Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Food Chem X ; 23: 101513, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38911471

ABSTRACT

The refined wheat flour was mixed with different types of wheat starch in different addition levels, their microstructure, chemical bonds in the dough and baking characteristics of 0-8 weeks frozen dough bread were studied. With the increase of A-Type starch granules and whole wheat starch, the pores of gluten network first decreased and then increased. Conversely, an increase in B-Type starch granules consistently reduced gluten network porosity. With the increase of whole wheat starch, the content of free sulfhydryl group and hydrophobic interaction decreased gradually. Minimal additions of B-Type granules were found to enhance the specific volume of fresh bread, whereas increased quantities improved the specific volume of frozen dough bread. The addition of a small quantity of A- or B-Type granules enhances the freezing stability of bread. This study provides effective information for elucidating the effects of wheat starch on the frozen dough and bread properties in protein-starch matrix.

2.
Food Chem ; 454: 139853, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38823200

ABSTRACT

The effects of SHP on the texture, rheological properties, starch crystallinity and microstructure of frozen dough were investigated. The efficacy of SHP in enhancing dough quality is concentration-dependent, with frozen dough containing 1.5% SHP exhibiting hardness comparable to fresh dough without SHP (221.31 vs. 221.42 g). Even at 0.5% SHP, there is a noticeable improvement in frozen dough quality. The rheological results showed that the viscoelasticity of dough increased with higher SHP concentration. What's more, XRD and SEM results indicated that the SHP's hydrophilicity reduces the degree of starch hydrolysis, slows down the damage of starch particles during freezing, and consequently lowers the crystallinity of starch. Additionally, CLSM observations revealed that SHP enhances the gluten network structure, diminishing the appearance of holes. Therefore, the physical, chemical properties, and microstructure of frozen dough with SHP demonstrate significant enhancement, suggesting SHP's promising antifreeze properties and potential as a food antifreeze agent.


Subject(s)
Flour , Freezing , Glycine max , Polysaccharides , Rheology , Flour/analysis , Polysaccharides/chemistry , Glycine max/chemistry , Bread/analysis , Viscosity , Starch/chemistry
3.
Food Chem ; 453: 139709, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38781908

ABSTRACT

As an emerging physical technology, magnetic fields have been used to improve the quality of frozen and refrigerated foods. This study compared the effect of applying a static magnetic field (2 mT) at different stages of freezing and storage on the quality of frozen dough. Results suggested that the magnetic field significantly impacted frozen dough quality. It not only prevented the formation of ice crystals during the pre-freezing stage but also inhibited ice crystal growth during the following frozen storage. This effect helped to maintain the integrity of gluten proteins and their adhesion to starch granules by preventing the breakage of disulfide bonds and the depolymerization of gluten macromolecules. It was also observed that yeast inactivation and glutathione release were reduced, resulting in improved air retention and air production capacity of the dough. This, in turn, led to a more appealing volume and texture quality of the finished bread.


Subject(s)
Bread , Flour , Freezing , Magnetic Fields , Triticum , Triticum/chemistry , Bread/analysis , Flour/analysis , Glutens/chemistry , Glutens/analysis , Cooking
4.
J Sci Food Agric ; 104(10): 6062-6069, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38441143

ABSTRACT

BACKGROUND: The objective of this investigation was to examine the impact of enzymatic hydrolysis of arabinoxylan (AX) on frozen dough quality under subfreezing conditions. The dough was subjected to freezing at -40 °C for 2 h and then stored at -9, -12, and -18 °C for 15 days. The water loss, freezable water content, water migration, and microstructure of the dough were measured. RESULTS: The dough containing 0.8% cellulase enzymatically hydrolyzed AX (CAX) required the shortest duration when traversing the maximum ice-crystal formation zone (6.5 min). The dough with xylanase enzymatically hydrolyzed AX (XAX) demonstrated a faster freezing rate than the dough with CAX. The inclusion of both XAX and CAX in the dough resulted in the lowest freezable water loss and reduced freezable water content and free-water content levels, whereas the inclusion of xylanase-cellulase combined with enzymatically hydrolyzed AX resulted in higher free-water content levels. The textural properties of the subfreezing temperature dough were not significantly different from the dough stored at -18 °C and sometimes even approached or surpassed the quality observed in the control group rather than the dough stored at -18 °C. In addition, the gluten network structure remains well preserved in XAX- and CAX-containing doughs with minimal starch damage. CONCLUSION: The enzymatic hydrolysis of AX from wheat bran can be used as a useful additive to improve the quality of frozen dough. © 2024 Society of Chemical Industry.


Subject(s)
Flour , Freezing , Triticum , Xylans , Xylans/chemistry , Xylans/metabolism , Hydrolysis , Flour/analysis , Triticum/chemistry , Triticum/metabolism , Water/chemistry , Cellulase/chemistry , Cellulase/metabolism , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/metabolism , Bread/analysis , Food Handling/methods
5.
Foods ; 13(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38540860

ABSTRACT

This study investigated the effects of dough proofing degree (1.1, 1.3, 1.5, and 1.7 mL/g) and carboxymethyl cellulose sodium (CMC-Na) on the quality of frozen dough steamed bread (FDSB). As the dough proofing degree was increased from 1.1 to 1.7 mL/g, the specific volume of FDSB initially increased and then decreased, with the maximum at 1.3 mL/g, and then dramatically decreased at 1.5 and 1.7 mL/g, accompanied by a harder texture and secession of crust and crumb, which were the detrimental effects brought by over-proofing. The optimal amount of CMC-Na effectively alleviated the deterioration associated with over-proofing, and the proofing tolerance of FDSB was increased from 1.3 mL/g to 1.7 mL/g. Fermentation analysis showed that CMC-Na significantly improved the extensibility and gas-holding capacity of the dough by increasing the maximum height of the dough (Hm) and the emergence time (T1) of Hm. Frequency sweep tests indicated that CMC-Na improved the plasticity of proofed dough by increasing loss factor tan δ. Significant reductions were found in peak viscosity and complex modulus G* in pasting properties tests and temperature sweep measurements, respectively, suggesting that CMC-Na influenced starch gelatinization and dough stiffening during steaming, which promoted the extension of the network structure, thus facilitating gas expansion and diffusion. These property changes theoretically explained the improvement in the proofing tolerance of FDSB by CMC-Na.

6.
Food Chem X ; 22: 101269, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38495456

ABSTRACT

In recent years, the production of prepared and frozen foods has increased with economic development. However, during freezing, moisture migration forms ice crystals that damage food structure and reduce quality. This study investigates moisture migration changes in pre-fermented dough during frozen storage and effectiveness of Citrus fibre (CF) and Soya dietary fibre (SDF) on quality improvement. Pre-fermented frozen dough properties were evaluated at different freezing storage days with CF and SDF. Results showed frozen storage reduced water retention, converting deeply bound water to weakly bound and free water. Freezable water content increased significantly from 53% (fresh) to 56.95% (60d-control), forming disruptive ice crystals in gluten protein structure. SDF had superior water flow restriction compared to CF, preventing large ice crystal accumulation, enhancing water-holding capacity, and maintaining gluten protein structure. These findings lay a theoretical foundation for improving quality and industrial applications of pre-fermented frozen dough.

7.
Food Chem ; 447: 138932, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38484546

ABSTRACT

The thawing method is critical for the final quality of products based on the frozen dough. The effects of ultrasound thawing, proofer thawing, refrigerator thawing, water bath thawing, ambient thawing, and microwave thawing on the rheology, texture, water distribution, fermentation characteristics, and microstructure of frozen dough and the properties of steamed bread were investigated. The results indicated that the ultrasound thawing dough had better physicochemical properties than other doughs. It was found that ultrasound thawing restrained the water migration of dough, improved its rheological properties and fermentation capacity. The total gas volume value of the ultrasound thawing dough was reduced by 21.35% compared with that of unfrozen dough. The ultrasound thawing dough displayed a thoroughly uniform starch-gluten network, and an enhanced the specific volume and internal structure of the steamed bread. In conclusion, ultrasound thawing effectively mitigated the degradation of the frozen dough and enhanced the quality of steamed bread.


Subject(s)
Bread , Steam , Bread/analysis , Water/chemistry , Glutens/chemistry , Freezing , Flour/analysis
8.
Food Chem ; 445: 138713, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38364495

ABSTRACT

In the study, a sweet wine koji (YQ-5) was successfully selected to make frozen Chinese sweet rice wine dough (F-CD) for flavor enrichment. Subsequently, the effects of single improver (SI: xanthan gum, potassium carbonate, antifreeze protein, diacetyl tartaric esters of monoglycerides and composite improver (XPADG: Four improvers mixed in proportion) on the texture, rheological properties, microstructure, water status, protein secondary structure, volatile flavor substances and sensory properties of F-CD during frozen storage were investigated. The results indicated that XPADG slowed the increase in freezable water and water mobility in the dough, giving dough the most stable rheological properties and minimizing the damage of freezing to the secondary structure and microstructure of proteins. Besides, GC-QTOF/MS analysis showed that XPADG may facilitate the retention of flavoring substances in F-CD after storage for 6 days. Finally, the sensory evaluation showed that XPADG imparted good sensory properties to the product after freezing for 6 days.


Subject(s)
Glutens , Wine , Glutens/chemistry , Water/chemistry , Freezing , Bread , China
9.
J Sci Food Agric ; 104(4): 1928-1941, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37932850

ABSTRACT

BACKGROUND: The increased demand for healthy and standardized bread has led to a demand for an efficient and promising dough improver, of natural origin, to reduce the deterioration of whole wheat bread baked from frozen dough caused by the high levels of dietary fiber and by freezing treatment. In this study, the combined effects of xylanase (XYL), lipase (LIP), and xanthan gum (XAN) on the quality attributes and functional properties of whole wheat bread baked from frozen dough were evaluated. RESULTS: The optimal combination, which contained XYL (0.12 g kg-1 ), LIP (0.25 g kg-1 ), and XAN (3.1 g kg-1 ), was obtained using response surface methodology (RSM). The addition of the optimal combination endowed frozen dough bread with a higher specific volume, softer texture, better brown crumb color, and greater overall acceptability. The optimal combination had no adverse impact on the volatile organic compounds (VOCs) of frozen dough bread. In terms of the functional properties of bread, the water-holding capacity (WHC), oil-holding capacity (OHC), and swelling capacity (SWC) of dietary fiber in frozen dough bread decreased in the presence of the optimal combination, whereas the glucose adsorption capacity (GAC) did not affect them. Correspondingly, the in vitro digestive glucose release was not significantly different between the control group and the optimal combination group after frozen storage. CONCLUSION: The optimal combination could improve the quality attributes and functional properties of whole wheat bread baked from frozen dough effectively, thereby increasing consumption. © 2023 Society of Chemical Industry.


Subject(s)
Bread , Triticum , Triticum/chemistry , Freezing , Dietary Fiber , Colloids , Glucose , Flour
10.
Int J Biol Macromol ; 255: 128202, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37979748

ABSTRACT

Frozen dough technology has been widely used in the food industry at home and abroad due to its advantages of extending shelf life, preventing aging, and facilitating refrigeration and transportation. However, during the transportation and storage process of frozen dough, the growth and recrystallization of ice crystals caused by temperature fluctuations can lead to a deterioration in the quality of the dough, resulting in poor sensory characteristics of the final product and decreased consumption, which limits the large-scale application of frozen dough. In response to this issue, antifreeze proteins (AFPs) could be used as a beneficial additive to frozen dough that can combine with ice crystals, modify the ice crystal morphology, reduce the freezing point of water, and inhibit the recrystallization of ice crystals. Because of its special structure and function, it can well alleviate the quality deterioration problem caused by ice crystal recrystallization during frozen storage of dough, especially the plant-derived AFPs, which have a prominent effect on inhibiting ice crystal recrystallization. In this review, we introduce the characteristics and mechanisms of action of plant-derived AFPs. Furthermore, the application of plant-derived AFPs in frozen dough are also discussed.


Subject(s)
Ice , Plant Proteins , Freezing , Plant Proteins/chemistry , Cryoprotective Agents , Antifreeze Proteins/chemistry
11.
Food Chem ; 440: 138194, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38104447

ABSTRACT

The effects of apple fiber on gluten structure and corresponding frozen dough quality during frozen storage were studied. The addition of 0.50% and 0.75% apple fiber effectively preserved gluten structure by inhibiting the breakage of disulfide bonds and promoting the formation of hydrogen bonds. Notably, the presence of 0.75% apple fiber increased the ß-turn of gluten from 29.60% to 33.84%. Fiber-enriched frozen dough exhibited a smoother and more compact microstructure, but excessive fiber addition (more than 1.00%) had adverse effects. The freezable water content of frozen dough decreased as fiber addition increased. Correspondingly, the addition of 1.50% apple fiber resulted in a 56.08% increase in storage modulus, indicating improved viscoelasticity of the dough. Consequently, the addition of 0.50% and 0.75% apple fiber alleviated the quality deterioration of frozen dough bread in terms of larger specific volume, softer and more uniform crumb.


Subject(s)
Malus , Glutens/chemistry , Viscosity , Dietary Fiber , Bread
12.
Food Chem ; 439: 138143, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38103490

ABSTRACT

The use of frozen dough is an intensive food-processing practice that contributes to the development of chain operations in the bakery industry. However, the fermentation activity of yeasts in frozen dough can be severely damaged by freeze-thaw stress, thereby degrading the final bread quality. In this study, chickpea protein hydrolysate significantly improved the quality of steamed bread made from frozen dough while enhancing the yeast survival rate and maintaining yeast cell structural integrity under freeze-thaw stress. The mechanism underlying this protective role of chickpea protein hydrolysate was further investigated by untargeted metabolomics analysis, which suggested that chickpea protein hydrolysate altered the intracellular metabolites associated with central carbon metabolism, amino acid synthesis, and lipid metabolism to improve yeast cell freeze-thaw tolerance. Therefore, chickpea protein hydrolysate is a promising natural antifreeze component for yeast cryopreservation in the frozen dough industry.


Subject(s)
Cicer , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae/metabolism , Cicer/metabolism , Protein Hydrolysates/metabolism , Freezing , Saccharomyces cerevisiae Proteins/metabolism , Fermentation , Bread/analysis
13.
J Sci Food Agric ; 104(2): 620-628, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37649403

ABSTRACT

BACKGROUND: With the development of the food industry, frozen dough technology has gradually become an indispensable part of dough processing but its quality is often reduced due to freezing during the production process. Electrostatic field-assisted freezing (EF) technology, a key research project in recent years, reduces the physical damage to food materials by reducing or changing the size of ice crystals in frozen products. RESULTS: In this study, different intensities of electrostatic fields were used to assist in the repeated freezing and thawing of dough. The effects of electrostatic fields on the freezing nucleation process were evaluated by measuring dough freezing curves, low field nuclear magnetic resonance, and melting enthalpy. It was found that the freezing time of frozen dough added with electrostatic field-assisted freezing processing was shortened, the rate at which hardness, viscosity, and elasticity decreased was reduced, and the indicators of water distribution and protein secondary structure components were closer to those of fresh dough. CONCLUSION: This experiment used electrostatic field-assisted freezing to reduce the damage to the dough structure during the freezing process, improve the quality of frozen dough and fried products, and improve the freezing efficiency of frozen dough. It provides a new idea for the study of frozen dough. © 2023 Society of Chemical Industry.


Subject(s)
Bread , Flour , Freezing , Static Electricity , Water/chemistry
14.
Foods ; 12(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37959007

ABSTRACT

Frozen dough is suitable for industrial cold chain transportation, but usually experiences temperature fluctuations through the cold chain to the store after being refrigerated in a factory, seriously damaging the product yield. In order to analyze the influence mechanism of temperature fluctuation during the terminal cold chain on frozen dough, the effects of terminal freezing and thawing (TFT) on the quality (texture and rheology) and component (water, starch, protein) behaviors of dough were investigated. Results showed that the TFT treatment significantly increased the hardness and decreased the springiness of dough and that the storage modules were also reduced. Furthermore, TFT increased the content of freezable water and reduced the bound water with increased migration. Additionally, the peak viscosity and breakdown value after TFT with the increased number of cycles were also increased. Moreover, the protein characteristics showed that the low-molecular-weight region and the ß-sheet in the gluten secondary structure after the TFT treatment were increased, which was confirmed by the increased number of free sulfhydryl groups. Microstructure results showed that pores and loose connection were observed during the TFT treatment. In conclusion, the theoretical support was provided for understanding and eliminating the influence of the terminal nodes in a cold chain.

15.
Food Chem X ; 19: 100832, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37780272

ABSTRACT

Curdlan was effective in alleviating quality deterioration of frozen dough during storage. This research explored the mechanisms from perspectives of fermentation properties, water state and gluten structure of frozen dough during storage, and the performance of corresponding steamed bread. Results showed that curdlan addition improved the gas-releasing capability and gas-holding capability of frozen dough, meanwhile enhanced the specific volume and textural properties of corresponding steamed bread. The melting enthalpy and NMR results demonstrated that curdlan restricted the conversation of bound water into freezable water, and inhibited the moisture migration in frozen dough. Frozen dough with 0.5% curdlan had significantly lower gluten macropolymers (GMP) depolymerization degree and free sulfhydryl (SH) content than the control, indicating that curdlan alleviated the depolymerization of GMP. Microstructure results proved that the deterioration of the structure was retarded by curdlan. This study contributes to understanding the theories for curdlan alleviating the deterioration of frozen dough during storage.

16.
Int J Biol Macromol ; 253(Pt 6): 127191, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37804886

ABSTRACT

Chinese Jiuniang (CJ) is a flavorful and nutritious food, but underutilized in frozen dough (FD) production. In addition, frozen storage can harm FD's gluten structure and degrade quality and flavor. Therefore, the impacts of two excellent protective agents (XG-Xanthan Gum; PC-Potassium Carbonate) on frozen Jiuniang dough (F-JD) quality and flavor during dynamic freezing were investigated. The results suggested that adding XG conferred F-JD with good processing stability, maintained the bound water levels, stabilized rheological properties, diminished ice crystal damage to the protein structure, and inhibited the increase in frozen water content during the freezing process. In contrast, although PC reduced free water production during freezing, it increased dough hardness and offered less protein protection than XG. Additionally, GC-QTOF/MS analysis showed that adding XG during freezing increased the relative content of pleasant flavor compounds like Phenylethyl Alcohol and decreased undesirable ones like Hexanal. Moreover, PC lowered the relative content of undesirable flavor substances (Formic acid) but reduced the relative content of beneficial flavor compounds (1-Hexanol). Importantly, the study confirmed that XG maintained the new F-JD product's storage quality during dynamic freezing. In conclusion, this study broadens CJ's application possibilities and provides new insights into mechanisms for preserving F-JD's quality and flavor.


Subject(s)
Glutens , Water , Freezing , Glutens/chemistry , Water/chemistry
17.
Int J Biol Macromol ; 253(Pt 6): 127280, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37806419

ABSTRACT

This study was designed to investigate the properties of chia seed gum (CSG) and its use in frozen dough. The CSG prepared by vacuum freeze-drying had the lowest water separation (4.22 ± 0.11 %) after three freeze-thaw cycles and the best color among the samples. The addition of 0.4 % to 1.0 % CSG significantly increased the peak, trough and final viscosity and decreased the breakdown and setback of the flour. The water absorption and cooking stability of the dough increased with increasing CSG content. The addition of 0.8 %-1.0 % CSG significantly increased the content of strongly bound water in dough during frozen storage. The CSG improved the texture of dough, and there were no significant differences in hardness, springiness, cohesiveness or chewiness of dough with 0.8 %-1.0 % CSG during frozen storage for 30 days. The cooking loss rate and the cracking rate of the dumpling wrappers with 0.8 % CSG were reduced by 2.31 % and 21.34 %, respectively. In conclusion, CSG can be used to improve the quality of wheat dough and its products and has promising applications in flour products.


Subject(s)
Cooking , Water , Water/chemistry , Chemical Phenomena , Seeds/chemistry , Flour/analysis
18.
Foods ; 12(20)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37893738

ABSTRACT

The effect of casein savinase hydrolysate (CSH) usage on frozen dough (1%, 1.5% and 2%, g/100 g flour) was investigated in terms of rheological, thermal and structural characteristics of wheat doughs and the textural and color properties of corresponding breads. Rheological measurements showed that CSH addition into dough led to a reduction in G' and G″ values, but a similar trend was not observed in frozen dough samples. The increase in protein band intensity was observed for control dough (CD) after frozen storage (-30 °C, 28 days), while there were no increases in the band intensities of the doughs with CSH. The freezable water content of unfrozen doughs decreased gradually with the addition of CSH, dependent on concentration level. Frozen storage caused a notable reduction in the α-helices structure of the CD sample (p < 0.05) while no significant variation was observed for the doughs containing CSH (p > 0.05). The lowest specific volume reduction and hardness increment were observed for the breads containing 1.5% and 2% CSH. Frozen storage caused a significant reduction in the b* value of bread crust (p < 0.05), while no significant effect was observed for L* and a* value during frozen storage (p > 0.05). Overall, CSH incorporation into frozen dough can be an alternative that could reduce the quality deterioration of frozen bread.

19.
Food Res Int ; 172: 113229, 2023 10.
Article in English | MEDLINE | ID: mdl-37689962

ABSTRACT

To retard the quality deterioration of the dough during frozen storage, the effects of a compound modifier (CM) comprised of sodium stearoyl lactate, VC, and ß-glucanase on the properties of the frozen dough, as well as the quality of the frozen dough steamed bread were investigated. The results revealed that CM restricted the migration of water in the dough and improved its rheological properties. Furthermore, CM minimized the deterioration of specific volume and textural properties, and prevented starch retrogradation in the frozen dough steamed bread. Moreover, the addition of CM strengthened the secondary structure of gluten protein and formed a more resilient gluten network. The microstructure of the frozen dough steamed bread showed that CM reduced the damage caused by ice crystals on the gluten network. Overall, the use of CM strengthened the gluten network and effectively delayed the quality deterioration of the frozen dough, thus is potential as an improver for frozen dough.


Subject(s)
Bread , Steam , Water , Glutens , Rheology , Sodium Lactate
20.
Int J Biol Macromol ; 246: 125650, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37399868

ABSTRACT

Xanthan gum can improve the freeze-thaw stability of frozen foods. However, the high viscosity and long hydration time of xanthan gum limits its application. In this study, ultrasound was employed to reduce the viscosity of xanthan gum, and the effect of ultrasound on its physicochemical, structural, and rheological properties was investigated using High-performance size-exclusion chromatography (HPSEC), ion chromatograph, methylation analysis, 1H NMR, rheometer, etc.. The application of ultrasonic-treated xanthan gum was evaluated in frozen dough bread. Results showed that the molecular weight of xanthan gum was reduced significantly by ultrasonication (from 3.0 × 107 Da to 1.4 × 106 Da), and the monosaccharide compositions and linkage patterns of sugar residues were altered. Results revealed that ultrasonication treatment mainly broke the molecular backbone at a lower intensity, then mainly broke the side chains with increasing intensity, which significantly reduced the apparent viscosity and viscoelastic properties of xanthan gum. The results of specific volume and hardness showed that the bread containing low molecular weight xanthan gum was of better quality. Overall, this work offers a theoretical foundation for broadening the application of xanthan gum and improving its performance in frozen dough.


Subject(s)
Polysaccharides, Bacterial , Ultrasonics , Chemical Phenomena , Viscosity , Polysaccharides, Bacterial/chemistry , Rheology
SELECTION OF CITATIONS
SEARCH DETAIL
...