Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Oncol Lett ; 25(2): 45, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36644159

ABSTRACT

Tumor cell plasticity and tumor heterogeneity are involved in therapy resistance. Cancer stem cells (CSCs) refer to tumor cells that have the ability to self-renew, and generate the diverse cells that comprise the tumor and complicate tumor heterogeneity. In recent years, CSCs have been reported to emerge from non-CSCs, which is known as tumor cell plasticity; however, the mechanism has not been fully elucidated. The present study investigated tumor cell plasticity from the viewpoint of aldehyde dehydrogenase 1 family member A1 (ALDH1A1) activity, which is one of the markers of CSCs. In the endometrioid carcinoma cell line HEC-1B, the ALDH1A1-low population spontaneously yielded an ALDH1A1-high population, mimicking tumor cell plasticity, and it was revealed that the mixture of the ALDH1A1-high population with the ALDH1A1-low population sometimes accelerated the transition from an ALDH1A1-low to ALDH1A1-high population. Two distinct HEC-1B sublines were established. One of the two sublines accelerated such a transition and the other did not show such acceleration. In the former subline, the effect of the ALDH1A1-high population was abolished when the direct cell-cell contact between ALDH1A1-high and ALDH1A1-low populations was inhibited. By comparing the two sublines, the neuronal membrane glycoprotein M6-b (GPM6B) was identified as the candidate mediating tumor cell plasticity. GPM6B was expressed in the border of ALDH1A1-expressing tumor cells and non-expressing tumor cells in clinical samples of EC. Notably, knockout of GPM6B decreased ALDH1A1 expression, whereas its overexpression increased the expression of ALDH1A1, suggesting that GPM6B mediated the induction of ALDH1A1 and the plasticity of CSCs.

2.
Am J Transl Res ; 14(5): 3052-3065, 2022.
Article in English | MEDLINE | ID: mdl-35702116

ABSTRACT

Glioblastoma (GBM) stem cells (GSCs) possess multilineage differentiation potential, which is responsible for cancer progression. Glycoprotein M6B (GPM6B) is a pivotal enzyme in regulating intracranial cell differentiation and neuronal myelination, and is widely studied in several cancers. However, research on GPM6B in glioma is limited. In this study, we analyzed the clinical and molecular characteristics of GPM6B using RNA sequencing data of glioma samples from the Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) datasets. Quantitative real-time PCR (qRT-PCR), western blot (WB), and immunohistochemistry (IHC) were performed for further validation. Moreover, a neurosphere formation assay, extreme limiting dilution assay, and bioluminescent imaging were employed to validate the therapeutic effects targeted on GPM6B in vitro and in vivo. We found lower expression of GPM6B in aggressive glioma. Receiver operating characteristic (ROC) analysis suggested that GPM6B is an indicator of mesenchymal subtype. Kaplan-Meier analysis also revealed that patients with glioma with high GPM6B expression levels had a tendency toward prolonged survival. The GPM6B expression level could predict favorable prognosis of patients independent of age, grade, IDH status, and 1p/19q status. Additionally, targeting GPM6B impaired the self-renewal and tumorgenicity of mesenchymal GSCs by inhibiting the activation of the Wnt pathway in vitro and in vivo. Our results demonstrated that GPM6B is a crucial predictor in glioma prognosis and represents an underlying therapeutic target in GSC therapy.

3.
Genes Brain Behav ; 21(4): e12800, 2022 04.
Article in English | MEDLINE | ID: mdl-35243767

ABSTRACT

The neuronal membrane glycoprotein M6B (Gpm6b) gene encodes a membrane glycoprotein that belongs to the proteolipid protein family, and is enriched in neurons, oligodendrocytes, and subset of astrocytes in the central nervous system. GPM6B is thought to play a role in neuronal differentiation, myelination, and inactivation of the serotonin transporter via internalization. Recent human genome-wide association studies (GWAS) have implicated membrane glycoproteins (both GPM6B and GPM6A) in the regulation of traits relevant to psychiatric disorders, including neuroticism, depressed affect, and delay discounting. Mouse studies have implicated Gpm6b in sensorimotor gating and regulation of serotonergic signaling. We used CRISPR to create a mutant Glycoprotein M6B (Gpm6b) allele on a C57BL/6J mouse background. Because Gpm6b is located on the X chromosome, we focused on male Gpm6b mutant mice and their wild-type littermates (WT) in two behavioral tests that measured aspects of impulsive or flexible decision-making. We found that Gpm6b deletion caused deficits in a delay discounting task. In contrast, reward sensitivity was enhanced thereby facilitating behavioral flexibility and improving performance in the probabilistic reversal learning task. Taken together these data further delineate the role of Gpm6b in decision making behaviors that are relevant to multiple psychiatric disorders.


Subject(s)
Delay Discounting , Membrane Glycoproteins , Nerve Tissue Proteins , Alleles , Animals , Genome-Wide Association Study , Humans , Impulsive Behavior , Male , Membrane Glycoproteins/genetics , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/genetics , Reward
4.
Genetica ; 150(1): 27-40, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34984576

ABSTRACT

Across human protein-coding genes, the human neuron-specific genes, RIT2 and GPM6B, contain the two longest GA short tandem repeats (STRs) of 11 and 9-repeats, respectively, the length ranges of which are functional, and result in gene expression alteration. Here we sequenced the RIT2 and GPM6B STRs in 600 human subjects, consisting of late-onset neurocognitive disorder (n = 200), multiple sclerosis (n = 200), and controls (n = 200). Furthermore, we selected two large human databases, including the general-population-based gnomAD ( https://gnomad.broadinstitute.org ) and a mainly disease-phenotype-archiving database, TOPMed ( https://www.nhlbiwgs.org ), to compare allele frequencies in the general populations vs. the disease compartment. The RIT2 and GPM6B GA-repeats were monomorphic in the human subjects studied, at lengths of 11 and 9-repeats, respectively, and were predominantly human-specific in formula. Exception included a 9/11 genotype of the RIT2 GA-STR in an isolate case of female multiple sclerosis. Exceedingly rare alleles of the two GA repeats were significantly enriched in TOPMed vs. the gnomAD. We report prime instances of predominant monomorphism for specific lengths of STRs in human, and possible enrichment of rare divergent alleles in the disease phenotype compartment. While STRs are most attended because of their high polymorphic nature, STR monomorphism is an underappreciated feature, which may have a link with natural selection and disease.


Subject(s)
Microsatellite Repeats , Monomeric GTP-Binding Proteins , Alleles , Female , Gene Frequency , Genotype , Humans , Membrane Glycoproteins/genetics , Monomeric GTP-Binding Proteins/genetics , Nerve Tissue Proteins/genetics , Selection, Genetic
5.
Malays J Med Sci ; 27(6): 53-67, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33447134

ABSTRACT

BACKGROUND: Ischaemic stroke (IS), a multifactorial neurological disorder, is mediated by interplay between genes and the environment and, thus, blood-based IS biomarkers are of significant clinical value. Therefore, this study aimed to find global differentially expressed genes (DEGs) in-silico, to identify key enriched genes via gene set enrichment analysis (GSEA) and to determine the clinical significance of these genes in IS. METHODS: Microarray expression dataset GSE22255 was retrieved from the Gene Expression Omnibus (GEO) database. It includes messenger ribonucleic acid (mRNA) expression data for the peripheral blood mononuclear cells of 20 controls and 20 IS patients. The bioconductor-package 'affy' was used to calculate expression and a pairwise t-test was applied to screen DEGs (P < 0.01). Further, GSEA was used to determine the enrichment of DEGs specific to gene ontology (GO) annotations. RESULTS: GSEA analysis revealed 21 genes to be significantly plausible gene markers, enriched in multiple pathways among all the DEGs (n = 881). Ten gene sets were found to be core enriched in specific GO annotations. JunD, NCX3 and fibroblast growth factor receptor 4 (FGFR4) were under-represented and glycoprotein M6-B (GPM6B) was persistently over-represented. CONCLUSION: The identified genes are either associated with the pathophysiology of IS or they affect post-IS neuronal regeneration, thereby influencing clinical outcome. These genes should, therefore, be evaluated for their utility as suitable markers for predicting IS in clinical scenarios.

6.
Cereb Cortex ; 25(11): 4111-25, 2015 Nov.
Article in English | MEDLINE | ID: mdl-24917275

ABSTRACT

The function of mature neurons critically relies on the developmental outgrowth and projection of their cellular processes. It has long been postulated that the neuronal glycoproteins M6a and M6b are involved in axon growth because these four-transmembrane domain-proteins of the proteolipid protein family are highly enriched on growth cones, but in vivo evidence has been lacking. Here, we report that the function of M6 proteins is required for normal axonal extension and guidance in vivo. In mice lacking both M6a and M6b, a severe hypoplasia of axon tracts was manifested. Most strikingly, the corpus callosum was reduced in thickness despite normal densities of cortical projection neurons. In single neuron tracing, many axons appeared shorter and disorganized in the double-mutant cortex, and some of them were even misdirected laterally toward the subcortex. Probst bundles were not observed. Upon culturing, double-mutant cortical and cerebellar neurons displayed impaired neurite outgrowth, indicating a cell-intrinsic function of M6 proteins. A rescue experiment showed that the intracellular loop of M6a is essential for the support of neurite extension. We propose that M6 proteins are required for proper extension and guidance of callosal axons that follow one of the most complex trajectories in the mammalian nervous system.


Subject(s)
Cerebral Cortex/cytology , Corpus Callosum/cytology , Corpus Callosum/physiology , Membrane Glycoproteins/metabolism , Nerve Tissue Proteins/metabolism , Neurites/physiology , Neurons/cytology , Age Factors , Animals , Animals, Newborn , Cells, Cultured , Cerebral Cortex/physiology , Embryo, Mammalian , Female , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Homeodomain Proteins/metabolism , In Vitro Techniques , Male , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Myelin Proteolipid Protein/deficiency , Myelin Proteolipid Protein/genetics , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Tumor Suppressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL