Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 652(Pt B): 1217-1227, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37657221

ABSTRACT

Electric-driven freshwater/seawater splitting is an attractive and sustainable route to realize the generation of H2 and O2. Molybdenum-based oxides exhibit poor activity toward freshwater/seawater electrolysis. Herein, we adjusted the electronic structure of MoO2 by constructing N-doped carbon sheets supported P-Fe3O4-MoO2 nanosheets (P-Fe3O4-MoO2/NC). P-Fe3O4-MoO2/N-doped carbon sheets were precisely prepared by pyrolysis of Schiff base Fe complex and MoO3 nanosheets through phosphorization. Benefiting from the unique structures of the samples, it required 119/145 mV to drive freshwater/seawater reduction reaction at 10 mA/cm2. P-Fe3O4-MoO2/NC catalysts exhibited superior freshwater/seawater oxidation reactivity with 180/189 mV at 10 mA/cm2 compared with commercial RuO2. The low cell voltages for P-Fe3O4-MoO2/NC were 1.47 and 1.59 V towards freshwater and seawater electrolysis, respectively. Our work might shed light on the structural modulation of Mo-based oxides for enhancing freshwater and seawater electrolysis activity.

SELECTION OF CITATIONS
SEARCH DETAIL