how these 'cellular stress response programs' actually help guide feeding behaviors. To better understand this process, Liu et al. conducted a series of experiments using C. elegans worms exposed to heat-killed bacteria, which are devoid of many nutrients essential for growth. After initially consuming these bacteria, the worms quickly started to avoid feeding on this type of low-quality food. This suggests that mechanisms occurring after ingestion allowed the worms to adjust their feeding choices. Further work showed that the consumption of heat-killed bacteria triggered two essential stress response pathways, known as the unfolded protein response and the innate immune response. The activation of these pathways was essential for the animals to be able to change their behavior and avoid the heat-killed bacteria. These biochemical pathways were particularly active in the worms' nerve cells, highlighting the importance of these cells in sensing and reacting to food. Finally, Liu et al. also found that adding sugars like lactose and sucrose to the low-quality food could prevent the activation of the stress response pathways. This result suggests that specific nutrients play a central role in how these worms decide what to eat. These findings shed light on the complex systems that ensure organisms consume the nutritious food they need to survive. Understanding these processes in worms can provide insights into the broader biological mechanisms that help animals avoid harmful food.


Subject(s)
Escherichia coli , Animals , Escherichia coli/immunology , Escherichia coli/physiology , Feeding Behavior , Food Quality , Immunity, Innate , Caenorhabditis elegans
9.
Article in English | MEDLINE | ID: mdl-39269525

ABSTRACT

Surface water pollution is a critical and urgent global issue that demands immediate attention. Surface water plays a crucial role in supporting and sustaining life on the earth, but unfortunately, till now, we have less understanding of its spatial and temporal dynamics of discharge and storage variations at a global level. The contamination of surface water arises from various sources, classified into point and non-point sources. Point sources are specific, identifiable origins of pollution that release pollutants directly into water bodies through pipes or channels, allowing for easier identification and management, e.g., industrial discharges, sewage treatment plants, and landfills. However, non-point sources originate from widespread activities across expansive areas and present challenges due to its diffuse nature and multiple pathways of contamination, e.g., agricultural runoff, urban storm water runoff, and atmospheric deposition. Excessive accumulation of heavy metals, persistent organic pollutants, pesticides, chlorination by-products, pharmaceutical products in surface water through different pathways threatens food quality and safety. As a result, there is an urgent need for developing and designing new tools for identifying and quantifying various environmental contaminants. In this context, chemical and biological sensors emerge as fascinating devices well-suited for various environmental applications. Numerous chemical and biological sensors, encompassing electrochemical, magnetic, microfluidic, and biosensors, have recently been invented by hydrological scientists for the detection of water pollutants. Furthermore, surface water contaminants are monitored through different sensors, proving their harmful effects on human health.

10.
Compr Rev Food Sci Food Saf ; 23(5): e70002, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39217509

ABSTRACT

Food safety has emerged as the topmost priority in the current fast-paced food industry era. According to the World Health Organization, around 600 million people, approximately 1 in 10 individuals worldwide, experience illness due to contaminated food consumption, resulting in nearly 0.42 million fatalities annually. The recent development in software and hardware sectors has created opportunities to improve the safety concerns in the food supply chain. The objective of this review is to explain the fundamentals of blockchain and its integration into the supply chain of various food commodities to enhance food safety. This paper presents the analysis of 31 conceptual works, 10 implementation works, 39 case studies, and other investigations in blockchain-based food supply chain from a total of 80 published papers. In this paper, the significance of adapting conceptual ideas into practical applications for effectively tracing food commodities throughout the supply chain has been discussed. This paper also describes the transformative role of blockchain platforms in the food industry, providing a decentralized and transparent ledger to access real-time and immutable records of a product's journey. In addition, both the positive impacts and challenges associated with implementing blockchain technology in the food supply chain have been evaluated. In summary, the blockchain-based food supply chains offer greater transparency, traceability, and trust, ultimately resulting in higher standards of food safety and quality.


Subject(s)
Blockchain , Food Safety , Food Supply , Food Safety/methods , Food Supply/standards , Humans
11.
J Food Sci ; 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39126706

ABSTRACT

Near infrared spectroscopy (NIRS) is an analytical technique that offers a real advantage over laboratory analysis in the food industry due to its low operating costs, rapid analysis, and non-destructive sampling technique. Numerous studies have shown the relevance of NIR spectra analysis for assessing certain food properties with the right calibration. This makes it useful in quality control and in the continuous monitoring of food processing. However, the NIR calibration process is difficult and time-consuming. Analysis methods and techniques vary according to the configuration of the NIR instrument, the sample to be analyzed and the attribute that is to be predicted. This makes calibration a challenge for many manufacturers. This paper aims to provide a data-driven methodology for developing a decision support tool based on the smart selection of NIRS wavelength to assess various food properties. The decision support tool based on the methodology has been evaluated on samples of cocoa beans, grains of wheat and mangoes. Promising results were obtained for each of the selected models for the moisture and fat content of cocoa beans (R2cv: 0.90, R2test: 0.93, RMSEP: 0.354%; R2cv: 0.73, R2test: 0.79, RMSEP: 0.913%), acidity and vitamin C content of mangoes (R2cv: 0.93, R2test: 0.97, RMSEP: 17.40%; R2cv: 0.66, R2test: 0.46, RMSEP: 0.848%), and protein content of wheat-DS2 (R2cv: 0.90, R2test:0.92, RMSEP: 0.490%) respectively. Moreover, the proposed approach allows results to be obtained that are better than benchmarks for the moisture and protein content of wheat-DS1 (R2cv: 0.90, R2test: 94, RMSEP: 0.337%; R2cv: 0.99, R2test: 0.99, RMSEP: 0.177%), respectively. PRACTICAL APPLICATION: This research introduces a practical tool aimed at determining the quality of food by identifying specific light wavelengths. However, it is important to acknowledge potential challenges, such as overfitting. Before implementation, it is crucial for further research to address and mitigate the issues to ensure the reliability and accuracy of the solution. If successfully applied, this tool could significantly enhance the accuracy of near-infrared spectroscopy in assessing food quality attributes. This advancement would provide invaluable support for decision-making in industries involved in food production, ultimately leading to better overall product quality for consumers.

12.
Front Nutr ; 11: 1354841, 2024.
Article in English | MEDLINE | ID: mdl-39119467

ABSTRACT

The quality of preparations offered in the workplace can vary according to the different segments of food services and may impact the health of the workers. This study aimed to qualitatively assess the food preparation offered to workers in from different food services. A total of 384 preparations were offered to workers in Curitiba City, Brazil. The preparations from three different segments of food services were evaluated: commercial (pilot study), non-commercial, and outsourced, selected for convenience. To identify the preparations, the nutritionist was interviewed, and the production process was monitored. The Score for Qualitative Assessment of Preparations (EAQP) was applied to evaluate the preparations, and they were classified according to their quality: high, intermediate, low, and very low quality. The chi-square and Kruskal-Wallis tests with post-hoc Least Significant Difference (LSD) Test were used. Most of the preparations were of high quality (72.9%), using mainly the unprocessed or minimally processed ingredients. The preparations offered by the non-commercial food service provider had a better mean quality score when compared to other food services (p < 0.01). This study outcome is essential to help food service professionals to decide and choose the ingredients used in the preparations.

13.
Front Nutr ; 11: 1435977, 2024.
Article in English | MEDLINE | ID: mdl-39144284

ABSTRACT

In this study, it was compared the physicochemical properties and cooking taste quality between four different types of compound nutritional rice (rice flour with the addition of other coarse grains, legumes, potatoes, and other powders, extruded as artificial rice grains) and common rice. We found that the protein and apparent amylose contents of compound nutritional rice were higher than that of common rice, up to 9.775% and 19.45% respectively. The γ-aminobutyric acid (GABA) and resistant starch contents were much lower than in common rice, and the dietary fiber content did not differ from that in common rice. The results of Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis revealed that the starch properties and structure of the compound nutritional rice changed due to high temperature and high pressure processing. In particular, the crystalline structures of starch became V-shaped. In addition, the results of artificial tasting and tasting meter showed that the taste of compound nutritional rice was generally inferior to that of common rice. In summary, compound nutritional rice had problems such as nutritional imbalance and poor taste. There was still a lot of room for improving the taste quality of compound nutritional rice. Therefore, the future development of compound nutritional rice should focus on both nutritional balance and taste improvement. The results of this paper also provided a certain theoretical basis for this.

14.
Food Res Int ; 192: 114797, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147492

ABSTRACT

Research on the content of polyphenolic compounds in fruits and vegetables, the extraction of bioactive compounds, and the study of their impact on the human body has received growing attention in recent years. This is due to the great interest in bioactive compounds and their health benefits, resulting in increased market demand for natural foods. Bioactive compounds from plants are generally categorized as natural antioxidants with health benefits such as anti-inflammatory, antioxidant, anti-diabetic, anti-carcinogenic, etc. Thermal processing has been used in the food sector for a long history. Implementing different thermal processing methods could be essential in retaining the quality of the natural antioxidant compounds in plant-based foods. A comprehensive review is presented on the effects of thermal blanching (i.e., hot water, steam, superheated steam impingement, ohmic and microwave blanching), pasteurization, and sterilization and drying technologies on natural antioxidants in fruits and vegetables.


Subject(s)
Antioxidants , Food Handling , Fruit , Hot Temperature , Vegetables , Antioxidants/analysis , Fruit/chemistry , Vegetables/chemistry , Food Handling/methods , Pasteurization , Polyphenols/analysis , Steam , Humans , Sterilization/methods , Microwaves
15.
Am Heart J Plus ; 45: 100431, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39175598

ABSTRACT

Climate change impacts food systems, causing nutritional deficiencies and increasing cardiovascular diseases (CVD). Regulatory frameworks like the European Farm-to-Fork Strategy aim to mitigate these effects, but current EU food safety regulations inadequately address health risks from poor diet quality and contaminants. Climate change adversely affects food quality, such as nutrient depletion in crops due to higher CO2 levels, leading to diets that promote chronic diseases, including CVD. Women, because of their roles in food production and their unique physiological responses to nutrients, face distinct vulnerabilities. This review explores the interplay between climate change, diet, and cardiovascular health in women. The review highlights that sustainable diets, particularly the Mediterranean diet, offer health benefits and lower environmental impacts but are threatened by climate change-induced disruptions. Women's adherence to the Mediterranean diet is linked to significant reductions in CVD risk, though sex-specific responses need further research. Resilient agricultural practices, efficient water management, and climate-smart farming are essential to mitigate climate change's negative impacts on food security. Socio-cultural factors influencing women's dietary habits, such as traditional roles and societal pressures, further complicate the picture. Effective interventions must be tailored to women, emphasizing education, community support, policy changes, and media campaigns promoting healthy eating. Collaborative approaches involving policymakers, health professionals, and the agricultural sector are crucial for developing solutions that protect public health and promote sustainability. Addressing the multifaceted challenges posed by climate change to food quality and cardiovascular health in women underscores the need for integrated strategies that ensure food security, enhance diet quality, and mitigate environmental impacts.

16.
Foods ; 13(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39123629

ABSTRACT

The need to increase food safety and improve human health has led to a worldwide increase in interest in gamma-aminobutyric acid (GABA), produced by lactic acid bacteria (LABs). GABA, produced from glutamic acid in a reaction catalyzed by glutamate decarboxylase (GAD), is a four-carbon, non-protein amino acid that is increasingly used in the food industry to improve the safety/quality of foods. In addition to the possible positive effects of GABA, called a postbiotic, on neuroprotection, improving sleep quality, alleviating depression and relieving pain, the various health benefits of GABA-enriched foods such as antidiabetic, antihypertension, and anti-inflammatory effects are also being investigated. For all these reasons, it is not surprising that efforts to identify LAB strains with a high GABA productivity and to increase GABA production from LABs through genetic engineering to increase GABA yield are accelerating. However, GABA's contributions to food safety/quality and human health have not yet been fully discussed in the literature. Therefore, this current review highlights the synthesis and food applications of GABA produced from LABs, discusses its health benefits such as, for example, alleviating drug withdrawal syndromes and regulating obesity and overeating. Still, other potential food and drug interactions (among others) remain unanswered questions to be elucidated in the future. Hence, this review paves the way toward further studies.

17.
Sensors (Basel) ; 24(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39123968

ABSTRACT

Incorporating insect meals into poultry diets has emerged as a sustainable alternative to conventional feed sources, offering nutritional, welfare benefits, and environmental advantages. This study aims to monitor and compare volatile compounds emitted from raw poultry carcasses and subsequently from cooked chicken pieces from animals fed with different diets, including the utilization of insect-based feed ingredients. Alongside the use of traditional analytical techniques, like solid-phase microextraction combined with gas chromatography-mass spectrometry (SPME-GC-MS), to explore the changes in VOC emissions, we investigate the potential of S3+ technology. This small device, which uses an array of six metal oxide semiconductor gas sensors (MOXs), can differentiate poultry products based on their volatile profiles. By testing MOX sensors in this context, we can develop a portable, cheap, rapid, non-invasive, and non-destructive method for assessing food quality and safety. Indeed, understanding changes in volatile compounds is crucial to assessing control measures in poultry production along the entire supply chain, from the field to the fork. Linear discriminant analysis (LDA) was applied using MOX sensor readings as predictor variables and different gas classes as target variables, successfully discriminating the various samples based on their total volatile profiles. By optimizing feed composition and monitoring volatile compounds, poultry producers can enhance both the sustainability and safety of poultry production systems, contributing to a more efficient and environmentally friendly poultry industry.


Subject(s)
Chickens , Gas Chromatography-Mass Spectrometry , Larva , Volatile Organic Compounds , Animals , Volatile Organic Compounds/analysis , Gas Chromatography-Mass Spectrometry/methods , Larva/physiology , Insecta/physiology , Solid Phase Microextraction/methods , Meat/analysis , Nanostructures/chemistry , Animal Feed/analysis , Discriminant Analysis
18.
Polymers (Basel) ; 16(16)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39204476

ABSTRACT

The development of biopolymer-based films represents a promising direction in the packaging industry that responds to stringent needs for sustainability, reducing the ecological impact. Traditional fossil-derived polymers present major concerns because of their long decomposition time and their significant contribution to the pollution of the environment. On the contrary, biopolymers such as chitosan, PVA, and PLA offer viable alternatives. This study aimed to obtain an innovative pH indicator for smart packaging using a synthetic non-toxic anthocyanin analogue dye incorporated in bio-based films to indicate meat freshness and quality. The pH-responsive color-changing properties of the dye make it suitable for developing intelligent films to monitor food freshness. The obtained polymeric films were characterized by FT-IR and UV-VIS spectroscopy, and their thermal properties were assessed using thermogravimetric methods. Moisture content, swelling capacity, and water solubility of the polymeric films were also evaluated. The sensitivity of the biopolymer-flavylium composite films to pH variations was studied in the pH range of 2 to 12 and noticeable color variations were observed, allowing the monitoring of the meat's quality damage through pH changes. The pH-responsive films were applied directly on the surface or in the proximity of pork and chicken meat samples, to evaluate their colorimetric response to fresh and spoilt meat. This study can be the starting point for creating more durable packaging solutions leading to a circular economy.

19.
Int J Biol Macromol ; : 134249, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39209589

ABSTRACT

Detection and monitoring of ammonia (NH3) are crucial in various industries, including plant safety management, food freshness testing, and water pollution control. Nevertheless, creating portable, low-cost, highly sensitive, and easily regenerated ppm-level NH3 sensors poses a significant challenge. In this investigation, an innovative "ant-like tentacle" fabrication strategy was proposed, and a colorimetric fluorescent dual-signal gas-sensitive cotton fabric (PAH-fabric) for NH3 detection was successfully prepared by conventional dyeing using suitable molecular-level photoacid (PAH) sensitive units. The visual recognition lower detection limit of the ultra-low is 1.09 ppm-level. PAH-fabric is not only straightforward, convenient, and cost-effective to prepare, but it can also be efficiently regenerated and recycled multiple times (maintaining excellent gas-sensitive performance even after 100 cycles) by strategically leveraging volatile acid fumigation. Detailed molecular reaction mechanisms involved in the NH3 response and PAH-fabric regeneration are elucidated. PAH-fabric, available either as a portable kit or an alarm system, offers a promising approach for ultra-low NH3 detection. The demonstrated "ant-like tentacle" fabrication strategy introduces numerous possibilities for designing and developing sensors with adjustable response thresholds, particularly those requiring high sensitivity.

20.
Crit Rev Food Sci Nutr ; : 1-16, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39189894

ABSTRACT

X-ray diffraction (XRD) is an analytical technique that has found several applications focusing on the identification of crystal structure, space groups, plane, and orientation, in addition to qualitative and quantitative phase identification, and polymorphism behavior. An XRD diffractogram pattern/Bragg's peak can also provide valuable information that can be used for various food applications. While this review details the fundamental principles of XRD, the types of XRD systems, instrumentation, and the components thereof, the focus is to serve as a structured resource on explored applications of XRD in food, majorly revolving around food quality and safety. While recent studies relevant to the field are highlighted, leads for futuristic prospects are presented. With its unique approach, the XRD analysis can prove to be a rapid, robust, and sensitive nondestructive approach to food quality evaluation. Recent reports indicate its scope for nonconventional applications such as the assessment of 3D printability of foods, ice crystal formation, and screening food adulterants. Studies also highlight its scope to complement or replace conventional food quality testing approaches that involve the usage of chemicals, extensive sample preparation procedures, derivatization steps and demand long testing times.

SELECTION OF CITATIONS
SEARCH DETAIL