Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 178
Filter
1.
Article in English | MEDLINE | ID: mdl-39322259

ABSTRACT

GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 (GHR1), a leucine-rich repeat receptor-like kinase, is involved in abscisic acid (ABA)-induced stomatal closure. We investigated the role of GHR1 in reactive oxygen species (ROS) signaling for ABA-induced stomatal closure. Abscisic acid induced ROS production in wild type (WT) and the ghr1 of Arabidopsis thaliana. Hydrogen peroxide induced stomatal closure, accompanying the generation of acrolein in guard cells. The reactive carbonyl species (RCS) scavengers inhibited the ABA- and H2O2-induced stomatal closure in WT. In the ghr1, H2O2 failed to induce acrolein production and stomatal closure while RCS induced stomatal closure. Thus, GHR1 functions downstream of ROS and is required for the generation of RCS in guard-cell ABA signaling. In the ghr1, Ca2+ induced stomatal closure but RCS did not activate ICa channels. The GHR1 may be also involved in a Ca2+-independent pathway for ABA-induced stomatal closure.

2.
Exp Gerontol ; 196: 112586, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39303817

ABSTRACT

The Growth Hormone Receptor (GHR) gene encodes a protein that is essential for mediating the biological effects of growth hormone (GH). A series of molecular events are set off when GH binds to its receptor, resulting in a variety of physiological reactions linked to development, growth, and metabolism. Recently a particular genetic variation, within the GHR gene that is labeled as the "d3GHR," which lacks exon 3 was associated with longevity. This specific deletion isoform was connected to changes in the structure of the GHR protein, which may have an impact on the GHR's function. To test in vitro the advantage of the d3 carrier that may link to longevity, we employed the CRISPR/Cas9 technique to produce two isoforms: the homozygotes isoform (d3/d3) and the heterozygotes isoform (d3/fl) using HEK293 cell line. The CRISPR editing effectiveness was >85 %, indicating that we had successfully built the Cas9-gRNA complex that is appropriate for the GHR gene. The viability of the resulted isoform cells was examined under three environmental stressors that mimic some aging processes. In addition, we examined the GHR signaling pathway by selecting potential downstream genes in the GHR signaling cascade. The results show that heterozygotes cells demonstrated higher survival rates under UV radiation compared with the WT cells (87 % compared with 67 % for the WT cells when exposed to 2 min of UV radiation), and in fasting conditions, the d3GHR cells showed a 15 % greater viability than the WT cells. Moreover, the baseline expression levels (without intervention) of the IGF1 and JAK/STAT genes signaling pathways significantly declined in the homozygotes cells compared with the WT (p < 0.05). This noteworthy finding might offer a practical approach to test illness prevention and give the scientific community critical new insights on mechanism associated with lifespan.


Subject(s)
CRISPR-Cas Systems , Longevity , Protein Isoforms , Receptors, Somatotropin , Humans , Longevity/genetics , HEK293 Cells , Receptors, Somatotropin/genetics , Receptors, Somatotropin/metabolism , Protein Isoforms/genetics , Signal Transduction , Gene Knockout Techniques , Cell Survival , Stress, Physiological , Gene Editing/methods
3.
Sci Rep ; 14(1): 21419, 2024 09 13.
Article in English | MEDLINE | ID: mdl-39271799

ABSTRACT

The Druze are a distinct group known for their close community, traditions, and consanguineous marriages, dating back to the eleventh century. This practice has led to unique genetic variations, impacting both pathology and gene-associated phenotypes. Some Druze clans, particularly those with exceptional long-lived family heads (ELLI), attracted attention. Given that the bulk of these ELLI were men, the d3GHR polymorphism was the first obvious possibility. Among the 73 clan members, 8.2% carried the d3GHR isoform, with nearly 11% being males. There was a significant age-related increase (p = 0.04) in this isoform among males, leading to examination of potential environmental mediators affecting gene regulation among these carriers during life (namely epigenetic). We focused on DNA methylation due to its crucial role in gene regulation, development, and disease progression. We analyzed DNA samples from 14 clan members with different GHR genotypes, finding a significant (p < 0.05) negative correlation between DNA methylation levels and age. Employing a biological age clock, we observed a significant + 4.229 years favoring the d3GHR group over the WT and heterozygous groups. In conclusion, this study highlights the advantage of d3GHR carriers among this unique Druze clan and underscores the importance of genotype-environment interaction in epigenetic regulation and its impact on health.


Subject(s)
DNA Methylation , Epigenome , Longevity , Humans , Male , Longevity/genetics , Female , Epigenesis, Genetic , Middle Aged , Heterozygote , Adult , Aged , Aged, 80 and over , Genotype
4.
J Reprod Dev ; 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39218670

ABSTRACT

CRISPR/Cas9-based multiplex genome editing via electroporation is relatively efficient; however, lipofection is versatile because of its ease of use and low cost. Here, we aimed to determine the efficiency of lipofection in CRISPR/Cas9-based multiplex genome editing using growth hormone receptor (GHR) and glycoprotein alpha-galactosyltransferase 1 (GGTA1)-targeting guide RNAs (gRNAs) in pig zygotes. Zona pellucida-free zygotes were collected 10 h after in vitro fertilization and incubated with Cas9, gRNAs, and Lipofectamine 2000 (LP2000) for 5 h. In Experiment 1, we evaluated the mutation efficiency of gRNAs targeting either GHR or GGTA1 in zygotes transfected using LP2000 and cultured in 4-well plates. In Experiment 2, we examined the effects of the culture method on the development, mutation rate, and mutation efficiency of zygotes with simultaneouslydouble-edited GHR and GGTA1, cultured using 4-well (group culture) and 25-well plates (individual culture). In Experiment 3, we assessed the effect of additional GHR-targeted lipofection before and after simultaneous double gRNA-targeted lipofection on the mutation efficiency of edited embryos cultured in 25-well plates. No significant differences in mutation rates were observed between the zygotes edited with either gRNA. Moreover, the formation rate of blastocysts derived from GHR and GGTA1 double-edited zygotes was significantly increased in the 25-well plate culture compared to that in the 4-well plate culture. However, mutations were only observed in GGTA1 when zygotes were transfected with both gRNAs, irrespective of the culture method used. GHR mutations were detected only in blastocysts derived from zygotes subjected to GHR-targeted lipofection before simultaneous double gRNA-targeted lipofection. Overall, our results suggest that additional lipofection before simultaneous double gRNA-targeted lipofection induces additional mutations in the zygotes.

5.
Best Pract Res Clin Endocrinol Metab ; 38(4): 101910, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38981769

ABSTRACT

Pegvisomant is a growth-hormone (GH) receptor antagonist that prevents the formation of the active heterotrimer of the dimerised GH receptor and the GH molecule necessary for downstream signal transduction. Over the past 20 years, it has become a key therapeutic option for physicians treating syndromes of GH/IGF-1 excess. Sufficient longitudinal follow-up data suggest that it can be deemed both safe and effective. It is the drug with the greatest potential for achieving an amelioration of the biochemical effects of GH excess with a corresponding normalisation of IGF-1 levels; however, insufficient dose titration has lessened real-world therapeutic outcomes. Theoretical concerns about stimulating tumour growth have been resolved as this has not been observed, while derangement of liver enzymes and local skin-related adverse reactions may occur in a minority of the patients. It may be a particularly impactful medication for the treatment of children, young people, and those with inherited disorders of GH excess, where other treatment modalities often fail. Combination therapy of pegvisomant with first- and second-generation somatostatin receptor ligands or with dopamine agonists remains an ongoing area of interest and research. High cost remains a barrier to the use of pegvisomant in many settings.


Subject(s)
Human Growth Hormone , Receptors, Somatotropin , Humans , Human Growth Hormone/analogs & derivatives , Human Growth Hormone/therapeutic use , Receptors, Somatotropin/antagonists & inhibitors , Acromegaly/drug therapy
6.
Int J Mol Sci ; 25(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39000545

ABSTRACT

Chemotherapy treatment against pancreatic ductal adenocarcinoma (PDAC) is thwarted by tumoral activation of multiple therapy resistance pathways. The growth hormone (GH)-GH receptor (GHR) pair is a covert driver of multimodal therapy resistance in cancer and is overexpressed in PDAC tumors, yet the therapeutic potential of targeting the same has not been explored. Here, we report that GHR expression is a negative prognostic factor in patients with PDAC. Combinations of gemcitabine with different GHR antagonists (GHRAs) markedly improve therapeutic outcomes in nude mice xenografts. Employing cultured cells, mouse xenografts, and analyses of the human PDAC transcriptome, we identified that attenuation of the multidrug transporter and epithelial-to-mesenchymal transition programs in the tumors underlie the observed augmentation of chemotherapy efficacy by GHRAs. Moreover, in human PDAC patients, GHR expression strongly correlates with a gene signature of tumor promotion and immune evasion, which corroborate with that in syngeneic tumors in wild-type vs. GH transgenic mice. Overall, we found that GH action in PDAC promoted a therapy-refractory gene signature in vivo, which can be effectively attenuated by GHR antagonism. Our results collectively present a proof of concept toward considering GHR antagonists to improve chemotherapeutic outcomes in the highly chemoresistant PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Deoxycytidine , Gemcitabine , Pancreatic Neoplasms , Receptors, Somatotropin , Xenograft Model Antitumor Assays , Animals , Humans , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Mice , Receptors, Somatotropin/metabolism , Receptors, Somatotropin/antagonists & inhibitors , Receptors, Somatotropin/genetics , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Cell Line, Tumor , Mice, Nude , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Female
7.
Plant Biotechnol J ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058556

ABSTRACT

Branch length is an important plant architecture trait in cotton (Gossypium) breeding. Development of cultivars with short branch has been proposed as a main object to enhance cotton yield potential, because they are suitable for high planting density. Here, we report the molecular cloning and characterization of a semi-dominant quantitative trait locus, Short Branch Internode 1(GhSBI1), which encodes a NAC transcription factor homologous to CUP-SHAPED COTYLEDON 2 (CUC2) and is regulated by microRNA ghr-miR164. We demonstrate that a point mutation found in sbi1 mutants perturbs ghr-miR164-directed regulation of GhSBI1, resulting in an increased expression level of GhSBI1. The sbi1 mutant was sensitive to exogenous gibberellic acid (GA) treatments. Overexpression of GhSBI1 inhibited branch internode elongation and led to the decreased levels of bioactive GAs. In addition, gene knockout analysis showed that GhSBI1 is required for the maintenance of the boundaries of multiple tissues in cotton. Transcriptome analysis revealed that overexpression of GhSBI1 affects the expression of plant hormone signalling-, axillary meristems initiation-, and abiotic stress response-related genes. GhSBI1 interacted with GAIs, the DELLA repressors of GA signalling. GhSBI1 represses expression of GA signalling- and cell elongation-related genes by directly targeting their promoters. Our work thus provides new insights into the molecular mechanisms for branch length and paves the way for the development of elite cultivars with suitable plant architecture in cotton.

8.
Cureus ; 16(2): e53596, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38449954

ABSTRACT

This systematic review aims to determine the role of the growth hormone receptor (GHR) gene in skeletal malocclusion and its significant influence on the growth of the maxilla and the mandible in both sagittal and vertical dimensions. A search of the electronic databases of PubMed, Google Scholar, and Cochrane up to and including the year 2023 was made. In addition to this, a hand search of orthodontic and dentofacial orthopaedic journals was carried out. This search included randomized control trials. The Mesh terms used were "skeletal class II malocclusion", "mandibular retrognathism", "sagittal malocclusion", "genetic expression", "genetic factors", "genetic study", "genetic polymorphism", and "single nucleotide polymorphism". The inclusion criteria included studies such as clinical trials and orthopaedic appliances in the presurgical phase. The exclusion criteria for the study were studies not in the English language, case reports, case series, and studies with irrelevant data. It has been cited in various literature that polymorphic variations of the GHR gene could cause variations in mandibular morphogenesis affecting both the mandibular body length and ramal height. However, its effects are quite variable and are based on different population groups. Polymorphism of the GHR gene can be considered a reliable indicator predicting variations in affecting the growth of the mandible with greater significance in affecting the vertical ramal height compared to the body length of the mandible. Its effects on the maxillary skeletal base are rather limited comparatively.

9.
Theriogenology ; 220: 43-55, 2024 May.
Article in English | MEDLINE | ID: mdl-38471390

ABSTRACT

Genome editing in pigs for xenotransplantation has seen significant advances in recent years. This study compared three methodologies to generate gene-edited embryos, including co-injection of sperm together with the CRISPR-Cas9 system into oocytes, named ICSI-MGE (mediated gene editing); microinjection of CRISPR-Cas9 components into oocytes followed by in vitro fertilization (IVF), and microinjection of in vivo fertilized zygotes with the CRISPR-Cas9 system. Our goal was to knock-out (KO) porcine genes involved in the biosynthesis of xenoantigens responsible for the hyperacute rejection of interspecific xenografts, namely GGTA1, CMAH, and ß4GalNT2. Additionally, we attempted to KO the growth hormone receptor (GHR) gene with the aim of limiting the growth of porcine organs to a size that is physiologically suitable for human transplantation. Embryo development, pregnancy, and gene editing rates were evaluated. We found an efficient mutation of the GGTA1 gene following ICSI-MGE, comparable to the results obtained through the microinjection of oocytes followed by IVF. ICSI-MGE also showed higher rates of biallelic mutations compared to the other techniques. Five healthy piglets were born from in vivo-derived embryos, all of them exhibiting biallelic mutations in the GGTA1 gene, with three displaying mutations in the GHR gene. No mutations were observed in the CMAH and ß4GalNT2 genes. In conclusion, in vitro methodologies showed high rates of gene-edited embryos. Specifically, ICSI-MGE proved to be an efficient technique for obtaining homozygous biallelic mutated embryos. Lastly, only live births were obtained from in vivo-derived embryos showing efficient multiple gene editing for GGTA1 and GHR.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Animals , Swine/genetics , Humans , Male , Animals, Genetically Modified , Gene Editing/veterinary , Transplantation, Heterologous/veterinary , Sperm Injections, Intracytoplasmic/veterinary , Semen , Fertilization in Vitro/veterinary
10.
Pak J Med Sci ; 40(3Part-II): 308-312, 2024.
Article in English | MEDLINE | ID: mdl-38356830

ABSTRACT

Objectives: This study investigated the association of the GHRd3 polymorphism with height and type-2 diabetes mellitus (T2DM) in Saudi Arabia. Methods: This case-control study included a total of 284 participants, divided into healthy controls (n = 142) and patients with T2DM (n = 142), recruited from Jazan University Hospital, southwest of Saudi Arabia in the period between January to September 2022. The GHRd3 polymorphism was genotyped using multiplex PCR. The correlation between height and genotypes was analyzed using one-way analysis of variance. The association between GHRd3 polymorphism and T2DM was assessed using logistic regression analysis. Results: The data showed a significant difference between the means of heights associated with each GHRd3 genotype, flfl, fld3, and d3d3. Logistic regression analysis showed no association between GHRd3 variants and T2DM. Conclusion: Homozygous GHRd3 polymorphism carriers, d3d3 genotype, were taller than fld3 or flfl carriers in our population. None of the GHRd3 variants were associated with T2DM. Thus, the GHRd3 polymorphism has growth-related actions with a minor contribution to T2DM. However, more studies with a larger sample size are required to confirm these findings.

11.
Anim Biotechnol ; 35(1): 2307012, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38305036

ABSTRACT

This study investigated the association of selected growth hormone receptor (GHR) gene SNPs with selected fertility and milk production-related phenotypes of cross-bred dairy cows (n = 153) reared on three National Livestock Development Board farms in Sri Lanka. Selected cows were genetically screened for SNPs in the exon 08 (n = 153) and 5' upstream (n = 118) regions of the GHR gene using the target sequencing method. The relationships between different genotypes and fertility traits (average calving interval, average number of services per conception, and age at first calving) and milk production-related traits (average total lactation yield, average lactation length, and average milk yield) were analyzed using the General Linear Model in SPSS. Among the identified Four GHR SNPs, rs1099014416 was significantly associated with average calving interval and age at first calving. Cows with GG genotype exhibited younger age at first calving (918.51 ± 113.42 days) and longer calving intervals (543.41 ± 43.29 days) compared to cows with GT (1275.18 ± 38.31, 515.09 ± 24.49 days) and TT (1212.89 ± 88.22, 364.52 ± 54.01 days) genotypes. Other SNPs did not show associations with the studied traits. SNP rs109014416 has the potential to be used as a genetic marker for fertility-related traits in the selection of cross-bred dairy cows in Sri Lanka which should be validated with a larger population.


Subject(s)
Milk , Receptors, Somatotropin , Female , Cattle/genetics , Animals , Receptors, Somatotropin/genetics , Prevalence , Sri Lanka , Fertility/genetics , Lactation/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics
12.
Genes Genomics ; 46(1): 135-148, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37985544

ABSTRACT

BACKGROUND: DNA methylation is an epigenetic mechanism that takes place at gene promoters and a potent epigenetic marker to regulate gene expression. OBJECTIVE: The study aimed to improve the milk production of Zaraibi goats by addressing the methylation pattern of two milk production-related genes: the growth hormone receptor (GHR) and the growth differentiation factor-9 (GDF-9). METHODS: 54 and 46 samples of low and high milk yield groups, respectively, were collected. Detection of methylation was assessed in two CpG islands in the GDF-9 promoter via methylation-specific primer assay (MSP) and in one CpG island across the GHR promoter using combined bisulfite restriction analysis (COBRA). RESULTS: A positive correlation between the methylation pattern of GDF-9 and GHR and their expression levels was reported. Breeding season was significantly effective on both peak milk yield (PMY) and total milk yield (TMY), where March reported a higher significant difference in PMY than November. Whereas single birth was highly significant on TMY than multiple births. The 3rd and 4th parities reported the highest significant difference in PMY, while the 4th parity was the most effective one on TMY. CONCLUSION: These results may help improve the farm animals' milk productive efficiency and develop prospective epigenetic markers to improve milk yield by epigenetic marker-assisted selection (eMAS) in goat breeding programs.


Subject(s)
DNA Methylation , Milk , Pregnancy , Female , Animals , Milk/metabolism , DNA Methylation/genetics , Goats/genetics , Growth Differentiation Factor 9/genetics , Growth Differentiation Factor 9/metabolism , Egypt , Prospective Studies , Epigenesis, Genetic
13.
Int J Mol Sci ; 24(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37685880

ABSTRACT

Gonadotropin-releasing hormone (GnRH) neurons are key neuroendocrine cells in the brain as they control reproduction by regulating hypothalamic-pituitary-gonadal axis function. In this context, anti-Müllerian hormone (AMH), growth hormone (GH), and insulin-like growth factor 1 (IGF1) were shown to improve GnRH neuron migration and function in vitro. Whether AMH, GH, and IGF1 signaling pathways participate in the development and function of GnRH neurons in vivo is, however, currently still unknown. To assess the role of AMH, GH, and IGF1 systems in the development of GnRH neuron, we evaluated the expression of AMH receptors (AMHR2), GH (GHR), and IGF1 (IGF1R) on sections of ex vivo mice at different development stages. The expression of AMHR2, GHR, and IGF1R was assessed by immunofluorescence using established protocols and commercial antibodies. The head sections of mice were analyzed at E12.5, E14.5, and E18.5. In particular, at E12.5, we focused on the neurogenic epithelium of the vomeronasal organ (VNO), where GnRH neurons, migratory mass cells, and the pioneering vomeronasal axon give rise. At E14.5, we focused on the VNO and nasal forebrain junction (NFJ), the two regions where GnRH neurons originate and migrate to the hypothalamus, respectively. At E18.5, the median eminence, which is the hypothalamic area where GnRH is released, was analyzed. At E12.5, double staining for the neuronal marker ß-tubulin III and AMHR2, GHR, or IGF1R revealed a signal in the neurogenic niches of the olfactory and VNO during early embryo development. Furthermore, IGF1R and GHR were expressed by VNO-emerging GnRH neurons. At E14.5, a similar expression pattern was found for the neuronal marker ß-tubulin III, while the expression of IGF1R and GHR began to decline, as also observed at E18.5. Of note, hypothalamic GnRH neurons labeled for PLXND1 tested positive for AMHR2 expression. Ex vivo experiments on mouse sections revealed differential protein expression patterns for AMHR2, GHR, and IGF1R at any time point in development between neurogenic areas and hypothalamic compartments. These findings suggest a differential functional role of related systems in the development of GnRH neurons.


Subject(s)
Neuroendocrine Cells , Peptide Hormones , Animals , Mice , Anti-Mullerian Hormone , Gonadotropin-Releasing Hormone , Growth Hormone , Insulin-Like Growth Factor I , Neurons , Pituitary Hormone-Releasing Hormones , Tubulin , Neuroendocrine Cells/metabolism
14.
J Adv Res ; 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37648022

ABSTRACT

INTRODUCTION: Sessile plants engage in trade-offs between growth and defense capacity in response to fluctuating environmental cues. MYB is an important transcription factor that plays many important roles in controlling plant growth and defense. However, the mechanism behind how it keeps a balance between these two physiological processes is still largely unknown. OBJECTIVES: Our work focuses on the dissection of the molecular mechanism by which GhMYB33 regulates plant growth and defense. METHODS: The CRISPR/Cas9 technique was used to generate mutants for deciphering GhMYB33 functions. Yeast two-hybrid, luciferase complementary imaging, and co-immunoprecipitation assays were used to prove that proteins interact with each other. We used the electrophoretic mobility shift assay, yeast one-hybrid, and luciferase activity assays to analyze GhMYB33 acting as a promoter. A ß-glucuronidase fusion reporter and 5' RNA ligase mediated amplification of cDNA ends analysis showed that ghr-miR319c directedly cleaved the GhMYB33 mRNA. RESULTS: Overexpressing miR319c-resistant GhMYB33 (rGhMYB33) promoted plant growth, accompanied by a significant decline in resistance against Verticillium dahliae. Conversely, its knockout mutant, ghmyb33, demonstrated growth restriction and concomitant augmentation of V. dahliae resistance. GhMYB33 was found to couple with the DELLA protein GhGAI1 and bind to the specific cis-elements of GhSPL9 and GhDFR1 promoters, thereby modulating internode elongation and plant resistance in V. dahliae infection. The ghr-miR319c was discovered to target and suppress GhMYB33 expression. The overexpression of ghr-miR319c led to enhanced plant resistance and a simultaneous reduction in plant height. CONCLUSION: Our findings demonstrate that GhMYB33 encodes a hub protein and controls the expression of GhSPL9 and GhDFR1, implicating a pivotal role for the miR319c-MYB33 module to regulate the trade-offs between plant growth and defense.

15.
bioRxiv ; 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37577461

ABSTRACT

Genome-wide association studies (GWAS) have identified a large number of candidate genes believed to affect longitudinal bone growth and bone mass. One of these candidate genes, TMEM263, encodes a poorly characterized plasma membrane protein. Single nucleotide polymorphisms in TMEM263 are associated with bone mineral density in humans and mutations are associated with dwarfism in chicken and severe skeletal dysplasia in at least one human fetus. Whether this genotype-phenotype relationship is causal, however, remains unclear. Here, we determine whether and how TMEM263 is required for postnatal growth. Deletion of the Tmem263 gene in mice causes severe postnatal growth failure, proportional dwarfism, and impaired skeletal acquisition. Mice lacking Tmem263 show no differences in body weight within the first two weeks of postnatal life. However, by P21 there is a dramatic growth deficit due to a disrupted GH/IGF-1 axis, which is critical for longitudinal bone growth. Tmem263-null mice have low circulating IGF-1 levels and pronounced reductions in bone mass and growth plate length. The low serum IGF-1 in Tmem263-null mice is associated with reduced hepatic GH receptor (GHR) expression and GH-induced JAK2/STAT5 signaling. A deficit in GH signaling dramatically alters GH-regulated genes and feminizes the liver transcriptome of Tmem263-null male mice, with their expression profile resembling a wild-type female, hypophysectomized male, and Stat5b-null male mice. Collectively, our data validates the causal role for Tmem263 in regulating postnatal growth and raises the possibility that rare mutations or variants of TMEM263 may potentially cause GH insensitivity and impair linear growth.

16.
Am J Hypertens ; 36(12): 631-640, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37561089

ABSTRACT

BACKGROUND: Genetic factors influence lifespan. In humans, there appears to be a particularly strong genetic effect in those aged ≥ 90 years. An important contribution is nutrient sensing genes which confer cell resilience. METHODS: Our research has been investigating the genetic factors by longitudinal studies of American men of Japanese descent living on the island of Oahu in Hawaii. This cohort began as the Honolulu Heart Program in the mid-1960s and most subjects are now deceased. RESULTS: We previously discovered various genes containing polymorphisms associated with longevity. In recent investigations of the mechanism involved we found that the longevity genotypes ameliorated the risk of mortality posed by having a cardiometabolic disease (CMD)-most prominently hypertension. For the gene FOXO3 the protective alleles mitigated the risk of hypertension, coronary heart disease (CHD) and diabetes. For the kinase MAP3K5 it was hypertension, CHD and diabetes, for the kinase receptor PIK3R1 hypertension, CHD and stroke, and for the growth hormone receptor gene (GHR) and vascular endothelial growth factor receptor 1 gene (FLT1), it was nullifying the higher mortality risk posed by hypertension. Subjects with a CMD who had a longevity genotype had similar survival as men without CMD. No variant protected against risk of death from cancer. We have postulated that the longevity-associated genotypes reduced mortality risk by effects on intracellular resilience mechanisms. In a proteomics study, 43 "stress" proteins and associated biological pathways were found to influence the association of FOXO3 genotype with reduced mortality. CONCLUSIONS: Our landmark findings indicate how heritable genetic components affect longevity.


Subject(s)
Coronary Disease , Diabetes Mellitus , Hypertension , Male , Humans , Longevity/genetics , Vascular Endothelial Growth Factor A , Hypertension/genetics , Risk Factors
17.
BMC Endocr Disord ; 23(1): 155, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37474955

ABSTRACT

BACKGROUND: Human growth hormone (hGH) plays a crucial role in growth by binding to growth hormone receptor (GHR) in target cells. Binding of GH molecules to their cognate receptors triggers downstream signaling pathways leading to the transcription of several genes, including insulin-like growth factor (IGF)-1. Pathogenic variants in the GHR gene can result in structural and functional defects in the GHR protein, leading to Laron Syndrome (LS) with the primary clinical manifestation of short stature. So far, around 100 GHR variants have been reported, mostly biallelic, as causing LS. CASE PRESENTATION: We report on three siblings from an Iranian consanguineous family who presented with dwarfism. Whole-exome sequencing (WES) was performed on the proband, revealing a novel homozygous missense variant in the GHR gene (NM_000163.5; c.610 T > A, p.(Trp204Arg)) classified as a likely pathogenic variant according to the recommendation of the American College of Medical Genetics (ACMG). Co-segregation analysis was investigated using Sanger sequencing. CONCLUSIONS: To date, approximately 400-500 LS cases with GHR biallelic variants, out of them 10 patients originating from Iran, have been described in the literature. Given the high rate of consanguineous marriages in the Iranian population, the frequency of LS is expected to be higher, which might be explained by undiagnosed cases. Early diagnosis of LS is very important, as treatment is available for this condition.


Subject(s)
Dwarfism , Human Growth Hormone , Laron Syndrome , Humans , Receptors, Somatotropin/genetics , Receptors, Somatotropin/metabolism , Laron Syndrome/genetics , Laron Syndrome/drug therapy , Iran , Consanguinity , Pedigree , Dwarfism/genetics , Insulin-Like Growth Factor I/metabolism
18.
Biology (Basel) ; 12(7)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37508331

ABSTRACT

Cotton Verticillium wilt, mainly caused by Verticillium dahliae, has a serious impact on the yield and quality of cotton fiber. Many microRNAs (miRNAs) have been identified to participate in plant resistance to V. dahliae infection, but the exploration of miRNA's function mechanism in plant defense is needed. Here, we demonstrate that the ghr-miR482b-GhRSG2 module mediates cotton plant resistance to V. dahliae infection. Based on the mRNA degradation data and GUS fusion experiments, ghr-miR482b directedly bonds to GhRSG2 mRNA to lead to its degradation. The knockdown and overexpression of ghr-miR482b through virus-induced gene silencing strategies enhanced (decreased by 0.39-fold in disease index compared with the control) and weakened (increased by 0.46-fold) the plant resistance to V. dahliae, respectively. In addition, silencing GhRSG2 significantly increased (increased by 0.93-fold in disease index) the plant sensitivity to V. dahliae compared with the control plants treated with empty vector. The expression levels of two SA-related disease genes, GhPR1 and GhPR2, significantly decreased in GhRSG2-silenced plants by 0.71 and 0.67 times, respectively, and in ghr-miR482b-overexpressed (OX) plants by 0.59 and 0.75 times, respectively, compared with the control, whereas the expression levels of GhPR1 and GhPR2 were significantly increased by 1.21 and 2.59 times, respectively, in ghr-miR482b knockdown (KD) plants. In sum, the ghr-miR482b-GhRSG2 module participates in the regulation of plant defense against V. dahliae by inducing the expression of PR1 and PR2 genes.

19.
Front Med (Lausanne) ; 10: 1158166, 2023.
Article in English | MEDLINE | ID: mdl-37404805

ABSTRACT

Background: Aging and immune infiltration have essential role in the physiopathological mechanisms of diabetic nephropathy (DN), but their relationship has not been systematically elucidated. We identified aging-related characteristic genes in DN and explored their immune landscape. Methods: Four datasets from the Gene Expression Omnibus (GEO) database were screened for exploration and validation. Functional and pathway analysis was performed using Gene Set Enrichment Analysis (GSEA). Characteristic genes were obtained using a combination of Random Forest (RF) and Support Vector Machine Recursive Feature Elimination (SVM-RFE) algorithm. We evaluated and validated the diagnostic performance of the characteristic genes using receiver operating characteristic (ROC) curve, and the expression pattern of the characteristic genes was evaluated and validated. Single-Sample Gene Set Enrichment Analysis (ssGSEA) was adopted to assess immune cell infiltration in samples. Based on the TarBase database and the JASPAR repository, potential microRNAs and transcription factors were predicted to further elucidate the molecular regulatory mechanisms of the characteristic genes. Results: A total of 14 differentially expressed genes related to aging were obtained, of which 10 were up-regulated and 4 were down-regulated. Models were constructed by the RF and SVM-RFE algorithms, contracted to three signature genes: EGF-containing fibulin-like extracellular matrix (EFEMP1), Growth hormone receptor (GHR), and Vascular endothelial growth factor A (VEGFA). The three genes showed good efficacy in three tested cohorts and consistent expression patterns in the glomerular test cohorts. Most immune cells were more infiltrated in the DN samples compared to the controls, and there was a negative correlation between the characteristic genes and most immune cell infiltration. 24 microRNAs were involved in the transcriptional regulation of multiple genes simultaneously, and Endothelial transcription factor GATA-2 (GATA2) had a potential regulatory effect on both GHR and VEGFA. Conclusion: We identified a novel aging-related signature allowing assessment of diagnosis for DN patients, and further can be used to predict immune infiltration sensitivity.

20.
Endocr Relat Cancer ; 30(9)2023 09 01.
Article in English | MEDLINE | ID: mdl-37343154

ABSTRACT

Many clinical and experimental studies have implicated the growth hormone (GH)-insulin-like growth factor (IGF-1) axis with the progression of cancer. The epidemiological finding that patients with Laron syndrome (LS), the best-characterized disease under the spectrum of congenital IGF-1 deficiencies, do not develop cancer is of major scientific and translational relevance. The evasion of LS patients from cancer emphasizes the central role of the GH-IGF-1 system in cancer biology. To identify genes that are differentially expressed in LS and that might provide a biological foundation for cancer protection, we have recently conducted genome-wide profiling of LS patients and normal controls. Analyses were performed on immortalized lymphoblastoid cell lines derived from individual patients. Bioinformatic analyses identified a series of genes that are either over- or under-represented in LS. Differential expression was demonstrated in a number of gene families, including cell cycle, metabolic control, cytokine-cytokine receptor interaction, Jak-STAT and PI3K-AKT signaling, etc. Major differences between LS and controls were also noticed in pathways associated with cell cycle distribution, apoptosis, and autophagy. The identification of novel downstream targets of the GH-IGF-1 network highlights the biological complexity of this hormonal system and sheds light on previously unrecognized mechanistic aspects associated with GH-IGF-1 action in the cancer cell.


Subject(s)
Human Growth Hormone , Laron Syndrome , Neoplasms , Humans , Growth Hormone , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Laron Syndrome/genetics , Laron Syndrome/metabolism , Neoplasms/genetics , Phosphatidylinositol 3-Kinases
SELECTION OF CITATIONS
SEARCH DETAIL