Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
J Forensic Sci ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39169518

ABSTRACT

Next-generation sequencing (NGS) technologies have expanded the spectrum of forensic DNA analysis by facilitating efficient and precise genotyping of a large number of genetic markers. Yet, challenges persist regarding complex sample processing and assurance of equal molar concentrations across pooled samples. Since optimal cluster density is crucial for sequencing performance, the determination of both quantity and quality is indispensable for library preparation. In this study, we investigated the application of the Agilent 2100 Bioanalyzer for library quality control, as studies for forensic approaches, particularly for highly degraded postmortem samples, are rare. Our analysis encompassed assessing total DNA concentrations, fluorescence unit (FU) values, and adapter dimer concentrations in purified DNA libraries derived from buccal swabs and tissue samples of decomposed corpses. The sensitivity study tested a serial dilution derived from buccal swabs and revealed a decrease in FU values and an increase in adapter dimers with declining DNA input concentrations. Deviations in total DNA concentrations and average peak heights between the Agilent 2100 Bioanalyzer runs indicated a lack of repeatability in data and presented challenges in accurate quantification, which was also observed in previous studies. Yet, the analysis of degraded samples from decomposed human remains has shown the ability to detect adapter dimer concentrations, which can be crucial for the quality of subsequent NGS library preparation and sequencing success. Therefore, the Agilent 2100 Bioanalyzer proves to be a valuable tool for NGS quality control.

2.
Electrophoresis ; 45(17-18): 1535-1545, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38884206

ABSTRACT

Devices of nanopore sequencing can be highly portable and of low cost. Thus, nanopore sequencing is promising in in-field forensic applications. Previous investigations have demonstrated that nanopore sequencing is feasible for genotyping forensic short tandem repeats (STRs) by using sequencers of Oxford Nanopore Technologies. Recently, Qitan Technology launched a new portable nanopore sequencer and became the second supplier in the world. Here, for the first time, we assess the QNome (QNome-3841) for its accuracy in nanopore sequencing of STRs and compare with MinION (MinION Mk1B). We profile 54 STRs of 21 unrelated individuals and 2800M standard DNA. The overall accuracy for diploid STRs and haploid STRs were 53.5% (378 of 706) and 82.7% (134 of 162), respectively, by using QNome. The accuracies were remarkably lower than those of MinION (diploid STRs, 84.5%; haploid, 90.7%), with a similar amount of sequencing data and identical bioinformatics analysis. Although it was not reliable for diploid STRs typing by using QNome, the haploid STRs were consistently correctly typed. The majority of errors (58.8%) in QNome-based STR typing were one-repeat deviations of repeat units in the error from true allele, related with homopolymers in repeats of STRs.


Subject(s)
Forensic Genetics , Microsatellite Repeats , Nanopore Sequencing , Microsatellite Repeats/genetics , Humans , Nanopore Sequencing/methods , Forensic Genetics/methods , Sequence Analysis, DNA/methods
4.
Forensic Sci Int Genet ; 71: 103055, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762965

ABSTRACT

Forensic Investigative Genetic Genealogy, a recent sub discipline of forensic genomics, leverages the high throughput and sensitivity of detection of next generation sequencing and established genetic and genealogical approaches to support the identification of human remains from missing persons investigations and investigative lead generation in violent crimes. To facilitate forensic DNA evidence analysis, the ForenSeq® Kintelligence multiplex, consisting of 10,230 SNPs, was developed. Design of the ForenSeq Kintelligence Kit, the MiSeq FGx® Sequencing System and the ForenSeq Universal Analysis Software is described. Developmental validation in accordance with SWGDAM guidelines and forensic quality assurance standards, using single source samples, is reported for the end-to-end workflow from library preparation to data interpretation. Performance metrics support the conclusion that more genetic information can be obtained from challenging samples compared to other commercially available forensic targeted DNA assays developed for capillary electrophoresis (CE) or other current next generation sequencing (NGS) kits due to the higher number of markers, the overall shorter amplicon sizes (97.8% <150 bp), and kit design. Data indicate that the multiplex is robust and fit for purpose for a wide range of quantity and quality samples. The ForenSeq Kintelligence Kit and the Universal Analysis Software allow transfer of the genetic component of forensic investigative genetic genealogy to the operational forensic laboratory.


Subject(s)
DNA Fingerprinting , High-Throughput Nucleotide Sequencing , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Software , Humans
5.
J Forensic Leg Med ; 103: 102678, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38522119

ABSTRACT

Target and flanking region (FR) variation at 94 identity-informative SNPs (iSNPs) are investigated in 635 Northern Han Chinese using the ForenSeq DNA Signature Prep Kit on the MiSeq FGx Forensic Genomics System. The dataset presents the following performance characteristics (average values): ≥60% bases with a quality score of 20 or higher (%≥ Q20); >700 × of depth of coverage (DoC) from both Sample Details Reports and Flanking Region Reports; >80% of effective reads; ≥60% of allele coverage ratio (ACR); and ≥70% of inter-locus balance, while some stable low-performance characteristics are also observed: low DoC at rs1736442, rs1031825, rs7041158, rs338882, rs2920816, rs1493232, rs719366, and rs2342747; high noise at rs891700; and imbalanced ACR at rs6955448 and rs338882. The average amplicon length is 69 bp, suitable for detecting degraded samples. Bioinformatic concordance achieves 99.99% between the ForenSeq Universal Analysis Software (UAS) and the Integrative Genomic Viewer (IGV) inspection. Discordance results from flanking region deletions of rs10776839, rs8078417, rs2831700, and rs1454361. Due to FR variants within amplicons detected by massively parallel sequencing (MPS), the increases in the number of unique alleles, effective alleles (Ae), and observed heterozygosity (Hobs) are 46.81%, 4.51%, and 3.29%, respectively. Twelve FR variants are first reported to dbSNP, such as rs1252699848, rs1665500714, rs1771121532, rs2097285015, rs1851671415, rs2045669877, rs2046758811, rs2044248635, rs1251308240, rs1968822112, rs1981638299, and rs1341756746. All 94 iSNPs from target and amplicon data are in Hardy-Weinberg equilibrium (HWE) and independent within autosomes. As expected, forensic parameters from the amplicon data increase significantly on the combined power of discrimination (CPD = 1 - 3.9876 × 10-38) and the combined power of exclusion (CPE = 1 - 6.6690 × 10-8). Additionally, the power of the system effectiveness (CPD = 1 - 6.7054 × 10-72 and CPE = 1 - 4.4719 × 10-20) with sequence-based 27 autosomal STRs and 94 iSNP amplicons in combination is substantially improved compared to one type of marker alone. In conclusion, we have established a traditional length-based and current sequence-based reference database with 58 STRs and 94 iSNPs in the Northern Han Chinese population. We hope these data can serve as a solid reference and foundation for forensic practice.


Subject(s)
DNA Fingerprinting , High-Throughput Nucleotide Sequencing , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Female , Humans , Male , China , East Asian People/genetics , Ethnicity/genetics
6.
Int J Legal Med ; 137(6): 1693-1703, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37731065

ABSTRACT

Mitochondrial DNA (mtDNA) is an indispensable genetic marker in forensic genetics. The emergence and development of massively parallel sequencing (MPS) makes it possible to obtain complete mitochondrial genome sequences more quickly and accurately. The study evaluated the advantages and limitations of the ForenSeq mtDNA Whole Genome Kit in the practical application of forensic genetics by detecting human genomic DNA standards and thirty-three case samples. We used control DNA with different amount to determine sensitivity of the assay. Even when the input DNA is as low as 2.5 pg, most of the mitochondrial genome sequences could still be covered. For the detection of buccal swabs and aged case samples (bloodstains, bones, teeth), most samples could achieve complete coverage of mitochondrial genome. However, when ancient samples and hair samples without hair follicles were sequenced by the kit, it failed to obtain sequence information. In general, the ForenSeq mtDNA Whole Genome Kit has certain applicability to forensic low template and degradation samples, and these results provide the data basis for subsequent forensic applications of the assay. The overall detection process and subsequent analysis are easy to standardize, and it has certain application potential in forensic cases.

7.
Forensic Sci Res ; 8(2): 152-162, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37621447

ABSTRACT

A total of 2 548 unrelated healthy father-son pairs from a Northern Han Chinese population were genotyped at 41 Y chromosomal short tandem repeat (Y-STRs) including DYS19, DYS388, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438, DYS439, DYS444, DYS447, DYS448, DYS449, DYS456, DYS458, DYS460, DYS481, DYS518, DYS522, DYS549, DYS533, DYS557, DYS570, DYS576, DYS593, DYS596, DYS627, DYS635, DYS643, DYS645, Y-GATA-H4, DYF387S1a/b, DYF404S1a/b, DYS385a/b, and DYS527a/b. In 2 548 father samples, 2 387 unique haplotypes were detected with the haplotype diversity and discrimination capacity values of 0.999 956 608 and 0.96 741 007. The average gene diversity (GD) value was 0.6934 with a range from 0.1051 at DYS645 to 0.9657 at DYS385a/b. When comparing alleles at 24 overlapped Y-STRs between the ForenSeq™ deoxyribonucleic acid (DNA) Signature Prep Kit on the MiSeq FGx® Forensic Genomics System and the Goldeneye® DNA ID Y Plus Kit on the Applied Biosystems™ 3730 DNA Analyzer from 308 father samples in mutational pairs, 258 alleles were detected by massively parallel sequencing (MPS) typing including 156 length-based alleles that could be obtained by capillary electrophoresis (CE) typing, 95 repeat region (RR) variant alleles and seven flanking region variant alleles. Hereof, we found 16 novel RR variant alleles and firstly identified two SNPs (rs2016239814 at DYS19 and rs2089968964 at DYS448) and one 4-bp deletion (rs2053269960 at DYS439) that had been validated by the Database of Short Genetic Variation. Sanger sequencing or MPS was employed to confirm 356 mutations from 104 468 allele transfers generated from CE, where 96.63% resulted in one-step mutations, 2.25% in two-step, and 1.12% in multi-step, and the overall ratio of repeat gains versus losses was balanced (173 gains vs. 183 losses). In 308 father-son pairs, 268 pairs occurred mutations at a single locus, 33 pairs at two loci, six pairs at three loci, and one pair at four loci. The average Y-STR mutation rate at 41 Y-STRs was ⁓3.4 × 10-3 (95% confidence intervals: 3.1 × 10-3-3.8 × 10-3). The mutation rates at DYS576 and DYS627 were higher than 1 × 10-2 in Northern Han Chinese, whilst the mutation rates at DYF387S1a/b, DYF404S1a/b, DYS449, DYS518, and DYS570 were lower than initially defined. In this study, the classical molecular factors (the longer STR region, the more complex motif and the order father) were confirmed to drive Y-STR mutation rates increased, but the length of repeat unit did not conform to the convention. Lastly, the interactive graphical and installable StatsY was developed to facilitate forensic scientists to automatically calculate allele and haplotype frequencies, forensic parameters, and mutation rates at Y-STRs. Key points: 308 of 2 548 father-son pairs from Northern Han Chinese occurred at least one mutation(s) across 41 Y-STRs.Sanger sequencing or MPS was employed to confirm those mutations generated from CE.The longer STR region, the more complex motif and the order father drove Y-STR mutation rates increased.StatsY was developed to calculate allele and haplotype frequencies, forensic parameters and mutation rates at Y-STRs.

8.
Methods Mol Biol ; 2685: 397-427, 2023.
Article in English | MEDLINE | ID: mdl-37439995

ABSTRACT

Sequencing forensic DNA samples that are amplified and prepared with the ForenSeq™ DNA Signature Prep Kit allows for the simultaneous targeting of forensically relevant STR and SNP markers. The MiSeq™ FGx system allows massively parallel sequencing of these markers in a single analysis. The library preparation targets autosomal, Y-, and X-STRs, as well as identity SNPs. The kit can also be used to generate investigative information regarding the DNA contributor by analyzing phenotypic SNPs to predict hair color, eye color, and ancestry SNPs.Through two rounds of amplification, all loci are amplified and tagged with individualizing barcodes for sequencing capture and identification. Using bead-based technology, the libraries are purified by the removal of left-over amplification reagents and then normalized to ensure equal representation of all samples during sequencing. The individual libraries are then pooled for insertion into the MiSeq FGx. The pooled libraries are then added to a pre-packaged cartridge that contains all reagents necessary for optimal sequencing. Libraries are captured on a flow cell and undergo bridge amplification for the generation of individual clusters. Sequencing of each cluster is performed using a Sequence-By-Synthesis technology. The following chapter describes the methodology and process of library preparation of samples using the ForenSeq™ DNA Signature Prep Kit Primer Set A and B. Once completed, the chapter then focuses on the setup of a sequencing run on the MiSeq FGx and the sequencing methodology employed by the instrument.


Subject(s)
DNA Fingerprinting , Microsatellite Repeats , DNA Fingerprinting/methods , Microsatellite Repeats/genetics , Reproducibility of Results , High-Throughput Nucleotide Sequencing/methods , Polymorphism, Single Nucleotide , DNA Primers , Sequence Analysis, DNA
9.
Forensic Sci Int Genet ; 65: 102879, 2023 07.
Article in English | MEDLINE | ID: mdl-37150076

ABSTRACT

Sequence polymorphisms were characterized at 27 autosomal STRs (A-STRs), 7 X chromosomal STRs (X-STRs), and 24 Y chromosomal STRs (Y-STRs) in 635 Northern Han Chinese with the ForenSeq DNA Signature Prep Kit on the MiSeq FGx Forensic Genomics System. Since repeat region (RR) and flanking region (FR) variation can be detected by massively parallel sequencing (MPS), the increase in the number of unique alleles and the average of gene diversity was 78.18% and 3.51% between sequence and length, respectively. A total of 74 novel RR variants were identified at 33 STRs compared with STRSeq and previous studies, and 13 FR variants (rs1770275883, rs2053373277, rs2082557941, rs1925525766, rs1926380862, rs1569322793, rs2051848492, rs2051848696, rs2016239814, rs2053269960, rs2044518192, rs2044536444, and rs2089968964) were first submitted to dbSNP. Also, 99.94% of alleles were concordant between the ForenSeq DNA Signature Prep Kit and commercial CE kits. Discordance resulted from the low performance at D22S1045 and occasionally at DYS392, flanking region deletions at D7S820 and DXS10074, and the strict alignment algorithm at DXS7132. Null alleles at DYS505 and DYS448 and multialleles at DYS387S1a/b, DYS385a/b, DYS448, DYS505, DXS7132, and HPRTB were validated with other MPS and CE kits. Thus, a high-resolution sequence-based (SB) and length-based (LB) allele frequencies dataset from Northern Han Chinese has been established already. As expected, forensic parameters increased significantly on combined power of discrimination (PD) and combined power of exclusion (PE) at A-STRs, mildly on combined PD and combined mean exclusion chance (MEC) at X-STRs, and barely on discrimination capacity (DC) at Y-STRs. Additionally, MiSeq FGx quality metrics and MPS performance were evaluated in this study, which presented the high-quality of the dataset at 20 consecutive runs, such as ≥ 60% bases with a quality score of 20 or higher (%≥ Q20), > 60% of effective reads, > 2000 × of depth of coverage (DoC), ≥ 60% of allele coverage ratio (ACR) or heterozygote balance, ≥ 70% of inter-locus balance, and ≤ 0.4 of the absolute value of observed minus expected heterozygosity (|Hexp - Hobs|). In conclusion, MiSeq FGx can help us generate a high-resolution and high-quality dataset for human identification and population genetic studies.


Subject(s)
DNA Fingerprinting , East Asian People , Humans , DNA , DNA Fingerprinting/methods , East Asian People/genetics , Genomics , Genotype , High-Throughput Nucleotide Sequencing/methods , Microsatellite Repeats , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
10.
Genes (Basel) ; 14(5)2023 05 22.
Article in English | MEDLINE | ID: mdl-37239480

ABSTRACT

Forensic genomic systems allow simultaneously analyzing identity informative (iiSNPs), ancestry informative (aiSNPs), and phenotype informative (piSNPs) genetic markers. Among these kits, the ForenSeq DNA Signature prep (Verogen) analyzes identity STRs and SNPs as well as 24 piSNPs from the HIrisPlex system to predict the hair and eye color. We report herein these 24 piSNPs in 88 samples from Monterrey City (Northeast, Mexico) based on the ForenSeq DNA Signature prep. Phenotypes were predicted by genotype results with both Universal Analysis Software (UAS) and the web tool of the Erasmus Medical Center (EMC). We observed predominantly brown eyes (96.5%) and black hair (75%) phenotypes, whereas blue eyes, and blond and red hair were not observed. Both UAS and EMC showed high performance in eye color prediction (p ≥ 96.6%), but a lower accuracy was observed for hair color prediction. Overall, UAS hair color predictions showed better performance and robustness than those obtained with the EMC web tool (when hair shade is excluded). Although we employed a threshold (p > 70%), we suggest using the EMC enhanced approach to avoid the exclusion of a high number of samples. Finally, although our results are helpful to employ these genomic tools to predict eye color, caution is suggested for hair color prediction in Latin American (admixed) populations such as those studied herein, principally when no black color is predicted.


Subject(s)
Eye Color , Hair Color , Humans , Eye Color/genetics , Hair Color/genetics , Mexico , Genotype , DNA/genetics
11.
Genes (Basel) ; 14(4)2023 04 14.
Article in English | MEDLINE | ID: mdl-37107670

ABSTRACT

Mitochondrial DNA (mtDNA) is an effective genetic marker in forensic practice, especially for aged bones and hair shafts. Detection of the whole mitochondrial genome (mtGenome) using traditional Sanger-type sequencing is laborious and time-consuming. Additionally, its ability to distinguish point heteroplasmy (PHP) and length heteroplasmy (LHP) is limited. The application of massively parallel sequencing in mtDNA detection helps researchers to study the mtGenome in-depth. The ForenSeq mtDNA Whole Genome Kit, which contains a total of 245 short amplicons, is one of the multiplex library preparation kits for the mtGenome. We used this system to detect the mtGenome in the blood samples and hair shafts of thirty-three individuals from eight two-generation pedigrees, one three-generation pedigree, and one four-generation pedigree. High-quality sequencing results were obtained. Ten unique mtGenome haplotypes were observed in the mothers from the ten pedigrees. A total of 26 PHPs were observed using the interpretation threshold of 6%. Eleven types of LHPs in six regions were evaluated in detail. When considering homoplasmic variants only, consistent mtGenome haplotypes were observed between the twice-sequenced libraries and between the blood and hair shafts from the same individual and among maternal relatives in the pedigrees. Four inherited PHPs were observed, and the remainder were de novo/disappearing PHPs in the pedigrees. Our results demonstrate the effective capability of the ForenSeq mtDNA Whole Genome Kit to generate the complete mtGenome in blood and hair shafts, as well as the complexity of mtDNA haplotype comparisons between different types of maternal relatives when heteroplasmy is considered.


Subject(s)
Genome, Mitochondrial , Humans , Aged , Genome, Mitochondrial/genetics , Pedigree , Forensic Genetics/methods , DNA, Mitochondrial/genetics , High-Throughput Nucleotide Sequencing/methods
12.
Forensic Sci Int Genet ; 64: 102851, 2023 05.
Article in English | MEDLINE | ID: mdl-36907074

ABSTRACT

For human identification purposes, forensic genetics has primarily relied upon a core set of autosomal (and to a lesser extent Y chromosome) short tandem repeat (STR) markers that are enriched by amplification using the polymerase chain reaction (PCR) that are subsequently separated and detected using capillary electrophoresis (CE). While STR typing conducted in this manner is well-developed and robust, advances in molecular biology that have occurred over the last 15 years, in particular massively parallel sequencing (MPS) [1-7], offer certain advantages as compared to CE-based typing. First and foremost is the high throughput capacity of MPS. Current bench top high throughput sequencers enable larger batteries of markers to be multiplexed and multiple samples to be sequenced simultaneously (e.g., millions to billions of nucleotides can be sequenced in one run). Second, compared to the length-based CE approach, sequencing STRs increases discrimination power, enhances sensitivity of detection, reduces noise due to instrumentation, and improves mixture interpretation [4,8-23]. Third, since detection of STRs is based on sequence and not fluorescence, amplicons can be designed that are shorter in length and of similar lengths among loci, where possible, which can improve amplification efficiency and analysis of degraded samples. Lastly, MPS offers a single format approach that can be applied to analysis of a wide variety of genetic markers of forensic interest (e.g., STRs, mitochondrial DNA, single nucleotide polymorphisms, insertion/deletions). These features make MPS a desirable technology for casework [14,15,24,25-48]. The developmental validation of the ForenSeq MainstAY library preparation kit with the MiSeq FGx Sequencing System and ForenSeq Universal Software is reported here to assist with validation of this MPS system for casework [49]. The results show that the system is sensitive, accurate and precise, specific, and performs well with mixtures and mock case-type samples.


Subject(s)
DNA Fingerprinting , High-Throughput Nucleotide Sequencing , Humans , DNA Fingerprinting/methods , Polymerase Chain Reaction , INDEL Mutation , Microsatellite Repeats , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
13.
Sci Justice ; 62(5): 547-555, 2022 09.
Article in English | MEDLINE | ID: mdl-36336448

ABSTRACT

Recognizing and interpreting mixtures are challenges that occur frequently in forensic casework. Therefore, any new analysis methods that are implemented must handle the challenges of mixed forensic samples. Next generation sequencing offers advantages over capillary electrophoresis in amplicon multiplexing and degraded sample analysis; however, advantages with mixed samples rely heavily on the advancement of user-friendly analysis software. This research analyzed samples with the ForenSeq™ DNA Signature Prep Kit on the MiSeq FGx® and compared them with the GlobalFiler™ STR Kit for capillary electrophoresis. Metrics tested for both chemistries included concordance, limits of detection, and mixture analysis. Data analysis for mixture samples was completed with the MixtureAce™ plug-in and ArmedXpert™ software. Next generation sequencing offered distinct advantages in limits of detection and isoallele heterozygosity but suffered from increased variability in stutter and allele count ratios compared to capillary electrophoresis.


Subject(s)
DNA Fingerprinting , Microsatellite Repeats , Humans , DNA Fingerprinting/methods , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Reproducibility of Results , Sequence Analysis, DNA , DNA
14.
Forensic Sci Int Genet ; 61: 102781, 2022 11.
Article in English | MEDLINE | ID: mdl-36182794

ABSTRACT

We have developed MPSproto as an extension of EuroForMix to improve handling of stutter artefacts and other typing errors that commonly occur in MPS-STR data. MPSproto implements two models for read depth: gamma and negative binomial. It differs from EuroForMix in that calibration is required before mixtures are interpreted. In this study a mixture dataset (2-4 persons) was revisited, where EuroForMix interpretation of MPS-STR mixtures using the LUS+ format was first described; the performance of this model was compared to the MPSproto models. Results indicated that, overall, the MPSproto models performed better than the conventional EuroForMix model, and the gamma model implemented in MPSproto performed best. Differences were highlighted and further investigated to establish causality. Goodness of fit tests showed that the MPSproto models were adequate for the sequence reads when a low analytical threshold was applied.


Subject(s)
DNA Fingerprinting , Microsatellite Repeats , Humans , DNA Fingerprinting/methods , Software , Artifacts
15.
Forensic Sci Int Genet ; 61: 102769, 2022 11.
Article in English | MEDLINE | ID: mdl-36087514

ABSTRACT

Forensic genetic genealogy (FGG) has primarily relied upon dense single nucleotide polymorphism (SNP) profiles from forensic samples or unidentified human remains queried against online genealogy database(s) of known profiles generated with SNP microarrays or from whole genome sequencing (WGS). In these queries, SNPs are compared to database samples by locating contiguous stretches of shared SNP alleles that allow for detection of genomic segments that are identical by descent (IBD) among biological relatives (kinship). This segment-based approach, while robust for detecting distant relationships, generally requires DNA quantity and/or quality that are sometimes not available in forensic casework samples. By focusing on SNPs with maximal discriminatory power and using an algorithm designed for a sparser SNP set than those from microarray typing, performance similar to segment matching was reached even in difficult casework samples. This algorithm locates shared segments using kinship coefficients in "windows" across the genome. The windowed kinship algorithm is a modification of the PC-AiR and PC-Relate tools for genetic relatedness inference, referred to here as the "whole genome kinship" approach, that control for the presence of unknown or unspecified population substructure. Simulated and empirical data in this study, using DNA profiles comprised of 10,230 SNPs (10K multiplex) targeted by the ForenSeq™ Kintelligence Kit demonstrate that the windowed kinship approach performs comparably to segment matching for identifying first, second and third degree relationships, reasonably well for fourth degree relationships, and with fewer false kinship associations. Selection criteria for the 10K SNP PCR-based multiplex and functionality of the windowed kinship algorithm are described.


Subject(s)
DNA Fingerprinting , Polymorphism, Single Nucleotide , Humans , Pedigree , Alleles , Polymerase Chain Reaction
16.
Forensic Sci Int Genet ; 61: 102768, 2022 11.
Article in English | MEDLINE | ID: mdl-35994887

ABSTRACT

The introduction of massively parallel sequencing in forensic analysis has been facilitated with typing kits, analysis software and allele naming tools such as the ForenSeq DNA Signature Prep (DSP) kit, FDSTools and STRNaming respectively. Here we describe how FDSTools 2.0 with integrated and refined STRNaming nomenclature was validated for implementation under ISO 17025 accreditation for the ForenSeq DSP kit. Newly-added options result in efficient automatic allele calling for the majority of markers while specific settings are applied for 'novel' sequence variants to avoid the calling of remaining variable noise observed in samples sequenced with the ForenSeq DSP kit that seem to arise in the PCR. Genome-wide built-in reference data allows for greatly simplified configuration of allele naming for human targets.


Subject(s)
DNA Fingerprinting , Microsatellite Repeats , Humans , High-Throughput Nucleotide Sequencing , Alleles , DNA , Sequence Analysis, DNA , Polymorphism, Single Nucleotide
17.
Forensic Sci Res ; 7(2): 154-162, 2022.
Article in English | MEDLINE | ID: mdl-35784409

ABSTRACT

Massively parallel sequencing (MPS) offers a useful alternative to capillary electrophoresis (CE) based analysis of human identification markers in forensic genetics. By sequencing short tandem repeats (STRs) instead of determining the fragment lengths by CE, the sequence variation within the repeat region and the flanking regions may be identified. In this study, we typed 264 Uyghur individuals using the MiSeq FGx™ Forensic Genomics System and Primer Mix A of the ForenSeq™ DNA Signature Prep Kit that amplifies 27 autosomal STRs, 25 Y-STRs, seven X-STRs, and 94 HID-SNPs. STRinNGS v.1.0 and GATK 3.6 were used to analyse the STR regions and HID-SNPs, respectively. Increased allelic diversity was observed for 33 STRs with the PCR-MPS assay. The largest increases were found in DYS389II and D12S391, where the numbers of sequenced alleles were 3-4 times larger than those of alleles determined by repeat length alone. A relatively large number of flanking region variants (28 SNPs and three InDels) were observed in the Uyghur population. Seventeen of the flanking region SNPs were rare, and 12 of these SNPs had no accession number in dbSNP. The combined mean match probability and typical paternity index based on 26 sequenced autosomal STRs were 3.85E-36 and 1.49E + 16, respectively. This was 10 000 times lower and 1 000 times higher, respectively, than the same parameters calculated from STR repeat lengths.Key PointsSequencing data on STRs and SNPs used for human identification are presented for the Uyghur population.STRinNGS v.1.0 was used to analyse the flanking regions of STRs.The concordance between PCR-CE and PCR-MPS results was 99.86%.Detection of sequence variation in STRs and their flanking regions increased the allelic diversity.

18.
Mol Biol Rep ; 49(8): 7601-7609, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35657453

ABSTRACT

BACKGROUND: STR allele frequency databases from populations are necessary to take full advantage of the increased power of discrimination offered by massively parallel sequencing (MPS) platforms. MATERIAL AND METHODS: For this reason, we sequenced 58 STRs (aSTRs, X-STRs, and Y-STRs) and 94 identity informative SNPs (iiSNPs) on 105 Mestizo (admixed) individuals from Monterrey City (Northeast, Mexico), with the Primer Set-A of the ForenSeq™ DNA Signature Prep Kit. RESULTS: Most of the STR markers were in Hardy Weinberg equilibrium, with a few exceptions. We found 346 different length-based alleles for these 58 STRs; nevertheless, they became 528 alleles when the sequence was assessed. The combined power of discrimination from autosomal STRs (aSTRs) was -virtually- 100% in both length and sequence-based alleles, while the power of exclusion was 99.9999999976065 and 99.9999999999494%, respectively. Haplotypes based on X-STRs and Y-STRs showed 100% of discriminatory capacity. CONCLUSIONS: These results provide -for the first time- forensic genomic population data from Mexico necessary for interpretation in kinship and criminal analyses.


Subject(s)
DNA Fingerprinting , Polymorphism, Single Nucleotide , DNA , Gene Frequency/genetics , High-Throughput Nucleotide Sequencing , Humans , Mexico , Microsatellite Repeats/genetics , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA
19.
J Forensic Sci ; 67(4): 1382-1398, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35318655

ABSTRACT

The proceeding developments in next generation sequencing (NGS) technologies enable increasing discrimination power for short tandem repeat (STR) analyses and provide new possibilities for human identification. Therefore, the growing relevance and demand in forensic casework display the need for reliable validation studies and experiences with challenging DNA samples. The presented validation of the MiSeq FGx system and the ForenSeq™ DNA Signature Prep Kit (1) investigated sensitivity, repeatability, reproducibility, concordance, pooling variations, DNA extraction method variances, DNA mixtures, degraded, and casework samples and (2) optimized the sequencing workflow for challenging samples from human corpses by testing additional PCR purification, pooling adjustments, and adapter volume reductions. Overall results indicate the system's reliability in concordance to traditional capillary electrophoresis (CE)-based genotyping and reproducibility of sequencing data. Genotyping success rates of 100% were obtained down to 62.5 pg DNA input concentrations. Autosomal STR (aSTR) profiles of artificially degraded samples revealed significantly lower numbers of locus and allelic dropouts than CE. However, it was observed that the system still exposed drawbacks when sequencing highly degraded and inhibited samples from human remains. Due to the lack of studies evaluating the sequencing success of samples from decomposed or skeletonised corpses, the presented optimisation studies provide valuable recommendations such as an additional PCR purification, an increase in library pooling volumes, and a reduction of adapter volumes for samples with concentrations ≥31.2 pg. Thus, this research highlights the importance of all-encompassing validation studies for implementing novel technologies in forensic casework and presents recommendations for challenging samples.


Subject(s)
DNA Fingerprinting , High-Throughput Nucleotide Sequencing , Cadaver , DNA/genetics , DNA Fingerprinting/methods , Forensic Genetics/methods , Genotype , High-Throughput Nucleotide Sequencing/methods , Humans , Microsatellite Repeats , Polymorphism, Single Nucleotide , Reproducibility of Results , Sequence Analysis, DNA
20.
Sci Justice ; 62(1): 1-9, 2022 01.
Article in English | MEDLINE | ID: mdl-35033321

ABSTRACT

Kinship recognition between anonymous DNA samples is becoming a relevant issue in forensics, more so with the increasing number of DNA profiles in databanks. Also, NGS-based genotyping is being increasingly used in routine personal identification, to simultaneously type large numbers of markers of different kind. In the present work, we explored computationally and experimentally the performance of the ForenSeq™ DNA Signature Prep Kit in identifying the true relationship between two anonymous samples, distinguishing it from other possible relationships. We analyzed with Familias R series of 10,000 pairs with 9 different simulated relationships, corresponding to different degrees of autosomal sharing. For each pair we obtained likelihood ratios for five kinship hypotheses vs. unrelatedness, and used their ranking to identify the preferred relationship. We also typed 21 subjects from two pedigrees, representing from parent-child to 4th cousins relationships. As expected, the power for identifying the true relationship decays in the order of autosomal sharing. Parent-child and full siblings can be robustly identified against other relationships. For half-siblings the chance of reaching a significant conclusion is already small. For more distant relationships the proportion of cases correctly and significantly identified is 10% or less. Bidirectional errors in kinship attribution include the suggestion of relatedness when this does not exist (10-50%), and the suggestion of independence in pairs of individuals more than 4 generations apart (25-60%). The real cases revealed a relevant effect of genotype miscalling at some loci, which could only be partly avoided by modulating the analysis parameters. In conclusion, with the exception of first degree relatives, the kit can be useful to inform additional investigations, but does not usually provide probatory results.


Subject(s)
DNA Fingerprinting , Microsatellite Repeats , DNA Fingerprinting/methods , Genotype , High-Throughput Nucleotide Sequencing/methods , Humans , Pedigree , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL