Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 170
Filter
1.
Neurobiol Dis ; : 106641, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39159894

ABSTRACT

STriatal-Enriched protein tyrosine Phosphatase (STEP) is a brain-specific tyrosine phosphatase that is associated with numerous neurological and neuropsychiatric disorders. STEP dephosphorylates and inactivates various kinases and phosphatases critical for neuronal function and health including Fyn, Pyk2, ERK1/2, p38, and PTPα. Importantly, STEP dephosphorylates NMDA and AMPA receptors, two major glutamate receptors that mediate fast excitatory synaptic transmission. This STEP-mediated dephosphorylation leads to their internalization and inhibits both Hebbian synaptic potentiation and homeostatic synaptic scaling. Hence, STEP has been widely accepted to weaken excitatory synaptic strength. However, emerging evidence implicates a novel role of STEP in neuronal hyperexcitability and seizure disorders. Genetic deletion and pharmacological blockade of STEP reduces seizure susceptibility in acute seizure mouse models and audiogenic seizures in a mouse model of Fragile X syndrome. Pharmacologic inhibition of STEP also decreases hippocampal activity and neuronal intrinsic excitability. Here, we will highlight the divergent roles of STEP in excitatory synaptic transmission and neuronal intrinsic excitability, present the potential underlying mechanisms, and discuss their impact on STEP-associated neurologic and neuropsychiatric disorders.

2.
Cell ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39106863

ABSTRACT

It is currently not known whether mRNAs fulfill structural roles in the cytoplasm. Here, we report the fragile X-related protein 1 (FXR1) network, an mRNA-protein (mRNP) network present throughout the cytoplasm, formed by FXR1-mediated packaging of exceptionally long mRNAs. These mRNAs serve as an underlying condensate scaffold and concentrate FXR1 molecules. The FXR1 network contains multiple protein binding sites and functions as a signaling scaffold for interacting proteins. We show that it is necessary for RhoA signaling-induced actomyosin reorganization to provide spatial proximity between kinases and their substrates. Point mutations in FXR1, found in its homolog FMR1, where they cause fragile X syndrome, disrupt the network. FXR1 network disruption prevents actomyosin remodeling-an essential and ubiquitous process for the regulation of cell shape, migration, and synaptic function. Our findings uncover a structural role for cytoplasmic mRNA and show how the FXR1 RNA-binding protein as part of the FXR1 network acts as an organizer of signaling reactions.

3.
Exp Eye Res ; 246: 110015, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39089568

ABSTRACT

Fragile X Syndrome (FXS), the most common inherited form of human intellectual disability, is a monogenic neurodevelopmental disorder caused by a loss-of-function mutation of the FMR1 gene. FMR1 is encoding the Fragile X Messenger Ribonucleo Protein (FMRP) an RNA-binding protein that regulates the translation of synaptic proteins. The absence of FMRP expression has many important consequences on synaptic plasticity and function, leading to the FXS clinical phenotype. Over the last decade, a visual neurosensorial phenotype had been described in the FXS patients as well as in the murine model (Fmr1-/ymice), characterized by retinal deficits associated to retinal perception alterations. However, although the transcriptomic profile in the absence of FMRP has been studied in the cerebral part of the central nervous system (CNS), there are no actual data for the retina which is an extension of the CNS. Herein, we investigate the transcriptomic profile of mRNA from whole retinas of Fmr1-/ymice. Interestingly, we found a specific signature of Fmrp absence on retinal mRNA expression with few common genes compared to other brain studies. Gene Ontology on these retinal specific genes demonstrated an enrichment in retinal development genes as well as in synaptic genes. These alterations could be linked to the reported retinal phenotype of the FXS condition. In conclusion, we describe for the first time, retinal-specific transcriptomic changes in the absence of FMRP.


Subject(s)
Disease Models, Animal , Fragile X Mental Retardation Protein , Fragile X Syndrome , Retina , Transcriptome , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Animals , Mice , Retina/metabolism , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Mice, Inbred C57BL , Gene Expression Profiling , Mice, Knockout , Gene Expression Regulation/physiology , Male
4.
Article in English | MEDLINE | ID: mdl-39134393

ABSTRACT

BACKGROUND: Self-determination refers to setting goals and making decisions regarding one's own life with support from others as needed. Research on people with intellectual and developmental disabilities has established the importance of self-determination for quality of life outcomes, such as increased independence and life satisfaction. However, self-determination has not been characterised specifically in fragile X syndrome (FXS), the leading inherited cause of intellectual disability. Relative to youth with other forms of intellectual and developmental disabilities, youth with FXS may face exceptional barriers to the development of self-determined behaviour. In addition to intellectual disability, the FXS behavioural profile is characterised by high rates of autism and anxiety that may further limit opportunities for youth with FXS. The heritable nature of the condition can also yield a distinctive family environment, with siblings and parents also living with fragile X or its associated conditions. Considering these unique challenges, the present study examined self-determination in young adult males and females with FXS and explored whether factors such as language skills, adaptive behaviour and autism traits were associated with self-determination capacity and opportunities. METHODS: The present study included 9 females and 36 males with FXS between the ages of 17 and 25 years. Caregivers (mothers or fathers) completed the American Institute for Research Self-Determination Assessment, which is a questionnaire that yields three scores: self-determination capacity, opportunities for self-determination at home and opportunities for self-determination at school. RESULTS: Caregivers endorsed a wide range of self-determination capacity and opportunities, with ratings for opportunities at home and school exceeding ratings of capacity. Better adaptive behaviour skills were associated with more self-determination capacity, and the presence of more autism traits was associated with fewer opportunities at school. CONCLUSIONS: Results from this study contribute to our understanding of avenues to best support young adults with FXS as they transition to adulthood. Our findings also have implications for practice, such that interventions targeting adaptive behaviours and self-determination may be an effective approach for promoting autonomy and independence for young adults with FXS. Additionally, caregivers and educators should continue to provide opportunities to practise self-determination, regardless of their perception of capacity.

5.
J Neuropsychiatry Clin Neurosci ; : appineuropsych20230215, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39113493

ABSTRACT

OBJECTIVE: The purpose of the present study was to assess the psychiatric manifestations of early to middle stages of fragile X-associated tremor-ataxia syndrome (FXTAS) and their relationship with executive function and FMR1 cytosine-guanine-guanine (CGG) repeat numbers across genders. METHODS: Cross-sectional data from 100 participants (62 men, 38 women; mean±SD age=67.11±7.90 years) with FXTAS stage 1, 2, or 3 were analyzed, including demographic information, cognitive measures, psychiatric assessments (Symptom Checklist-90-Revised and Behavioral Dyscontrol Scale-II [BDS-II]), and CGG repeat number. RESULTS: Participants with FXTAS stage 3 exhibited significantly worse psychiatric outcomes compared with participants with either stage 1 or 2, with distinct gender-related differences. Men showed differences in anxiety and hostility between stage 3 and combined stages 1 and 2, whereas women exhibited differences in anxiety, depression, interpersonal sensitivity, obsessive-compulsive symptoms, and somatization, as well as in the Global Severity Index, the Positive Symptom Distress Index, and the Positive Symptom Total. Among male participants, negative correlations were observed between BDS-II total scores and obsessive-compulsive symptoms, as well as between anxiety and CGG repeat number. CONCLUSIONS: These findings suggest that even at early FXTAS stages, patients have significant cognitive and other psychiatric symptoms, with notable gender-specific differences. This study underscores the clinical and prognostic relevance of comorbid psychiatric conditions in FXTAS, highlighting the need for early intervention and targeted support for individuals with relatively mild motor deficits.

6.
J Autism Dev Disord ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39102069

ABSTRACT

PURPOSE: Our purpose was to report on a novel method of identifying variables associated with challenging behaviors in natural interactions between mothers and their adolescents with Fragile X syndrome (FXS). METHODS: Videotaped interactions of 47 dyads interacting with an iPad game, completing a puzzle, and making a snack and were coded for challenging behaviors by adolescents with FXS, and maternal behaviors that preceded these behaviors. We described the frequencies of adolescent challenging behaviors, then used sequential and survival analyses to identify maternal and adolescent behaviors that preceded self-injurious behavior (SIB) and aggression. RESULTS: Across all the dyads, 109 instances of SIB and 79 instances of aggression were identified during the 30 min of recorded interaction. Most of these challenging behaviors occurred during the iPad activity. The sequential analysis indicated that maternal requests for behavioral compliance frequently preceded both SIB and aggression. Survival analyses revealed that the likelihood of SIB or aggression was increased if the mothers requested behavioral compliance after the child engaged in another challenging behavior. CONCLUSION: Challenging behaviors including SIB and aggression were frequently observed in many participants. The sequential and survival analyses were useful for identifying precursors to these behaviors. Further research is needed to investigate preventative strategies based on the results of sequential and survival analyses.

7.
Elife ; 122024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953282

ABSTRACT

The enhancement of associative synaptic plasticity often results in impaired rather than enhanced learning. Previously, we proposed that such learning impairments can result from saturation of the plasticity mechanism (Nguyen-Vu et al., 2017), or, more generally, from a history-dependent change in the threshold for plasticity. This hypothesis was based on experimental results from mice lacking two class I major histocompatibility molecules, MHCI H2-Kb and H2-Db (MHCI KbDb-/-), which have enhanced associative long-term depression at the parallel fiber-Purkinje cell synapses in the cerebellum (PF-Purkinje cell LTD). Here, we extend this work by testing predictions of the threshold metaplasticity hypothesis in a second mouse line with enhanced PF-Purkinje cell LTD, the Fmr1 knockout mouse model of Fragile X syndrome (FXS). Mice lacking Fmr1 gene expression in cerebellar Purkinje cells (L7-Fmr1 KO) were selectively impaired on two oculomotor learning tasks in which PF-Purkinje cell LTD has been implicated, with no impairment on LTD-independent oculomotor learning tasks. Consistent with the threshold metaplasticity hypothesis, behavioral pre-training designed to reverse LTD at the PF-Purkinje cell synapses eliminated the oculomotor learning deficit in the L7-Fmr1 KO mice, as previously reported in MHCI KbDb-/-mice. In addition, diazepam treatment to suppress neural activity and thereby limit the induction of associative LTD during the pre-training period also eliminated the learning deficits in L7-Fmr1 KO mice. These results support the hypothesis that cerebellar LTD-dependent learning is governed by an experience-dependent sliding threshold for plasticity. An increased threshold for LTD in response to elevated neural activity would tend to oppose firing rate stability, but could serve to stabilize synaptic weights and recently acquired memories. The metaplasticity perspective could inform the development of new clinical approaches for addressing learning impairments in autism and other disorders of the nervous system.


Subject(s)
Disease Models, Animal , Fragile X Mental Retardation Protein , Fragile X Syndrome , Mice, Knockout , Purkinje Cells , Animals , Fragile X Syndrome/physiopathology , Fragile X Syndrome/genetics , Mice , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Purkinje Cells/metabolism , Neuronal Plasticity , Male , Learning
8.
Res Sq ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38946987

ABSTRACT

Fragile X syndrome (FXS) is a rare neurodevelopmental disorder caused by a CGG repeat expansion ≥ 200 repeats in 5' untranslated region of the FMR1 gene, leading to intellectual disability and cognitive difficulties, including in the domain of communication. A recent phase 2a clinical trial testing BPN14770, a phosphodiesterase 4D inhibitor, showed improved cognition in 30 adult males with FXS on drug relative to placebo. The initial study found significant improvements in clinical measures assessing cognition, language, and daily functioning in addition to marginal improvements in electroencephalography (EEG) results for the amplitude of the N1 event-related potential (ERP) component. EEG results suggest BPN14770 improved neural hyperexcitability in FXS. The current study investigated the relationship between BPN14770 pharmacokinetics (PK) and the amplitude of the N1 ERP component from the initial data. Consistent with the original group-level finding in period 1 of the study, participants who received BPN14770 in the period 1 showed a significant correlation between N1 amplitude and serum concentration of BPN14770. These findings strengthen the validity of the original result, indicating that BPN14770 improves cognitive performance by modulating neural hyperexcitability. This study represents the first report of significant correlation between a reliably abnormal EEG marker and serum concentration of a novel pharmaceutical in FXS.

9.
Elife ; 132024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012692

ABSTRACT

Behavioral and pharmaceutical interventions reverse defects associated with increased cerebellar long-term depression in a mouse model of Fragile X syndrome.


Subject(s)
Cerebellum , Disease Models, Animal , Fragile X Syndrome , Learning , Animals , Fragile X Syndrome/physiopathology , Cerebellum/physiology , Mice , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism
10.
Front Cell Neurosci ; 18: 1393536, 2024.
Article in English | MEDLINE | ID: mdl-39022311

ABSTRACT

Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and a monogenic cause of autism spectrum disorders. Deficiencies in the fragile X messenger ribonucleoprotein, encoded by the FMR1 gene, lead to various anatomical and pathophysiological abnormalities and behavioral deficits, such as spine dysmorphogenesis and learning and memory impairments. Synaptic cell adhesion molecules (CAMs) play crucial roles in synapse formation and neural signal transmission by promoting the formation of new synaptic contacts, accurately organizing presynaptic and postsynaptic protein complexes, and ensuring the accuracy of signal transmission. Recent studies have implicated synaptic CAMs such as the immunoglobulin superfamily, N-cadherin, leucine-rich repeat proteins, and neuroligin-1 in the pathogenesis of FXS and found that they contribute to defects in dendritic spines and synaptic plasticity in FXS animal models. This review systematically summarizes the biological associations between nine representative synaptic CAMs and FMRP, as well as the functional consequences of the interaction, to provide new insights into the mechanisms of abnormal synaptic development in FXS.

11.
Biol Psychiatry ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950809

ABSTRACT

BACKGROUND: Exaggerated responses to sensory stimuli, a hallmark of fragile X syndrome, contribute to anxiety and learning challenges. Sensory hypersensitivity is recapitulated in the Fmr1 knockout (KO) mouse model of fragile X syndrome. Recent studies in Fmr1 KO mice have demonstrated differences in the activity of cortical interneurons and a delayed switch in the polarity of GABA (gamma-aminobutyric acid) signaling during development. Previously, we reported that blocking the chloride transporter NKCC1 with the diuretic bumetanide could rescue synaptic circuit phenotypes in the primary somatosensory cortex (S1) of Fmr1 KO mice. However, it remains unknown whether bumetanide can rescue earlier circuit phenotypes or sensory hypersensitivity in Fmr1 KO mice. METHODS: We used acute and chronic systemic administration of bumetanide in Fmr1 KO mice and performed in vivo 2-photon calcium imaging to record neuronal activity, while tracking mouse behavior with high-resolution videos. RESULTS: We demonstrated that layer 2/3 pyramidal neurons in the S1 of Fmr1 KO mice showed a higher frequency of synchronous events on postnatal day 6 than wild-type controls. This was reversed by acute administration of bumetanide. Furthermore, chronic bumetanide treatment (postnatal days 5-14) restored S1 circuit differences in Fmr1 KO mice, including reduced neuronal adaptation to repetitive whisker stimulation, and ameliorated tactile defensiveness. Bumetanide treatment also rectified the reduced feedforward inhibition of layer 2/3 neurons in the S1 and boosted the circuit participation of parvalbumin interneurons. CONCLUSIONS: This further supports the notion that synaptic, circuit, and sensory behavioral phenotypes in Fmr1 KO can be mitigated by inhibitors of NKCC1, such as the Food and Drug Administration-approved diuretic bumetanide.

12.
Int J Mol Sci ; 25(14)2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39063191

ABSTRACT

Fragile X syndrome (FXS) is caused by the full mutation in the FMR1 gene on the Xq27.3 chromosome region. It is the most common monogenic cause of autism spectrum disorder (ASD) and inherited intellectual disability (ID). Besides ASD and ID and other symptoms, individuals with FXS may exhibit sleep problems and impairment of circadian rhythm (CR). The Drosophila melanogaster models of FXS, such as dFMR1B55, represent excellent models for research in the FXS field. During this study, sleep patterns and CR in dFMR1B55 mutants were analyzed, using a new platform based on continuous high-resolution videography integrated with a highly-customized version of an open-source software. This methodology provides more sensitive results, which could be crucial for all further research in this model of fruit flies. The study revealed that dFMR1B55 male mutants sleep more and can be considered weak rhythmic flies rather than totally arrhythmic and present a good alternative animal model of genetic disorder, which includes impairment of CR and sleep behavior. The combination of affordable videography and software used in the current study is a significant improvement over previous methods and will enable broader adaptation of such high-resolution behavior monitoring methods.


Subject(s)
Circadian Rhythm , Disease Models, Animal , Drosophila melanogaster , Fragile X Mental Retardation Protein , Fragile X Syndrome , Sleep , Animals , Fragile X Syndrome/genetics , Circadian Rhythm/genetics , Drosophila melanogaster/genetics , Sleep/physiology , Fragile X Mental Retardation Protein/genetics , Male , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Behavior, Animal , Mutation , Video Recording , Female
13.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000085

ABSTRACT

Fragile X syndrome (FXS) is an intellectual developmental disorder characterized, inter alia, by deficits in the short-term processing of neural information, such as sensory processing and working memory. The primary cause of FXS is the loss of fragile X messenger ribonucleoprotein (FMRP), which is profoundly involved in synaptic function and plasticity. Short-term synaptic plasticity (STSP) may play important roles in functions that are affected by FXS. Recent evidence points to the crucial involvement of the presynaptic calcium sensor synaptotagmin-7 (Syt-7) in STSP. However, how the loss of FMRP affects STSP and Syt-7 have been insufficiently studied. Furthermore, males and females are affected differently by FXS, but the underlying mechanisms remain elusive. The aim of the present study was to investigate possible changes in STSP and the expression of Syt-7 in the dorsal (DH) and ventral (VH) hippocampus of adult males and females in a Fmr1-knockout (KO) rat model of FXS. We found that the paired-pulse ratio (PPR) and frequency facilitation/depression (FF/D), two forms of STSP, as well as the expression of Syt-7, are normal in adult KO males, but the PPR is increased in the ventral hippocampus of KO females (6.4 ± 3.7 vs. 18.3 ± 4.2 at 25 ms in wild type (WT) and KO, respectively). Furthermore, we found no gender-related differences, but did find robust region-dependent difference in the STSP (e.g., the PPR at 50 ms: 50.0 ± 5.5 vs. 17.6 ± 2.9 in DH and VH of WT male rats; 53.1 ± 3.6 vs. 19.3 ± 4.6 in DH and VH of WT female rats; 48.1 ± 2.3 vs. 19.1 ± 3.3 in DH and VH of KO male rats; and 51.2 ± 3.3 vs. 24.7 ± 4.3 in DH and VH of KO female rats). AMPA receptors are similarly expressed in the two hippocampal segments of the two genotypes and in both genders. Also, basal excitatory synaptic transmission is higher in males compared to females. Interestingly, we found more than a twofold higher level of Syt-7, not synaptotagmin-1, in the dorsal compared to the ventral hippocampus in the males of both genotypes (0.43 ± 0.1 vs. 0.16 ± 0.02 in DH and VH of WT male rats, and 0.6 ± 0.13 vs. 0.23 ± 0.04 in DH and VH of KO male rats) and in the WT females (0.97 ± 0.23 vs. 0.31 ± 0.09 in DH and VH). These results point to the susceptibility of the female ventral hippocampus to FMRP loss. Importantly, the different levels of Syt-7, which parallel the higher score of the dorsal vs. ventral hippocampus on synaptic facilitation, suggest that Syt-7 may play a pivotal role in defining the striking differences in STSP along the long axis of the hippocampus.


Subject(s)
Disease Models, Animal , Fragile X Mental Retardation Protein , Fragile X Syndrome , Hippocampus , Neuronal Plasticity , Synaptotagmins , Animals , Female , Male , Rats , Fragile X Mental Retardation Protein/metabolism , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/metabolism , Fragile X Syndrome/genetics , Fragile X Syndrome/physiopathology , Hippocampus/metabolism , Synaptotagmins/metabolism , Synaptotagmins/genetics
14.
Trends Neurosci ; 47(8): 583-592, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39054162

ABSTRACT

Intellectual disability is defined as limitations in cognitive and adaptive behavior that often arise during development. Disordered sleep is common in intellectual disability and, given the importance of sleep for cognitive function, it may contribute to other behavioral phenotypes. Animal models of intellectual disability, in particular of monogenic intellectual disability syndromes (MIDS), recapitulate many disease phenotypes and have been invaluable for linking some of these phenotypes to specific molecular pathways. An emerging feature of MIDS, in both animal models and humans, is the prevalence of metabolic abnormalities, which could be relevant for behavior. Focusing on specific MIDS that have been molecularly characterized, we review sleep, circadian, and metabolic phenotypes in animal models and humans and propose that altered metabolic state contributes to the abnormal sleep/circadian phenotypes in MIDS.


Subject(s)
Intellectual Disability , Sleep Wake Disorders , Humans , Intellectual Disability/genetics , Intellectual Disability/physiopathology , Animals , Sleep Wake Disorders/genetics , Sleep Wake Disorders/physiopathology , Disease Models, Animal
15.
bioRxiv ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39005428

ABSTRACT

Sound sensitivity is one of the most common sensory complaints for people with autism spectrum disorders (ASDs). How and why sounds are perceived as overwhelming by affected people is unknown. To process sound information properly, the brain requires high activity and fast processing, as seen in areas like the medial nucleus of the trapezoid body (MNTB) of the auditory brainstem. Recent work has shown dysfunction in mitochondria, which are the primary source of energy in cells, in a genetic model of ASD, Fragile X syndrome (FXS). Whether mitochondrial functions are also altered in sound-processing neurons, has not been characterized yet. To address this question, we imaged the MNTB in a mouse model of FXS. We stained MNTB brain slices from wild-type and FXS mice with two mitochondrial markers, TOMM20 and PMPCB, located on the Outer Mitochondrial Membrane and in the matrix, respectively. These markers allow exploration of mitochondrial subcompartments. Our integrated imaging pipeline reveals significant sex-specific differences in the degree of mitochondrial length in FXS. Significant differences are also observable in the overall number of mitochondria in male FXS mice, however, colocalization analyses between TOMM20 and PMPCB reveal that the integrity of these compartments is most disrupted in female FXS mice. We highlight a quantitative fluorescence microscopy pipeline to monitor mitochondrial functions in the MNTB from control or FXS mice and provide four complementary readouts. Our approach paves the way to understanding how cellular mechanisms important to sound encoding are altered in ASDs.

16.
Orphanet J Rare Dis ; 19(1): 264, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997701

ABSTRACT

BACKGROUND AND OBJECTIVES: Fragile X Syndrome (FXS) is the most common cause of inherited intellectual disability, caused by CGG-repeat expansions (> 200) in the FMR1 gene leading to lack of expression. Espansion between 55 and 200 triplets fall within the premutation range (PM) and can lead to different clinical conditions, including fragile X- primary ovarian insufficiency (FXPOI), fragile X-associated neuropsychiatric disorders (FXAND) and fragile X-associated tremor/ataxia syndrome (FXTAS). Although there is not a current cure for FXS and for the Fragile X-PM associated conditions (FXPAC), timely diagnosis as well as the implementation of treatment strategies, psychoeducation and behavioral intervention may improve the quality of life (QoL) of people with FXS or FXPAC. With the aim to investigate the main areas of concerns and the priorities of treatment in these populations, the Italian National Fragile X Association in collaboration with Bambino Gesù Children's Hospital, conducted a survey among Italian participants. METHOD: Here, we present a survey based on the previous study that Weber and colleagues conducted in 2019 and that aimed to investigate the main symptoms and challenges in American individuals with FXS. The survey has been translated into Italian language to explore FXS needs of treatment also among Italian individuals affected by FXS, family members, caretakers, and professionals. Furthermore, we added a section designated only to people with PM, to investigate the main symptoms, daily living challenges and treatment priorities. RESULTS: Anxiety, challenging behaviors, language difficulties and learning disabilities were considered the major areas of concern in FXS, while PM was reported as strongly associated to cognitive problems, social anxiety, and overthinking. Anxiety was reported as a treatment priority in both FXS and PM. CONCLUSION: FXS and PM can be associated with a range of cognitive, affective, and physical health complications. Taking a patient-first perspective may help clinicians to better characterize the cognitive-behavioral phenotype associated to these conditions, and eventually to implement tailored therapeutic approaches.


Subject(s)
Fragile X Mental Retardation Protein , Fragile X Syndrome , Fragile X Syndrome/genetics , Fragile X Syndrome/therapy , Humans , Fragile X Mental Retardation Protein/genetics , Female , Italy , Male , Surveys and Questionnaires , Adult , Quality of Life , Middle Aged , Ataxia/genetics , Ataxia/therapy , Young Adult , Adolescent , Tremor/genetics , Tremor/therapy , Child
17.
Proc Natl Acad Sci U S A ; 121(31): e2407546121, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39042682

ABSTRACT

Fragile X syndrome (FXS) is the most common genetic cause of autism spectrum disorder engendered by transcriptional silencing of the fragile X messenger ribonucleoprotein 1 (FMR1) gene. Given the early onset of behavioral and molecular changes, it is imperative to know the optimal timing for therapeutic intervention. Case reports documented benefits of metformin treatment in FXS children between 2 and 14 y old. In this study, we administered metformin from birth to Fmr1-/y mice which corrected up-regulated mitogen-2 activated protein kinase/extracellular signal-regulated kinase and mammalian/mechanistic target of rapamycin complex 1 signaling pathways and specific synaptic mRNA-binding targets of FMRP. Metformin rescued increased number of calls in ultrasonic vocalization and repetitive behavior in Fmr1-/y mice. Our findings demonstrate that in mice, early-in-life metformin intervention is effective in treating FXS pathophysiology.


Subject(s)
Fragile X Mental Retardation Protein , Fragile X Syndrome , Metformin , Metformin/pharmacology , Metformin/therapeutic use , Fragile X Syndrome/drug therapy , Fragile X Syndrome/genetics , Fragile X Syndrome/physiopathology , Fragile X Syndrome/metabolism , Animals , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Mice , Male , Mice, Knockout , Mechanistic Target of Rapamycin Complex 1/metabolism , Disease Models, Animal , Signal Transduction/drug effects
18.
Article in English | MEDLINE | ID: mdl-39074527

ABSTRACT

Fragile X Syndrome (FXS) stands out as a prominent cause of inherited intellectual disability and a prevalent disorder closely linked to autism. FXS is characterized by substantial alterations in social behavior, encompassing social withdrawal, avoidance of eye contact, heightened social anxiety, increased arousal levels, language deficits, and challenges in regulating emotions. Conventional behavioral assessments primarily focus on short-term interactions within controlled settings. In this study, we conducted a comprehensive examination of the adaptive group behavior of Fmr1 KO male mice over a three-day period, without introducing experimental interventions or task-based evaluations. The data unveiled intricate behavioral anomalies, with the most significant changes manifesting during the initial adaptation to unfamiliar environments. Notably, certain behaviors exhibited a gradual return to typical patterns over time. This dynamic Fmr1 KO phenotype exhibited heightened activity, featuring increased exploration, amplified social interest, and an unconventional approach to social interactions characterized by a higher frequency of shorter engagements. These findings contribute to the growing understanding of social behavior in individuals with FXS and underscore the significance of comprehending their adaptive responses in various environmental contexts.

19.
J Neurosci ; 44(31)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38969506

ABSTRACT

Although hyperactivity is associated with a wide variety of neurodevelopmental disorders, the early embryonic origins of locomotion have hindered investigation of pathogenesis of these debilitating behaviors. The earliest motor output in vertebrate animals is generated by clusters of early-born motor neurons (MNs) that occupy distinct regions of the spinal cord, innervating stereotyped muscle groups. Gap junction electrical synapses drive early spontaneous behavior in zebrafish, prior to the emergence of chemical neurotransmitter networks. We use a genetic model of hyperactivity to gain critical insight into the consequences of errors in motor circuit formation and function, finding that Fragile X syndrome model mutant zebrafish are hyperexcitable from the earliest phases of spontaneous behavior, show altered sensitivity to blockade of electrical gap junctions, and have increased expression of the gap junction protein Connexin 34/35. We further show that this hyperexcitable behavior can be rescued by pharmacological inhibition of electrical synapses. We also use functional imaging to examine MN and interneuron (IN) activity in early embryogenesis, finding genetic disruption of electrical gap junctions uncouples activity between mnx1 + MNs and INs. Taken together, our work highlights the importance of electrical synapses in motor development and suggests that the origins of hyperactivity in neurodevelopmental disorders may be established during the initial formation of locomotive circuits.


Subject(s)
Electrical Synapses , Fragile X Syndrome , Motor Neurons , Zebrafish Proteins , Zebrafish , Animals , Fragile X Syndrome/physiopathology , Fragile X Syndrome/genetics , Electrical Synapses/physiology , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Motor Neurons/physiology , Disease Models, Animal , Connexins/genetics , Connexins/metabolism , Animals, Genetically Modified , Hyperkinesis/physiopathology , Interneurons/physiology , Interneurons/metabolism , Gap Junctions/drug effects , Gap Junctions/metabolism , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism
20.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230221, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38853554

ABSTRACT

Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and is the leading known single-gene cause of autism spectrum disorder. Patients with FXS display varied behavioural deficits that include mild to severe cognitive impairments in addition to mood disorders. Currently, there is no cure for this condition; however, there is an emerging focus on therapies that inhibit mechanistic target of rapamycin (mTOR)-dependent protein synthesis owing to the clinical effectiveness of metformin for alleviating some behavioural symptoms in FXS. Adiponectin (APN) is a neurohormone that is released by adipocytes and provides an alternative means to inhibit mTOR activation in the brain. In these studies, we show that Fmr1 knockout mice, like patients with FXS, show reduced levels of circulating APN and that both long-term potentiation (LTP) and long-term depression (LTD) in the dentate gyrus (DG) are impaired. Brief (20 min) incubation of hippocampal slices in APN (50 nM) was able to rescue both LTP and LTD in the DG and increased both the surface expression and phosphorylation of GluA1 receptors. These results provide evidence for reduced APN levels in FXS playing a role in decreasing bidirectional synaptic plasticity and show that therapies which enhance APN levels may have therapeutic potential for this and related conditions.This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Subject(s)
Adiponectin , Dentate Gyrus , Disease Models, Animal , Fragile X Mental Retardation Protein , Fragile X Syndrome , Mice, Knockout , Neuronal Plasticity , Animals , Fragile X Syndrome/physiopathology , Fragile X Syndrome/drug therapy , Fragile X Syndrome/metabolism , Dentate Gyrus/metabolism , Dentate Gyrus/drug effects , Mice , Neuronal Plasticity/drug effects , Fragile X Mental Retardation Protein/metabolism , Fragile X Mental Retardation Protein/genetics , Adiponectin/metabolism , Long-Term Potentiation/drug effects , Male , Receptors, AMPA/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL