Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
J Biol Chem ; 300(9): 107706, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39178950

ABSTRACT

Mutations that cause loss of function of GlcNAc-1-phosphotransferase (PTase) lead to the lysosomal storage disorder mucolipidosis II. PTase is the key enzyme of the mannose 6-phosphate (M6P) targeting system that is responsible for tagging lysosomal hydrolases with the M6P moiety for their delivery to the lysosome. We had previously generated a truncated hyperactive form of PTase termed S1S3 which was shown to notably increase the phosphorylation level of secreted lysosomal enzymes and enhance their uptake by cells. Here, we report the 3.4 Å cryo-EM structure of soluble S1S3 lacking both transmembrane domains and cytosolic tails. The structure reveals a high degree of conservation of the catalytic core to full-length PTase. In this dimeric structure, the EF-hand of one protomer is observed interacting with the conserved region four of the other. In addition, we present a high-quality EM 3D map of the UDP-GlcNAc bound form of the full-length soluble protein showing the key molecular interactions between the nucleotide sugar donor and side chain amino acids of the protein. Finally, although the domain organization of S1S3 is very similar to that of the Drosophila melanogaster (fruit fly) PTase homolog, we establish that the latter does not act on lysosomal hydrolases.


Subject(s)
Cryoelectron Microscopy , Humans , Animals , Transferases (Other Substituted Phosphate Groups)/chemistry , Transferases (Other Substituted Phosphate Groups)/metabolism , Transferases (Other Substituted Phosphate Groups)/genetics , Catalytic Domain , Drosophila melanogaster , Lysosomes/enzymology , Lysosomes/metabolism , Models, Molecular , Protein Domains , Protein Multimerization
2.
Indian J Pediatr ; 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38376646

ABSTRACT

I-cell disease (Mucolipidosis Type II) is a rare lysosomal storage disorder caused by GNPTAB gene defects, leading to severe morbidity and mortality. The authors present the case of a neonate born at 38 wk gestational age, with suspected skeletal dysplasia during pregnancy and a complex clinical and laboratory presentation after birth. This is a rare case, and its diagnosis was made through placental pathology, which revealed the condition called mucolipidosis Type II. To the best of authors' knowledge, this is one of the few cases diagnosed in the neonatal period with placental pathology globally and the first in Canada, highlighting the significance of placental pathology for the diagnosis of these rare conditions and future counseling of the parents. In conclusion, mucolipidosis Type II is a rare condition in neonates. Early diagnosis in neonates can be made through placental pathology for parental counseling.

3.
Front Pediatr ; 11: 1199489, 2023.
Article in English | MEDLINE | ID: mdl-37484777

ABSTRACT

Background: Mucolipidosis type II (MLII), or I-cell disease, is a rare lysosomal storage disease (LSD) caused by variants in the GNPTAB gene. MLII patients exhibit clinical phenotypes in the prenatal or neonatal stage, such as marked dysmorphic features, cardiac involvement, respiratory symptoms, dysostosis multiplex, severe growth abnormalities, and mental and motor developmental abnormalities. The median age at diagnosis for MLII is 0.7 years, the median survival is 5.0 years, and the median age at death is 1.8 years. No cure for MLII exists. Methods: Sanger sequencing of the GNPTAB gene identified the compound heterozygous mutations c.673C > T in exon 7 and c.1090C > T in exon 9, which were novel double heterozygous mutations first reported in China. For the first time, we describe our experience in the use of HSCT for MLII. Our patient underwent HSCT with cells from a 9/10 human leukocyte antigen (HLA)-matched unrelated donor at 12 months of age. Myeloid neutrophil and platelet engraftment occurred on Days 10 and 11, respectively. Results: The patient's limb muscle tension was significantly reduced, and his gross and fine motor skills were improved four months after transplantation. DST(Developmental Screen Test) results showed that the patient's fine motor skills and mental development were improved compared with before HSCT. Conclusion: MLII is a very severe lysosomal storage disease, to date, only 3 cases have been reported on the use of HSCT to treat MLII. Our data show that HSCT is a potential way to prolong the life of patients and improve their quality of life. Due to the lack of comparable data and time, the exact benefit remains unclear in MLII patients. Longer-term follow-up and in-depth prospective studies are indispensable.

4.
J Cardiovasc Transl Res ; 16(1): 233-243, 2023 02.
Article in English | MEDLINE | ID: mdl-35972719

ABSTRACT

Nε-carboxymethyl-lysine (CML) is closely associated with vascular calcification in diabetes. Osteoclasts are the only cells with bone resorption activity that have the potential to reverse calcification. This study aimed to investigate the mechanism of CML in the bone resorption activity of macrophage-derived osteoclasts in diabetic calcified plaques. Macrophage-derived osteoclasts were found to be present in calcified plaques of the anterior tibial artery in patients with diabetic amputation. Furthermore, in vitro studies showed that CML induced the differentiation of macrophages into osteoclasts, although, the bone resorption activity of these macrophage-derived osteoclasts was impaired. CML significantly increased the levels of NFATc1and GNPTAB. In vivo studies showed that there was more calcium deposition and less TRAP was less in the CML group while this effect was reversed after silencing of NFATc1. In conclusion, CML mediates NFATc1-GNPTAB to regulate bone resorption activity of osteoclasts in diabetic calcified plaques. CML promotes macrophage differentiation into osteoclasts, but their function is impaired in diabetic calcified plaques through NFATc1-GNPTAB, which eventually leads to the further progression of vascular calcification in diabetes.


Subject(s)
Bone Resorption , Diabetes Mellitus , Plaque, Atherosclerotic , Vascular Calcification , Humans , Osteoclasts , Transcription Factors , Cell Differentiation , NFATC Transcription Factors , Transferases (Other Substituted Phosphate Groups)
5.
Front Pediatr ; 10: 852701, 2022.
Article in English | MEDLINE | ID: mdl-35463894

ABSTRACT

Objective: This study aimed to improve the cognition of mucolipidosis (ML) II and III alpha/beta by analyzing the clinical manifestations of two patients. Methods: The clinical, biochemical, and molecular data of two clinical cases associated with ML II and III alpha/beta were analyzed and compared with other case reports of ML II and III alpha/beta. Results: The first patient was a 14-month-old girl who was hospitalized because of abnormal postnatal coarse facial features. The child had no abnormal birth history, but developed multiple abnormalities such as psychomotor retardation, abnormal facial features, bilateral limb muscle hypotonia, and genital abnormalities. The X-ray of the spine revealed multiple bone malformations. Brain magnetic resonance imaging (MRI) showed delayed myelination. Genetic testing showed the presence of two compound heterozygous pathogenic variants (c.1364C>T and c.1284+1G>T) in the GNPTAB gene. The second patient was an 18-month-old boy who was hospitalized for recurrent respiratory tract infections. The patient was a high-risk preterm infant with postnatal psychomotor retardation, language development retardation, intellectual disability, and coarse facial features. X-ray showed multiple bone malformations. Craniocerebral ultrasound showed bilateral ventricle widening. Genetic testing showed the presence of two compound heterozygous pathogenic variants (c.1284+1G>T and c.483delT) in the same gene. Conclusions: ML II and III alpha/beta are rare autosomal-recessive lysosomal storage diseases that are attributed to GNPTAB variants that cause N-acetylglucosamine-1-phosphotransferase deficiency, finally leading to multiple clinical signs and symptoms. A proper ML II and/or III alpha/beta diagnosis requires a combined analysis of a patient's clinical manifestations, imaging examination, enzymatic analysis, and genetic testing results. Ultimately, genetic counseling is essential for this disease.

6.
J Genet Eng Biotechnol ; 19(1): 111, 2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34342781

ABSTRACT

BACKGROUND: Mucolipidosis II (ML II α/ß) is an inherited lysosomal storage disorder caused by deficiency of GlcNAc-phosphotransferase enzyme and results in mis-targeting of multiple lysosomal enzymes. Affected patients are characterized by skeletal deformities and developmental delay. Homozygous or compound heterozygous mutations in GNPTAB gene are associated with the clinical presentation. This is the first study to characterize the underlying genetics of ML among a cohort of Egyptian patients. ML II diagnosis established by clinical assessment, biochemical evaluation of enzymes, electron microscopy examination of gingival inclusion bodies, and molecular study of GNPTAB gene using targeted next-generation sequencing panel in 8 patients form 8 unrelated Egyptian families. RESULTS: Sequencing revealed 3 mutations in GNPTAB gene; 1 novel frame-shift mutation in exon 19 (c.3488_3488delC) and 2 previously reported mutations (c.1759C>T in exon 13 and c.3503_3504delTC in exon 19). All patients were homozygous for their corresponding mutations and the parents were consanguineous. CONCLUSIONS: According to the established quaternary diagnostic scheme, ML II was the final diagnosis in eight patients. The most common mutation was the frame shift c.3503_3504delTC mutation, found in 5 patients and associated with a severe phenotype.

7.
Mol Genet Metab Rep ; 27: 100747, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33854947

ABSTRACT

Mucolipidosis type II (MLII, MIM 252500) is a lysosomal storage disorders caused by defects in GNPTAB gene which encodes alpha and beta subunits of N-acetylglucosamine (GlcNAc)-1-phosphotransferase. Neonatal presentation includes coarse facial features, restricted postnatal growth, generalized hypotonia, gingival hypertrophy and multiple skeletal anomalies. Here we present a case of a 26-week gestational age preterm infant with MLII who did not exhibit the typical facial features at birth; however, the diagnosis was suggested from abnormal placental pathology showing trophoblastic lipidosis and initial skeletal abnormalities from chest radiograph revealing generalized diffuse severe bone demineralizing disease and multiple fractures. Biochemical testing revealed elevation of plasma lysosomal enzymes. Homozygous pathogenic variant, designated c.3505_3504del, was discovered from GNPTAB sequencing. Her course was complicated by respiratory distress, secondary hyperparathyroidism, abdominal distention and feeding difficulties. Urine mucopolysaccharides analysis revealed mild elevation of total and individual glycosaminoglycan species in a non-specific pattern. To our knowledge, our case is the most premature example of mucolipidosis type II that has ever been reported to date. This report highlights the importance of placental pathological studies in the diagnosis of lysosomal storage disorders.

8.
Adv Genet (Hoboken) ; 2(2): e10043, 2021 Jun.
Article in English | MEDLINE | ID: mdl-36618124

ABSTRACT

Stuttering is a childhood-onset fluency disorder, intertwined with physiological, emotional, and anxiety factors. The present study was designed to evaluate the recurrence of the reported mutations among three previously implicated (GNPTAB, GNPTG, NAGPA) candidate genes, in persons with stuttering from south India. Mutation screening was performed among 64 probands on 12 specific exons, by Sanger sequencing. A total of 12 variants were identified, which included five nonsynonymous, five synonymous, and two noncoding variants. Three unrelated probands harbored heterozygous missense variants at conserved coding positions across species (p. Glu1200Lys in GNPTAB, p. Ile268Leu in GNPTG and p. Arg44Pro in NAGPA). Of these, only one variant (p. Glu1200Lys in GNPTAB) cosegregated with the affected status while p. Ile268Leu in GNPTG gene was found to be a rare de novo variant. Although this study identified some previously reported variants that have been claimed to have a role in stuttering, we confirmed only one of these to be a likely causal de novo variant (p.Ile268Leu) in the GNPTG gene at an allele frequency of 0.8% (1/128) in the families with stuttering.

9.
J Biol Regul Homeost Agents ; 34(4 Suppl. 2): 71-77. SPECIAL ISSUE: FOCUS ON PEDIATRIC CARDIOLOGY, 2020.
Article in English | MEDLINE | ID: mdl-33000604

ABSTRACT

Mucolipidosis II and III are lysosomal storage diseases caused by pathogenetic mutations in GNPTAB and GNPTG genes which cause an impaired activity of the lysosomal hydrolase N-acetylglucosamine- 1-phosphotransferase, a key enzyme in the synthesis of the mannose-6-phosphate targeting signals on lysosomal enzymes. Patients with MLII alpha/beta present coarse facial features, cessation of statural growth, important skeletal manifestations, impaired neuromotor development and cardiorespiratory involvement. All children appear to have cardiac involvement, but severe dilated cardiomyopathy is uncommon. In this report we describe the case of an 11-month-old girl who is affected by a MLII. Analysis of the GNPTAB gene identified at a heterozygous level the previously described gene variants c. 2693delA p(Lys898Serfs*13) and c. 2956C>T p(Arg986Cys). Her main clinical features were coarse face with gingival hypertrophy, dysostosis multiplex, recurrent respiratory infection and an early onset of dilated cardiomyopathy, an uncommon feature for MLII. To our knowledge, dilated cardiomyopathy has been previously described in literature in only two cases of MLII and in one patient affected by MLIII.


Subject(s)
Cardiomyopathy, Dilated , Mucolipidoses , Cardiomyopathy, Dilated/complications , Cardiomyopathy, Dilated/diagnostic imaging , Cardiomyopathy, Dilated/genetics , Child , Female , Humans , Infant , Mucolipidoses/complications , Mucolipidoses/diagnosis , Mucolipidoses/genetics , Mutation , Transferases (Other Substituted Phosphate Groups)/genetics
10.
J Pediatr Endocrinol Metab ; 33(5): 647-651, 2020 May 26.
Article in English | MEDLINE | ID: mdl-32238606

ABSTRACT

Background Mucolipidosis II is a rare inherited metabolic disorder characterized by multiple pathologies including coarse facial features, thickened skin, dysostosis multiplex, and skeletal abnormalities. The disorder results due to variants in GNPTAB leading to reduced activity of the enzyme GlcNAc-1-phosphotransferase (GlcNAc-PT). Methods In the present study, a consanguineous Pakistani family was diagnosed with MLII based on clinical and biochemical examination. Peripheral blood samples were collected and subjected to DNA sequencing of all coding exons along with exon-intron boundaries of GNPTAB. Results Molecular investigation of the family identified two novel variants c.25C > T: p.Gln9* (maternal allele) in exon 1 and c.1160C > T: p.Ala387Val (paternal allele) in exon 10 segregating in compound heterozygous form in the affected individuals. Conclusions The GNPTAB variant c.25C > T variant is highly plausible to undergo nonsense-mediated mRNA decay, while the GNPTAB variant c.1160C > T is located in a highly conserved domain, thus both the variants predict to lead to affect the enzyme activity. Two novel variants have been identified in GNPTAB as the underlying cause of ML-II in a Pakistani family. The study thus expands the available GNPTAB mutation spectrum.


Subject(s)
Mucolipidoses/genetics , Mutation , Transferases (Other Substituted Phosphate Groups)/genetics , Alleles , DNA Mutational Analysis , Humans , Phenotype
11.
Hum Gene Ther ; 31(13-14): 775-783, 2020 07.
Article in English | MEDLINE | ID: mdl-32283951

ABSTRACT

Lysosomal storage disorders (LSDs) are a group of rare inherited metabolic diseases caused by the malfunction of the lysosomal system, which results in the accumulation of undergraded substrates inside the lysosomes and leads to severe and progressive pathology. Despite there currently being a broad understanding of the molecular defects behind LSDs, curative therapies have been approved for only few of these diseases, whereas existing treatments are still mostly symptomatic with several limitations. Mucolipidosis type II alpha/beta (ML II) is one of most severe LSDs, which is caused by the total deficiency of the GlcNAc-1-phosphotransferase, a key enzyme for the formation of specific targeting signals on lysosomal hydrolases to lysosomes. GlcNAc-1-phosphotransferase is a multimeric enzyme complex encoded by two genes: GNPTAB and GNPTG. One of the most frequent ML II causal mutation is a dinucleotide deletion on exon 19 of GNPTAB (c.3503_3504del) that leads to the generation of a truncated protein, loss of GlcNAc-1-phosphotransferase activity, and missorting of multiple lysosomal enzymes. Presently, there is no therapy available for ML II. In this study, we explored the possibility of an innovative therapeutic strategy for ML II based on the use of antisense oligonucleotides (AOs) capable to induce the skipping of GNPTAB exon 19 harboring the most common disease-causing mutation, c.3503_3504del. The approach confirmed the ability of specific AOs for RNA splicing modulation, thus paving the way for future studies on the therapeutic potential of this strategy.


Subject(s)
Exons , Fibroblasts/metabolism , Mucolipidoses/therapy , Mutation , Oligonucleotides, Antisense/genetics , Transferases (Other Substituted Phosphate Groups)/antagonists & inhibitors , Amino Acid Sequence , Case-Control Studies , Humans , Mucolipidoses/genetics , Mucolipidoses/pathology , Phenotype , Sequence Homology , Transferases (Other Substituted Phosphate Groups)/genetics
12.
Hum Mutat ; 41(1): 133-139, 2020 01.
Article in English | MEDLINE | ID: mdl-31579991

ABSTRACT

Mucolipidosis (ML) II and III alpha/beta are inherited lysosomal storage disorders caused by mutations in GNPTAB encoding the α/ß-precursor of GlcNAc-1-phosphotransferase. This enzyme catalyzes the initial step in the modification of more than 70 lysosomal enzymes with mannose 6-phosphate residues to ensure their intracellular targeting to lysosomes. The so-called stealth domains in the α- and ß-subunit of GlcNAc-1-phosphotransferase were thought to be involved in substrate recognition and/or catalysis. Here, we performed in silico alignment analysis of stealth domain-containing phosphotransferases and showed that the amino acid residues Glu389 , Asp408 , His956 , and Arg986 are highly conserved between different phosphotransferases. Interestingly, mutations in these residues were identified in patients with MLII and MLIII alpha/beta. To further support the in silico findings, we also provide experimental data demonstrating that these four amino acid residues are strictly required for GlcNAc-1-phosphotransferase activity and thus may be directly involved in the enzymatic catalysis.


Subject(s)
Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Genetic Predisposition to Disease , Mucolipidoses/diagnosis , Mucolipidoses/genetics , Mutation, Missense , Transferases (Other Substituted Phosphate Groups)/genetics , Alleles , Amino Acid Sequence , Catalysis , Fluorescent Antibody Technique , Gene Expression , Genetic Association Studies , Genotype , Humans , Phenotype , Substrate Specificity , Transferases (Other Substituted Phosphate Groups)/chemistry , Transferases (Other Substituted Phosphate Groups)/metabolism
13.
Infect Immun ; 87(11)2019 11.
Article in English | MEDLINE | ID: mdl-31405956

ABSTRACT

Coxiella burnetii is an intracellular bacterium that causes query, or Q fever, a disease that typically manifests as a severe flu-like illness. The initial target of C. burnetii is the alveolar macrophage. Here, it regulates vesicle trafficking pathways and fusion events to establish a large replication vacuole called the Coxiella-containing vacuole (CCV). Similar to a phagolysosome, the CCV has an acidic pH and contains lysosomal hydrolases obtained via fusion with late endocytic vesicles. Lysosomal hydrolases break down various lipids, carbohydrates, and proteins; thus, it is assumed C. burnetii derives nutrients for growth from these degradation products. To investigate this possibility, we utilized a GNPTAB-/- HeLa cell line that lacks lysosomal hydrolases in endocytic compartments. Unexpectedly, examination of C. burnetii growth in GNPTAB-/- HeLa cells revealed replication and viability are not impaired, indicating C. burnetii does not require by-products of hydrolase degradation to survive and grow in the CCV. However, although bacterial growth was normal, CCVs were abnormal, appearing dark and condensed rather than clear and spacious. Lack of degradation within CCVs allowed waste products to accumulate, including intraluminal vesicles, autophagy protein LC3, and cholesterol. The build-up of waste products coincided with an altered CCV membrane, where LAMP1 was decreased and CD63 and LAMP1 redistributed from a punctate to uniform localization. This disruption of CCV membrane organization may account for the decreased CCV size due to impaired fusion with late endocytic vesicles. Collectively, these results demonstrate lysosomal hydrolases are not required for C. burnetii survival and growth but are needed for normal CCV development. These data provide insight into mechanisms of CCV biogenesis while raising the important question of how C. burnetii obtains essential nutrients from its host.


Subject(s)
Hydrolases/metabolism , Amino Acids/administration & dosage , Amino Acids/pharmacology , Cathepsin D , Cell Proliferation , Cholesterol/metabolism , Coxiella burnetii , Culture Media , HeLa Cells , Humans , Hydrogen-Ion Concentration , Lysosomes , Macrolides/pharmacology , Microbial Viability
14.
Hum Mutat ; 40(7): 842-864, 2019 07.
Article in English | MEDLINE | ID: mdl-30882951

ABSTRACT

Mutations in the GNPTAB and GNPTG genes cause mucolipidosis (ML) type II, type III alpha/beta, and type III gamma, which are autosomal recessively inherited lysosomal storage disorders. GNPTAB and GNPTG encode the α/ß-precursor and the γ-subunit of N-acetylglucosamine (GlcNAc)-1-phosphotransferase, respectively, the key enzyme for the generation of mannose 6-phosphate targeting signals on lysosomal enzymes. Defective GlcNAc-1-phosphotransferase results in missorting of lysosomal enzymes and accumulation of non-degradable macromolecules in lysosomes, strongly impairing cellular function. MLII-affected patients have coarse facial features, cessation of statural growth and neuromotor development, severe skeletal abnormalities, organomegaly, and cardiorespiratory insufficiency leading to death in early childhood. MLIII alpha/beta and MLIII gamma are attenuated forms of the disease. Since the identification of the GNPTAB and GNPTG genes, 564 individuals affected by MLII or MLIII have been described in the literature. In this report, we provide an overview on 258 and 50 mutations in GNPTAB and GNPTG, respectively, including 58 novel GNPTAB and seven novel GNPTG variants. Comprehensive functional studies of GNPTAB missense mutations did not only gain insights into the composition and function of the GlcNAc-1-phosphotransferase, but also helped to define genotype-phenotype correlations to predict the clinical outcome in patients.


Subject(s)
Mucolipidoses/genetics , Mutation , Transferases (Other Substituted Phosphate Groups)/genetics , Exons , Humans , Introns , Lysosomal Storage Diseases, Nervous System/classification , Lysosomal Storage Diseases, Nervous System/genetics , Mucolipidoses/classification , Phenotype , Prognosis , Protein Domains , Transferases (Other Substituted Phosphate Groups)/chemistry
15.
Int J Clin Exp Pathol ; 12(8): 2981-2988, 2019.
Article in English | MEDLINE | ID: mdl-31934135

ABSTRACT

OBJECTIVE: Mucolipidosis II and III alpha/beta (ML II & ML III alpha/beta) are rare autosomal recessive lysosomal storage disorders. ML II is clinically evident from birth with a progressive course and fatal outcome in childhood. The typical phenotypes of ML II include limited statural growth, craniofacial abnormality, skeletal malformation, intelligence developmental deficiency and visceral organ abnormality. ML III is milder than ML II. Mutations in GNPTAB cause the ML II/III. METHODS: Two families with ML II/III (initially undiagnosed) were recruited. We applied whole-exome sequencing (WES) and filtered mutations by genes causing lysosomal storage diseases with skeletal involvement. Mutational analysis and co-segregation confirmation were then performed. RESULTS: We presented two families with ML II or ML III alpha/beta. By WES, the compound heterozygosity of GNPTAB (c.2404C>T, p.Q802* and c.2590dup, p.E864Gfs*4) is identified in a family with ML II, and c.1364C>T, p.A455V and c.2715+1G>A are detected in a family with ML III alpha/beta. CONCLUSION: We detected the causative mutations in two ML II/III families by WES and confirmed their diagnosis of the diseases. The present identification of mutations expands the spectrum of known GNPTAB mutations and it may contribute to novel approaches to genetic diagnosis and counseling for patients with ML II/III.

16.
Acta Pharmacol Sin ; 40(2): 279-287, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29872134

ABSTRACT

Mucolipidosis II α/ß, mucolipidosis III α/ß, and mucolipidosis III γ are autosomal recessive disorders belonging to the family of lysosomal storage disorders caused by deficiency of the UDP-N-acetylglucosamine, a lysosomal enzyme N-acetylglucosamine-1-phosphotransferase (GlcNAc-phosphotransferase) localized in the Golgi apparatus, which is essential for normal processing and packaging of soluble lysosomal enzymes with initiating the first step of tagging lysosomal enzymes with mannose-6-phosphate (M6P). Mucolipidosis II and III are caused by mutations in the GNPTAB and GNPTG genes, and patients with these diseases are characterized by short stature, skeletal abnormalities, and developmental delay. In this study we report 38 patients with mucolipidosis II and III enrolled in Eastern China during the past 8 years. The diagnosis was made based on clinical characteristics and measurement of plasma lysosomal enzyme activity. Sanger sequencing of GNPTAB and/or GNPTG for all patients and real-time quantitative PCR were performed to confirm the diagnosis. In addition, 11 cases of prenatal mucolipidosis II were diagnosed based on measurement of the enzyme activity in amniotic fluid supernatant and genetic testing of cultured amniotic cells. Based on molecular genetic tests, 30 patients were diagnosed with mucolipidosis II α/ß, 6 were diagnosed with III α/ß and 2 were diagnosed with III γ. Thirty-seven different GNPTAB gene mutations were identified in 29 patients with mucolipidosis II α/ß and six patients with III α/ß. These mutations included 22 new mutations (p.W44X, p.E279X, p.W416X, p.W463X, p.Q802X, p.Q882X, p.A34P, p.R334P, p.D408N, p.D534N, p.Y997C, p.D1018V, p.L1025S, p.L1033P, c.88_89delAC, c.890_891insT, c.1150_1151insTTA, c.1523delG, c.2473_2474insA, c.2980_2983delGCCT, c.3094delA, and deletion of exon 9). Four new GNPTG gene mutations were identified (c.13delC, p.Y81X, p.G126R and c.609+1delG) in two mucolipidosis III γ patients. Among the 11 cases of prenatal diagnosis, four were mucolipidosis II fetuses, three were heterozygous, and the remaining four were normal fetuses. This study expands the mutation spectrum of the GNPTAB and GNPTG genes and contributes to specific knowledge of mucolipidosis II/III in a population from Eastern China.


Subject(s)
Mucolipidoses/diagnosis , Mucolipidoses/genetics , Transferases (Other Substituted Phosphate Groups)/genetics , Adolescent , Asian People , Child , Child, Preschool , China , Female , Humans , Infant , Infant, Newborn , Male , Mucolipidoses/classification , Mutation, Missense , Pregnancy , Prenatal Diagnosis
17.
BMC Med Genet ; 19(1): 162, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30208878

ABSTRACT

BACKGROUND: Mucolipidosis alpha/beta is an inborn error of metabolism characterized by deficiency of GlcNAc-1-phosphotransferase, in which essential alpha/beta subunits are encoded by the GNPTAB gene. The autosomal recessive condition is due to disruptions of hydrolase mannose 6-phosphate marker generation, defective lysosomal targeting and subsequent intracellular accumulation of non-degraded material. Clinical severity depends on residual GlcNAc-1-phosphotransferase activity, which distinguishes between the milder type III disease and the severe, neonatal onset type II disease. CASE PRESENTATION: We report the clinical, biochemical and genetic diagnosis of mucolipidosis III alpha/beta in a two-year-old Chinese boy who initially presented with poor weight gain, microcephaly and increased tone. He was confirmed to harbor the common splice site mutation c.2715 + 1G > A and the nonsense variant c.2404C > T (p.Q802*). Clinically, the patient had multiple phenotypic features typical of mucopolysaccharidosis including joint contractures, coarse facial features, kypho-lordosis, pectus carinatum and umbilical hernia. However, the relatively mild developmental delay compared to severe type I and type II mucopolysaccharidosis and the absence of macrocephaly raised the possibility of the less commonly diagnosed mucolipidosis alpha/beta. Critical roles of lysosomal enzyme activity assay, which showed elevated α-iduronidase, iduronate sulfatase, galactose-6-sulphate sulphatase, arylsulfatase B and α-hexosaminidase activities; and genetic study, which confirmed the parental origin of both mutations, were highlighted. CONCLUSIONS: The recently reported nonsense variant c.2404C > T in the GNPTAB gene is further recognized and this contributes to the genotype-phenotype spectrum of mucolipidosis alpha/beta.


Subject(s)
Codon, Nonsense , Mucolipidoses/genetics , Transferases (Other Substituted Phosphate Groups)/genetics , Child, Preschool , Chondroitinsulfatases/genetics , Chondroitinsulfatases/metabolism , Gene Expression Regulation , Genes, Recessive , Humans , Iduronate Sulfatase/genetics , Iduronate Sulfatase/metabolism , Iduronidase/genetics , Iduronidase/metabolism , Lysosomes/enzymology , Lysosomes/pathology , Male , Mucolipidoses/diagnosis , Mucolipidoses/enzymology , Mucolipidoses/pathology , N-Acetylgalactosamine-4-Sulfatase/genetics , N-Acetylgalactosamine-4-Sulfatase/metabolism , Pedigree , Transferases (Other Substituted Phosphate Groups)/deficiency , beta-Hexosaminidase alpha Chain/genetics , beta-Hexosaminidase alpha Chain/metabolism
18.
Gene ; 647: 93-100, 2018 Mar 20.
Article in English | MEDLINE | ID: mdl-29289611

ABSTRACT

Non-syndromic stuttering is a neurodevelopmental disorder characterized by disruptions in normal flow of speech in the form of repetition, prolongation and involuntary halts. Previously, mutations with more severe effects on GNPTAB and GNPTG have been reported to cause Mucolipidosisll (ML-ll) and Mucolipidosislll (ML-lll), two lysosomal storage disorders with multiple pathologies. We used homozygosity mapping and Sanger sequencing to investigate variants of the three genes in 25 Iranian families with at least two first degree related non-syndromic stutterers. Bioinformatic evaluation and Segregation analysis of the found variants helped us define probable consequences. We also compared our findings with those related to Mucolipidosis. 14 variations were found in the three genes 3 of which, including a novel variant within intronic region of GNPTG and a heterozygous 2-bp deletion in coding region of GNPTAB, co-segregated with stuttering in the families they were found. Bioinformatics analysis predicted all three variants causing deleterious effects on gene functioning. Our findings support the role of these three variants in non-syndromic stuttering. This finding may challenge the current belief that variations causing stuttering are at different sites and have less severe consequences than genetic changes that cause ML-ll and ML-lll.


Subject(s)
Genetic Predisposition to Disease/genetics , Mutation/genetics , Phosphoric Diester Hydrolases/genetics , Stuttering/genetics , Transferases (Other Substituted Phosphate Groups)/genetics , Child , Child, Preschool , Female , Heterozygote , Homozygote , Humans , Introns/genetics , Male , Mucolipidoses/genetics , Phenotype
19.
Clin Case Rep ; 5(4): 431-434, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28396763

ABSTRACT

We report on a newborn with IUGR, rhizomelic dwarfism, and suspected chondrodysplasia punctata. At birth, OI was suspected; however, a skeletal survey suggested ML II alpha/beta. Sequencing revealed compound heterozygosity for a reported pathogenic and novel but expected pathogenic GNPTAB variant. Molecular testing for autosomal recessive OI identified a SERPINF1 variant.

20.
Orphanet J Rare Dis ; 12(1): 11, 2017 01 17.
Article in English | MEDLINE | ID: mdl-28095893

ABSTRACT

BACKGROUND: Mucolipidosis types II and III (ML II/III) are autosomal recessive disorders caused by a deficiency in the lysosomal enzyme N-acetylglucosamine-1-phosphotransferase. We investigated the molecular genetic characteristics of the GNPTAB gene, which codes for the alpha/beta subunits of a phosphotransferase, in Korean ML II/III patients. We included prenatal tests and evaluated the spectrum of mutations in East Asian populations with ML II/III through a literature review. METHODS: Seven patients from six families were enrolled in the study including two prenatal tests using chorionic villi samples. A diagnosis of ML II/III was made based on clinical findings and increases in serum lysosomal enzyme levels. PCR and direct sequencing were performed to identify GNPTAB mutations. RESULTS: We found 14 mutant alleles including seven known mutations of c.2189delT (p.Leu730fs*7), c.1090C > T (p.Arg364*), c.2681G > A (p.Trp894*), c.3565C > T (p.Arg1189*), c.310C > T (p.Gln104*), c.1071G > A (p.Trp357*) and c.2574_2575delGA (p.Asn859Glnfs*2). Four were novel variants of unknown significance: c.992A > G (p.Tyr331Cys), c.2666 T > A (p.Leu889*), c.637-6 T > G (p.Thr213Phefs*11), and c.471_472delTT (p.Tyr158Serfs*8). Family studies revealed the probands to be compound heterozygotes. The fetuses carried the same GNPTAB mutations as the mucolipidosis II/III probands in the prenatal diagnosis. CONCLUSIONS: We identified GNPTAB mutations in all patients with ML II/III, but did not identify a hot spot in Korean patients. We successfully performed prenatal diagnosis using molecular investigation.


Subject(s)
Mucolipidoses/diagnosis , Mucolipidoses/metabolism , Prenatal Diagnosis , Child , Child, Preschool , Female , Genotype , Humans , Infant , Infant, Newborn , Korea , Mucolipidoses/genetics , Mutation/genetics , Phenotype , Polymerase Chain Reaction , Transferases (Other Substituted Phosphate Groups)/genetics , Transferases (Other Substituted Phosphate Groups)/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL