Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 302
Filter
1.
Aging (Albany NY) ; null2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39379099

ABSTRACT

Pulmonary macrophages from COPD patients are characterized by lower phagocytic and bactericidal activity whereas there is hypersecretion of pro-inflammatory cytokines. The prominent decline of GATA2 expression in pulmonary macrophages from COPD patients inspired us to figure out its role during COPD development. The expression levels of GATA2 were decreased in alveolar macrophages isolated from cigarette smoke (CS)-induced COPD mice and cigarette smoke extract (CSE)-treated macrophages. In vitro, both CSE and GATA2 knockdown via siRNAs elevated pro-inflammatory cytokines expression whereas inhibiting phagocytosis in macrophages. Integrated analysis of transcriptomics of GATA2-knockdown macrophages and the results of ChIP sequencing of GATA2 together with dual-luciferase reporter assay identified Abca1 and Pacsin1 as functional target genes of GATA2. Mechanistically, ABCA1 mediates the pro-inflammatory secretion phenotype and the dysfunction in early stage of phagocytosis of macrophages through TLR4/MyD88 and MEGF10/GULP1 pathways, respectively. PACSIN1/SUNJ1 partially mediates the disruption effects of GATA2 downregulation on maturation of phagolysosomes in macrophages. Together, our study suggests that GATA2 influences multiple functions of pulmonary macrophages by simultaneous transcriptional regulation of several target genes, contributing to the dysfunctions of pulmonary macrophages in response to CS, which provides an impetus for further investigations of GATA2 or other underappreciated transcription factors as regulatory hubs in COPD pathogenesis.

2.
Rinsho Ketsueki ; 65(9): 902-910, 2024.
Article in Japanese | MEDLINE | ID: mdl-39358289

ABSTRACT

GATA1, GATA2, and GATA3, collectively known as hematopoietic GATA factors, play a central role in the transcription factor network that governs hematopoietic homeostasis. Dysfunction of these factors leads to various hematopoietic disorders. Aberrant function of GATA1 factor, crucial in erythrocyte and megakaryocyte differentiation, not only causes anemia and thrombocytopenia, but also triggers erythroid leukemia and acute megakaryoblastic leukemia. Similarly, GATA2 factor expression is dynamic in the hematopoietic hierarchy, and dysfunction of GATA2 factor contributes not only to dysfunction of the myeloid and lymphoid lineages but also to the development of diverse hematopoietic neoplasms such as myelodysplastic syndromes, acute myeloid leukemia, and myeloproliferative neoplasms. GATA3, critical for T-lymphocyte differentiation, is relevant to lymphocytic leukemia. This review discusses hematopoietic disorders caused by aberrant GATA transcription functions, with a particular emphasis on hematopoietic malignancies.


Subject(s)
Hematologic Neoplasms , Humans , Hematologic Neoplasms/metabolism , GATA Transcription Factors/metabolism , GATA Transcription Factors/genetics , Animals
3.
J Allergy Clin Immunol Glob ; 3(4): 100313, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39221430

ABSTRACT

Prompt evaluation and genetic testing of patients who present with recurrent and recalcitrant warts, before onset of severe infection or myelodysplastic syndrome, leads to improved outcomes in patients with GATA2 deficiency.

4.
Front Immunol ; 15: 1445711, 2024.
Article in English | MEDLINE | ID: mdl-39267745

ABSTRACT

Objective: Patients with pathogenic variants in the GATA Binding Protein 2 (GATA2), a hematopoietic transcription factor, are at risk for human papillomavirus-related (HPV) anogenital cancer at younger than expected ages. A female cohort with GATA2 haploinsufficiency was systematically assessed by two gynecologists to characterize the extent and severity of anogenital HPV disease, which was also compared with affected males. Methods: A 17-year retrospective review of medical records, including laboratory, histopathology and cytopathology records was performed for patients diagnosed with GATA2 haploinsufficiency followed at the National Institutes of Health. Student's t-test and Mann-Whitney U test or Fisher's exact test were used to compare differences in continuous or categorical variables, respectively. Spearman's rho coefficient was employed for correlations. Results: Of 68 patients with GATA2 haploinsufficiency, HPV disease was the initial manifestation in 27 (40%). HPV occurred at median 18.9 (15.2-26.2) years in females, and 25.6 (23.4-26.9) years in males. Fifty-two (76%), 27 females and 25 males, developed HPV-related squamous intraepithelial lesions (SIL) including two males with oral cancer. Twenty-one patients developed anogenital high-grade SIL (HSIL) or carcinoma (16 females versus 5 males, (59% versus 20%, respectively, p=0.005) at median 27 (18.6-59.3) years for females and 33 (16.5-40.1) years for males. Females were more likely than males to require >2 surgeries to treat recurrent HSIL (p=0.0009). Of 30 patients undergoing hematopoietic stem cell transplant (HSCT) to manage disease arising from GATA2 haploinsufficiency, 12 (nine females, three males) had persistent HSIL/HPV disease. Of these nine females, eight underwent peri-transplant surgical treatment of HSIL. Five of seven who survived post-HSCT received HPV vaccination and had no or minimal evidence of HPV disease 2 years post-HSCT. HPV disease persisted in two receiving immunosuppression. HPV disease/low SIL (LSIL) resolved in all three males. Conclusion: Females with GATA2 haploinsufficiency exhibit a heightened risk of recurrent, multifocal anogenital HSIL requiring frequent surveillance and multiple treatments. GATA2 haploinsufficiency must be considered in a female with extensive, multifocal genital HSIL unresponsive to multiple surgeries. This population may benefit from early intervention like HSCT accompanied by continued, enhanced surveillance and treatment by gynecologic oncologists and gynecologists in those with anogenital HPV disease.


Subject(s)
GATA2 Deficiency , GATA2 Transcription Factor , Genetic Predisposition to Disease , Papillomavirus Infections , Humans , Female , Papillomavirus Infections/genetics , Papillomavirus Infections/complications , Adult , Male , Retrospective Studies , GATA2 Deficiency/genetics , Adolescent , GATA2 Transcription Factor/genetics , GATA2 Transcription Factor/deficiency , Young Adult , Genital Neoplasms, Female/genetics , Genital Neoplasms, Female/virology , Anus Neoplasms/genetics , Anus Neoplasms/etiology , Anus Neoplasms/virology , Haploinsufficiency , Papillomaviridae/genetics , Human Papillomavirus Viruses
5.
J Thorac Dis ; 16(8): 5180-5189, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39268106

ABSTRACT

Background: The global incidence of pulmonary fungal diseases is on the rise. Individuals harboring underlying immunocompromised conditions such as human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS), malignant tumors, or those who have undergone organ transplantation, among others, are particularly susceptible to fungal infections. However, in clinical practice, certain patients diagnosed with pulmonary fungal infections exhibit no discernible risk factors for immunosuppression. GATA2, a pivotal transcription factor governing hematopoiesis, is implicated in GATA2 deficiency, predisposing individuals to fungal infections. This study aims to scrutinize GATA2 variants in adult patients afflicted with pulmonary fungal infections devoid of recognized risk factors for immunosuppression. Methods: A cohort of adult patients (aged 18-65 years old, n=22) diagnosed with pulmonary fungal diseases lacking underlying immunosuppression risk factors, treated at Sun Yat-sen Memorial Hospital from January 2016 to December 2021, underwent Sanger sequencing of the GATA2 gene. Results: Among the 22 patients devoid of immunocompromised risk factors and diagnosed with pulmonary fungal diseases, 17 patients (77.3%) exhibited single nucleotide variants (SNVs) within the exons of the GATA2 gene. Notably, exon 3 variants were present in 7 cases (41.2%), exon 4 variants in 10 cases (58.8%), and exon 5 variants in 11 cases (64.7%), emerging as the most prevalent exonic variants within GATA2. Among the 17 patients harboring GATA2 SNVs, a total of 28 SNVs were identified. Of these, eight variants (NM_001145661.2:c.33G>A, NM_001145661.2:c.523C>T, NM_001145661.2:c.77A>G, NM_001145661.2:c.545C>T, NM_001145661.2:c.7G>A, NM_001145661.2:c.1406A>G, NM_001145661.2:c.977A>G, NM_001145661.2:c.742A>C) were identified as missense mutations with the potential to alter the structure and function of the GATA2 protein on the basis of multiple in silico predictive programs interpretation. One nonsense mutation (NM_001145661.2:c.664A>T) was classified as "likely pathogenic" according to 2015 American College of Medical Genetics and Genomics (ACMG) guidelines. Conclusions: GATA2 variants are prevalent among patients afflicted with pulmonary fungal infections in the absence of traditional immunosuppressive risk factors. Further investigations are warranted to elucidate the impact of GATA2 variants on the expression and functionality of the GATA2 protein.

6.
J Allergy Clin Immunol Glob ; 3(4): 100336, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39328578

ABSTRACT

A patient with GATA2 deficiency developed corticosteroid-responsive sterile granulomatous lung disease despite monocytopenia. The presence of B-lymphopenia, autoimmunity, an elevated level of serum B-cell-activating factor, and pulmonary plasma cell infiltration, which together suggested an underlying mechanism similar to that of combined variable immunodeficiency lung disease.

7.
Br J Haematol ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39159950

ABSTRACT

Modalities and timing of haematopoietic stem cell transplant (HSCT) in patients with GATA2 deficiency are still subject to debate. On June 2022, 67 patients (median age 20.6 years) underwent a first allogeneic HSCT among 21 centres. Indications for HSCT were myelodysplastic syndrome (MDS) ≤5% blasts ± immunodeficiency (66%), MDS >5% blasts (15%), acute myeloid leukaemia (19%). Conditioning regimen was myeloablative in 85% and anti-thymocyte globulins were used in 67%. The cumulative incidence (CInc) of acute graft versus host disease (GvHD) grade II-IV and III-IV at day 100 were 42% and 13%, and CInc of chronic and extensive chronic GvHD at 2 years were 42% and 23%. CInc of relapses was 3% and 11% at 1 and 5 years. Overall survival (OS) at 1 and 5 years was 83% and 72% (median follow-up 5.6 years). The factors associated with worse OS in multivariable analysis were the year of HSCT, a history of excess blasts before transplant and peripheral blood stem cell (PBSC) grafts. Age at HSCT, non-myeloablative conditioning and PBSC grafts were associated with increased non-relapse mortality. In conclusion, bone marrow monitoring to identify clonal evolution and perform HSCT before the appearance of excess blast is mandatory.

8.
Front Pharmacol ; 15: 1432851, 2024.
Article in English | MEDLINE | ID: mdl-39114357

ABSTRACT

The xenobiotic transporter ABCC4/MRP4 is highly expressed in pancreatic ductal adenocarcinoma (PDAC) and correlates with a more aggressive phenotype and metastatic propensity. Here, we show that ABCC4 promotes epithelial-mesenchymal transition (EMT) in PDAC, a hallmark process involving the acquisition of mesenchymal traits by epithelial cells, enhanced cell motility, and chemoresistance. Modulation of ABCC4 levels in PANC-1 and BxPC-3 cell lines resulted in the dysregulation of genes present in the EMT signature. Bioinformatic analysis on several cohorts including tumor samples, primary patient-derived cultured cells, patient-derived xenografts, and cell lines, revealed a positive correlation between ABCC4 expression and EMT markers. We also characterized the ABCC4 cistrome and identified four candidate clusters in the distal promoter and intron one that showed differential binding of pro-epithelial FOXA1 and pro-mesenchymal GATA2 transcription factors in low ABCC4-expressing HPAF-II and high ABCC4-expressing PANC-1 xenografts. HPAF-II xenografts showed exclusive binding of FOXA1, and PANC-1 xenografts exclusive binding of GATA2, at ABCC4 clusters, consistent with their low and high EMT phenotype respectively. Our results underscore ABCC4/MRP4 as a valuable prognostic marker and a potential therapeutic target to treat PDAC subtypes with prominent EMT features, such as the basal-like/squamous subtype, characterized by worse prognosis and no effective therapies.

9.
J Biol Chem ; 300(8): 107522, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960034

ABSTRACT

Chemotherapy is still the main therapeutic strategy for gastric cancer (GC). However, most patients eventually acquire multidrug resistance (MDR). Hyperactivation of the EGFR signaling pathway contributes to MDR by promoting cancer cell proliferation and inhibiting apoptosis. We previously identified the secreted protein CGA as a novel ligand of EGFR and revealed a CGA/EGFR/GATA2 positive feedback circuit that confers MDR in GC. Herein, we outline a microRNA-based treatment approach for MDR reversal that targets both CGA and GATA2. We observed increased expression of CGA and GATA2 and increased activation of EGFR in GC samples. Bioinformatic analysis revealed that miR-107 could simultaneously target CGA and GATA2, and the low expression of miR-107 was correlated with poor prognosis in GC patients. The direct interactions between miR-107 and CGA or GATA2 were validated by luciferase reporter assays and Western blot analysis. Overexpression of miR-107 in MDR GC cells increased their susceptibility to chemotherapeutic agents, including fluorouracil, adriamycin, and vincristine, in vitro. Notably, intratumor injection of the miR-107 prodrug enhanced MDR xenograft sensitivity to chemotherapies in vivo. Molecularly, targeting CGA and GATA2 with miR-107 inhibited EGFR downstream signaling, as evidenced by the reduced phosphorylation of ERK and AKT. These results suggest that miR-107 may contribute to the development of a promising therapeutic approach for the treatment of MDR in GC.


Subject(s)
Drug Resistance, Multiple , Drug Resistance, Neoplasm , ErbB Receptors , GATA2 Transcription Factor , MicroRNAs , Stomach Neoplasms , MicroRNAs/genetics , MicroRNAs/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Stomach Neoplasms/drug therapy , Humans , GATA2 Transcription Factor/metabolism , GATA2 Transcription Factor/genetics , ErbB Receptors/metabolism , ErbB Receptors/genetics , Animals , Drug Resistance, Multiple/genetics , Cell Line, Tumor , Mice , Gene Expression Regulation, Neoplastic , Signal Transduction/drug effects , Female , Feedback, Physiological , Mice, Nude , Male , Mice, Inbred BALB C , Xenograft Model Antitumor Assays
10.
Ann Hematol ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39026028

ABSTRACT

GATA2 deficiency syndrome is a heterogeneous disorder characterized by a high risk of developing myelodysplastic syndrome (MDS)/acute myeloid leukaemia (AML). We conducted a meta-analysis of the literature to explore the prognostic significance of GATA2 mutations in patients diagnosed with MDS/AML, as previous studies have yielded conflicting findings regarding the impact of GATA2 mutations on patient outcomes. We conducted a comprehensive literature search of databases such as PubMed, Embase, the Cochrane Library, and the Web of Science to obtain studies on the prognostic significance of GATA2 mutations in patients with MDS/AML that were published through January 2024. We extracted the hazard ratio (HR) and 95% confidence interval (CI) for overall survival (OS), disease-free survival (DFS), and event-free survival (EFS). The meta-analysis was conducted by choosing either a fixed-effect model or a random-effect model, depending on the variability observed among the studies. A total of 13 cohort studies were included in the final meta-analysis, including 2714 patients with MDS, of whom 644 had GATA2 mutations. The results revealed that GATA2 mutations had an adverse impact on OS (HR = 1.54, 95% CI = 1.08-2.18, P = 0.02) and EFS (HR = 1.32, 95% CI = 1.01-1.72, P = 0.04), but no significant effect on DFS (HR = 1.21, 95% CI = 0.89-1.64, P = 0.23). GATA2 mutations were associated with a significantly shorter OS in MDS patients (HR = 2.56, 95% CI = 1.42-4.06, P = 0.002) but not in AML patients (HR = 1.08, 95% CI = 0.92-1.26, P = 0.37). Our meta-analysis revealed that GATA2 mutations are associated with unfavourable outcomes in patients with MDS/AML. Furthermore, patients harbouring these mutations should be prioritized for aggressive therapeutic interventions.

11.
Front Oncol ; 14: 1423856, 2024.
Article in English | MEDLINE | ID: mdl-38993648

ABSTRACT

GATA2 deficiency is one of the most common genetic predispositions to pediatric myelodysplastic syndrome (MDS) in children and adolescents. The wide spectrum of disease comprises, among others, hematological, immunological and pulmonary manifestations, as well as occasionally distinct organ anomalies. Due to the elevated risk of progression, nearly all individuals with GATA2-related MDS eventually undergo a hematopoietic stem cell transplantation (HSCT) at some point in their lives. Nevertheless, the optimal timing, method, and even the indication for HSCT in certain cases are still matter of debate and warrant further research. In this article, we report five patients with different hematological and immunological manifestations of GATA2 deficiency ranging from immunodeficiency and refractory cytopenia of childhood without chromosomal aberrations to relapsed MDS-related acute myeloid leukemia. We discuss the adopted strategies, including intensity of surveillance, indication and timing of HSCT, based on morphological, clinical and molecular markers, as well as individual patient needs. We conclude that a better characterization of the natural disease course, a better understanding of the prognostic significance of somatic aberrations and a thorough evaluation of patients´ perspectives and preferences are required to achieve a personalized approach aimed at improving the care of these patients.

12.
Br J Haematol ; 205(2): 580-593, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38887897

ABSTRACT

The transcription factor GATA2 has a pivotal role in haematopoiesis. Heterozygous germline GATA2 mutations result in a syndrome characterized by immunodeficiency, bone marrow failure and predispositions to myelodysplastic syndrome (MDS) and acute myeloid leukaemia. Clinical symptoms in these patients are diverse and mechanisms driving GATA2-related phenotypes are largely unknown. To explore the impact of GATA2 haploinsufficiency on haematopoiesis, we generated a zebrafish model carrying a heterozygous mutation of gata2b (gata2b+/-), an orthologue of GATA2. Morphological analysis revealed myeloid and erythroid dysplasia in gata2b+/- kidney marrow. Because Gata2b could affect both transcription and chromatin accessibility during lineage differentiation, this was assessed by single-cell (sc) RNA-seq and single-nucleus (sn) ATAC-seq. Sn-ATAC-seq showed that the co-accessibility between the transcription start site (TSS) and a -3.5-4.1 kb putative enhancer was more robust in gata2b+/- zebrafish HSPCs compared to wild type, increasing gata2b expression and resulting in higher genome-wide Gata2b motif use in HSPCs. As a result of increased accessibility of the gata2b locus, gata2b+/- chromatin was also more accessible during lineage differentiation. scRNA-seq data revealed myeloid differentiation defects, that is, impaired cell cycle progression, reduced expression of cebpa and cebpb and increased signatures of ribosome biogenesis. These data also revealed a differentiation delay in erythroid progenitors, aberrant proliferative signatures and down-regulation of Gata1a, a master regulator of erythropoiesis, which worsened with age. These findings suggest that cell-intrinsic compensatory mechanisms, needed to obtain normal levels of Gata2b in heterozygous HSPCs to maintain their integrity, result in aberrant lineage differentiation, thereby representing a critical step in the predisposition to MDS.


Subject(s)
Epigenesis, Genetic , GATA2 Transcription Factor , Heterozygote , Zebrafish , Animals , GATA2 Transcription Factor/genetics , Zebrafish Proteins/genetics , Erythroid Cells/metabolism , Erythroid Cells/pathology , Myeloid Cells/metabolism , Myeloid Cells/pathology , Erythropoiesis/genetics , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology , Myelodysplastic Syndromes/metabolism
13.
BMC Infect Dis ; 24(1): 482, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730328

ABSTRACT

BACKGROUND: Haemophagocytic lymphohistiocytosis (HLH) is a syndrome that occurs in patients with severe systemic hyperinflammation. GATA binding protein 2 (GATA2) is a transcription factor and key component in haematopoiesis and stem cell biology. CASE PRESENTATION: Three patients with HLH, one with Mycobacterium avium infection, one with Epstein-Barr virus (EBV) infection, and one with Mycobacterium kansasii infection, were all subsequently found to have a defect in the GATA2 gene through genetic testing. CONCLUSIONS: GATA2 deficiency syndrome should be considered in patients with myelodysplastic syndrome, nontuberculous mycobacterium infection and HLH. In addition, the GATA2 gene variant may be a genetic defect that could be the cause of the primary HLH. However, further studies are needed to confirm the role of GATA2 pathogenic variants in the pathogenesis of HLH.


Subject(s)
GATA2 Deficiency , GATA2 Transcription Factor , Lymphohistiocytosis, Hemophagocytic , Humans , Lymphohistiocytosis, Hemophagocytic/genetics , GATA2 Deficiency/genetics , GATA2 Deficiency/complications , Male , GATA2 Transcription Factor/genetics , GATA2 Transcription Factor/deficiency , Female , Epstein-Barr Virus Infections/complications , Adult
14.
Am J Med Genet A ; 194(8): e63621, 2024 08.
Article in English | MEDLINE | ID: mdl-38567931

ABSTRACT

GATA2 and ZNF148 have both been mapped to chromosome 3q. Pathogenic variants in GATA2 have been associated with immunodeficiency and high risk for myelodysplasia, acute myeloid leukemia, and chronic myelomonocytic leukemia. Gain-of-function variants in ZNF148 have previously been suggested as a mechanism for agenesis of the corpus callosum (ACC). Here, we report a novel 10.4 Mb interstitial deletion on 3q12.33q22.1 including GATA2 and ZNF148 in a child with developmental delay, agenesis of the corpus callosum, and vertebral segmentation defects. With this diagnosis, we were able to suggest preemptive referrals to hematology/oncology and allergy/immunology for close monitoring of early myelodysplasia. We also propose a possible link between ZNF148 loss of function variants and ACC.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 3 , GATA2 Transcription Factor , Transcription Factors , Humans , GATA2 Transcription Factor/genetics , Chromosomes, Human, Pair 3/genetics , Transcription Factors/genetics , Male , DNA-Binding Proteins/genetics , Agenesis of Corpus Callosum/genetics , Agenesis of Corpus Callosum/pathology , Female , Developmental Disabilities/genetics , Developmental Disabilities/pathology
15.
Proc Natl Acad Sci U S A ; 121(18): e2317690121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38648485

ABSTRACT

The underlying mechanism(s) by which the PML::RARA fusion protein initiates acute promyelocytic leukemia is not yet clear. We defined the genomic binding sites of PML::RARA in primary mouse and human hematopoietic progenitor cells with V5-tagged PML::RARA, using anti-V5-PML::RARA chromatin immunoprecipitation sequencing and CUT&RUN approaches. Most genomic PML::RARA binding sites were found in regions that were already chromatin-accessible (defined by ATAC-seq) in unmanipulated, wild-type promyelocytes, suggesting that these regions are "open" prior to PML::RARA expression. We found that GATA binding motifs, and the direct binding of the chromatin "pioneering factor" GATA2, were significantly enriched near PML::RARA binding sites. Proximity labeling studies revealed that PML::RARA interacts with ~250 proteins in primary mouse hematopoietic cells; GATA2 and 33 others require PML::RARA binding to DNA for the interaction to occur, suggesting that binding to their cognate DNA target motifs may stabilize their interactions. In the absence of PML::RARA, Gata2 overexpression induces many of the same epigenetic and transcriptional changes as PML::RARA. These findings suggested that PML::RARA may indirectly initiate its transcriptional program by activating Gata2 expression: Indeed, we demonstrated that inactivation of Gata2 prior to PML::RARA expression prevented its ability to induce self-renewal. These data suggested that GATA2 binding creates accessible chromatin regions enriched for both GATA and Retinoic Acid Receptor Element motifs, where GATA2 and PML::RARA can potentially bind and interact with each other. In turn, PML::RARA binding to DNA promotes a feed-forward transcriptional program by positively regulating Gata2 expression. Gata2 may therefore be required for PML::RARA to establish its transcriptional program.


Subject(s)
GATA2 Transcription Factor , Hematopoietic Stem Cells , Oncogene Proteins, Fusion , Animals , Humans , Mice , Binding Sites , Cell Self Renewal , Chromatin/metabolism , DNA/metabolism , GATA2 Transcription Factor/metabolism , GATA2 Transcription Factor/genetics , Hematopoietic Stem Cells/metabolism , Leukemia, Promyelocytic, Acute/metabolism , Leukemia, Promyelocytic, Acute/genetics , Leukemia, Promyelocytic, Acute/pathology , Oncogene Proteins, Fusion/metabolism , Oncogene Proteins, Fusion/genetics , Promyelocytic Leukemia Protein/metabolism , Promyelocytic Leukemia Protein/genetics , Protein Binding , Retinoic Acid Receptor alpha/metabolism , Retinoic Acid Receptor alpha/genetics
16.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 327-334, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38660832

ABSTRACT

OBJECTIVE: To investigate the clinical characteristics, coexisting gene mutations and prognosis of acute myeloid leukemia (AML) patients with GATA2 gene mutation. METHODS: The clinical data of 370 newly diagnosed AML patients treated in our hospital from January 2008 to January 2021 was analyzed retrospectively, the next-generation sequencing technology was used to detect the mutated genes in those patients. The clinical characteristics of AML patients with GATA2 mutations, the co-mutated genes of GATA2 mutations, and the effect of GATA2 mutation on prognosis were analyzed. RESULTS: A total of 23 patients (6.2%) with GATA2 mutation was detected in 370 AML patients. Compared with GATA2 non-mutation group, patients in GATA2 mutation group were mostly normal karyotypes (P =0.037) and in low-risk cytogenetic stratification (P =0.028). The incidence of CEBPAdm and NRAS in GATA2 mutation group was significantly higher than that in GATA2 non-mutation group (P =0.010, P =0.009). There were no statistically significant differences between the two groups in terms of sex, age, white blood cell count (WBC), platelet count, hemoglobin, bone marrow (BM) blast, induction chemotherapy regimen and CR rate (P >0.05). Among the 23 patients with GATA2 mutation, the most common co-mutated genes were CEBPAdm, NRAS (both 39.1%), NPM1, FLT3, TET2, WT1 (all 17.4%), ASXL1 and IDH1 (both 13.0%). Survival analysis showed that there was no statistical difference in 5-year overall survival (OS) and leukemia-free survival (LFS) rates between patients with and without GATA2 mutations in whole cohort (n=370) (P =0.306, P =0.308). Among 306 patients without CEBPAdm, the 5-year OS and LFS rates in GATA2 mutation group showed an increasing trend compared with GATA2 non-mutation group, but the difference was not statistically significant (P =0.092, P =0.056). Among 64 patients with CEBPAdm, there was no statistically significant difference in 5-year OS rate between the GATA2 mutation group and the GATA2 non-mutation group (P =0.104), but the 5-year LFS rate of the GATA2 mutation group was significantly decreased (P =0.047). Among the 23 patients with GATA2 mutation, 16 cases received the "3+7" induction regimen, of which 12 cases received allogeneic hematopoietic stem cell transplantation (allo-HSCT); 7 cases received the "DCAG" induction regimen, of which 3 cases received allo-HSCT. The CR rate was not statistically different between the "3+7" regimen group and the "DCAG" regimen group (P =1.000). The 5-year OS rate and LFS rate in the transplantation group were significantly higher than the chemotherapy group (P =0.021, P =0.020). CONCLUSION: GATA2 mutation is more common in AML patients with normal karyotype and low-risk cytogenetic stratification, and it is significantly associated with CEBPAdm and NRAS co-mutations. The prognostic significance of GATA2 is influenced by CEBPAdm. The choice of "3+7" or "DCAG" induction regimen in patients with GATA2 mutation does not affect their CR rate, while the choice of allo-HSCT can significantly improved the prognosis compared with chemotherapy only.


Subject(s)
DNA-Binding Proteins , GATA2 Transcription Factor , Leukemia, Myeloid, Acute , Membrane Proteins , Mutation , Nucleophosmin , Repressor Proteins , Humans , GATA2 Transcription Factor/genetics , Leukemia, Myeloid, Acute/genetics , Prognosis , Retrospective Studies , CCAAT-Enhancer-Binding Proteins/genetics , Dioxygenases , GTP Phosphohydrolases/genetics , Male , Female
17.
Proc Natl Acad Sci U S A ; 121(10): e2317147121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38422019

ABSTRACT

Mutations in genes encoding transcription factors inactivate or generate ectopic activities to instigate pathogenesis. By disrupting hematopoietic stem/progenitor cells, GATA2 germline variants create a bone marrow failure and leukemia predisposition, GATA2 deficiency syndrome, yet mechanisms underlying the complex phenotypic constellation are unresolved. We used a GATA2-deficient progenitor rescue system to analyze how genetic variation influences GATA2 functions. Pathogenic variants impaired, without abrogating, GATA2-dependent transcriptional regulation. Variants promoted eosinophil and repressed monocytic differentiation without regulating mast cell and erythroid differentiation. While GATA2 and T354M required the DNA-binding C-terminal zinc finger, T354M disproportionately required the N-terminal finger and N terminus. GATA2 and T354M activated a CCAAT/Enhancer Binding Protein-ε (C/EBPε) enhancer, creating a feedforward loop operating with the T-cell Acute Lymphocyte Leukemia-1 (TAL1) transcription factor. Elevating C/EBPε partially normalized hematopoietic defects of GATA2-deficient progenitors. Thus, pathogenic germline variation discriminatively spares or compromises transcription factor attributes, and retaining an obligate enhancer mechanism distorts a multilineage differentiation program.


Subject(s)
Leukemia , Regulatory Sequences, Nucleic Acid , Humans , Cell Differentiation/genetics , Genotype , Hematopoietic Stem Cells , GATA2 Transcription Factor/genetics
18.
Proc Natl Acad Sci U S A ; 121(8): e2310502121, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38346193

ABSTRACT

The placenta establishes a maternal-fetal exchange interface to transport nutrients and gases between the mother and the fetus. Establishment of this exchange interface relies on the development of multinucleated syncytiotrophoblasts (SynT) from trophoblast progenitors, and defect in SynT development often leads to pregnancy failure and impaired embryonic development. Here, we show that mouse embryos with conditional deletion of transcription factors GATA2 and GATA3 in labyrinth trophoblast progenitors (LaTPs) have underdeveloped placenta and die by ~embryonic day 9.5. Single-cell RNA sequencing analysis revealed excessive accumulation of multipotent LaTPs upon conditional deletion of GATA factors. The GATA factor-deleted multipotent progenitors were unable to differentiate into matured SynTs. We also show that the GATA factor-mediated priming of trophoblast progenitors for SynT differentiation is a conserved event during human placentation. Loss of either GATA2 or GATA3 in cytotrophoblast-derived human trophoblast stem cells (human TSCs) drastically inhibits SynT differentiation potential. Identification of GATA2 and GATA3 target genes along with comparative bioinformatics analyses revealed that GATA factors directly regulate hundreds of common genes in human TSCs, including genes that are essential for SynT development and implicated in preeclampsia and fetal growth retardation. Thus, our study uncovers a conserved molecular mechanism, in which coordinated function of GATA2 and GATA3 promotes trophoblast progenitor-to-SynT commitment, ensuring establishment of the maternal-fetal exchange interface.


Subject(s)
Gene Expression Regulation, Developmental , Maternal-Fetal Exchange , Pregnancy , Female , Humans , Animals , Mice , Placenta , Trophoblasts , Cell Differentiation/physiology , Fetal Development , GATA Transcription Factors
19.
Growth Horm IGF Res ; 74: 101572, 2024 02.
Article in English | MEDLINE | ID: mdl-38281404

ABSTRACT

OBJECTIVE: GATA2 is a key transcription factor involved in the differentiation and determination of thyrotrophs and gonadotrophs in pituitary and hematopoietic development. However, studies on the upstream ligands of the GATA2 signal transduction pathway have been limited. To identify upstream ligands, we examined growth hormone (GH) as a plausible stimulator. DESIGN: We evaluated GH-induced GATA2 expression in murine TtT/GF thyrotrophic pituitary tumor cells and its direct impact on the GHR/JAK/STAT5 pathway using a combination of a reporter assay, real-time quantitative polymerase chain reaction, and western blotting. RESULTS: GATA2 expression increased with activated STAT5B in a dose-dependent manner and was inhibited by a STAT5 specific inhibitor. Moreover, we found functional STAT5B binding site consensus sequences at -359 bp in the GATA2 promoter region. CONCLUSION: These findings suggest that GH directly stimulates GATA2 via the GHR/JAK/STAT pathway and participates in various developmental phenomena mediated by GATA2.


Subject(s)
Growth Hormone , Human Growth Hormone , Mice , Animals , Growth Hormone/metabolism , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/metabolism , Janus Kinases/metabolism , Signal Transduction , STAT Transcription Factors/metabolism , Human Growth Hormone/metabolism , Milk Proteins
20.
J Biochem ; 175(5): 551-560, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38168819

ABSTRACT

Lymphedema has become a global health issue following the growing number of cancer surgeries. Curative or supportive therapeutics have long been awaited for this refractory condition. Transcription factor GATA2 is crucial in lymphatic development and maintenance, as GATA2 haploinsufficient disease often manifests as lymphedema. We recently demonstrated that Gata2 heterozygous deficient mice displayed delayed lymphatic recanalization upon lymph node resection. However, whether GATA2 contributes to lymphatic regeneration by functioning in the damaged lymph vessels' microenvironment remains explored. In this study, our integrated analysis demonstrated that dermal collagen fibers were more densely accumulated in the Gata2 heterozygous deficient mice. The collagen metabolism-related transcriptome was perturbed, and collagen matrix contractile activity was aberrantly increased in Gata2 heterozygous embryonic fibroblasts. Notably, soluble collagen placement ameliorated delayed lymphatic recanalization, presumably by modulating the stiffness of the extracellular matrix around the resection site of Gata2 heterozygous deficient mice. Our results provide valuable insights into mechanisms underlying GATA2-haploinsufficiency-mediated lymphedema and shed light on potential therapeutic avenues for this intractable disease.


Subject(s)
Collagen , GATA2 Transcription Factor , Heterozygote , Lymphedema , Animals , Mice , GATA2 Transcription Factor/metabolism , GATA2 Transcription Factor/genetics , Lymphedema/metabolism , Lymphedema/genetics , Lymphedema/pathology , Collagen/metabolism , Lymphatic Vessels/metabolism , Lymphatic Vessels/pathology , Mice, Knockout , Haploinsufficiency , GATA2 Deficiency/metabolism , GATA2 Deficiency/genetics , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL