Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
medRxiv ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38947071

ABSTRACT

Cannabis is one of the most widely used drugs globally. Decriminalization of cannabis is further increasing cannabis consumption. We performed genome-wide association studies (GWASs) of lifetime (N=131,895) and frequency (N=73,374) of cannabis use. Lifetime cannabis use GWAS identified two loci, one near CADM2 (rs11922956, p=2.40E-11) and another near GRM3 (rs12673181, p=6.90E-09). Frequency of use GWAS identified one locus near CADM2 (rs4856591, p=8.10E-09; r2 =0.76 with rs11922956). Both traits were heritable and genetically correlated with previous GWASs of lifetime use and cannabis use disorder (CUD), as well as other substance use and cognitive traits. Polygenic scores (PGSs) for lifetime and frequency of cannabis use associated cannabis use phenotypes in AllofUs participants. Phenome-wide association study of lifetime cannabis use PGS in a hospital cohort replicated associations with substance use and mood disorders, and uncovered associations with celiac and infectious diseases. This work demonstrates the value of GWASs of CUD transition risk factors.

2.
Schizophr Res ; 267: 8-13, 2024 May.
Article in English | MEDLINE | ID: mdl-38508027

ABSTRACT

Previous studies have demonstrated that the levels of IgG against neurotransmitter receptors are increased in patients with schizophrenia. Genome-wide association (GWA) studies of schizophrenia confirmed that 108 loci harbouring over 300 genes were associated with schizophrenia. Although the functional implications of genetic variants are unclear, theoretical functional alterations of these genes could be replicated by the presence of autoantibodies. This study examined the levels of plasma IgG antibodies against four neurotransmitter receptors, CHRM4, GRM3, CHRNA4 and CHRNA5, using an in-house ELISA in 247 patients with schizophrenia and 344 non-psychiatric controls. Four peptides were designed based on in silico analysis with computational prediction of HLA-DRB1 restricted and B-cell epitopes. The relationship between plasma IgG levels and psychiatric symptoms, as defined by the Operational Criteria Checklist for Psychotic Illness and Affective Illness (OPCRIT), were examined. The results showed that the levels of plasma IgG against peptides derived from CHRM4 and CHRNA4 were significantly increased in patients with schizophrenia compared with control subjects, but there was no significant association of plasma IgG levels with any symptom domain or any specific symptoms. These preliminary results suggest that CHRM4 and CHRNA4 may be novel targets for autoantibody responses in schizophrenia, although the pathogenic relationship between increased serum autoantibody levels and schizophrenia symptoms remains unclear.


Subject(s)
Autoantibodies , Immunoglobulin G , Receptors, Cholinergic , Schizophrenia , Humans , Schizophrenia/blood , Schizophrenia/immunology , Autoantibodies/blood , Female , Male , Adult , Middle Aged , Immunoglobulin G/blood , Receptors, Cholinergic/immunology , Enzyme-Linked Immunosorbent Assay
3.
Mol Neurobiol ; 61(1): 167-174, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37592184

ABSTRACT

Autism spectrum disorders (ASD) are a highly heterogeneous group of neurodevelopmental disorders caused by complex interaction between various genes and environmental factors. As the hippocampus and prefrontal cortex are involved in social recognition, they are the regions of the brain implicated in autism. The effects of prenatal exposure to valproic acid (VPA) can induce an ASD phenotype in both humans and rats; this tool is commonly used to model the complexity of ASD symptoms in the laboratory. However, researchers rarely undertake epigenetic regulation of the brain regions using this model. The present study has addressed this gap by examining gene expression abnormalities in the hippocampus and prefrontal cortex in the VPA rat model of ASD. mRNA and miRNA sequencing was performed on samples from the hippocampus and prefrontal cortex of the VPA model of autism. According to the analysis, 3000 mRNAs in the hippocampus and 2187 mRNAs in the prefrontal cortex showed a significant difference in expression between the VPA and saline groups. In addition, there were 115 DE miRNAs in the hippocampus and 14 DE miRNAs in the prefrontal cortex. Further, the predicted and validated target mRNA of DE miRNA enriched pathways involved neurotransmitter uptake, long-term synaptic depression, and AMPA receptor complex (anti-GluA2-b) in the hippocampus; as well as the neuroactive ligand-receptor interaction and regulation of postsynaptic membrane potential in the prefrontal cortex. This revealed the negative regulation network of miRNAs-mRNAs in the hippocampus and prefrontal cortex, while filtering out key genes (miR-10a-5p and Grm3). Finally, the significant variable miR-10a-5p and its negative regulated genes (Grm3) were verified in both brain regions by QPCR. Importantly, the fact that miR-10a-5p downregulated Grm3 in both the hippocampus and the prefrontal cortex may play a potentially significant role in the occurrence and development of autism. This study suggests that the VPA model has the potential to reproduce ASD-related hippocampus and prefrontal cortex abnormalities, at the epigenetic and transcriptional levels. Furthermore, the network of miRNAs-mRNAs was confirmed; this negative regulatory relationship may play a key role in determining the occurrence and development of autism. The study of this topic help better understand the pathogenesis of ASD.


Subject(s)
Autism Spectrum Disorder , MicroRNAs , Prenatal Exposure Delayed Effects , Pregnancy , Humans , Female , Rats , Animals , Valproic Acid/toxicity , Epigenesis, Genetic , Autism Spectrum Disorder/genetics , Prefrontal Cortex/metabolism , Gene Expression Profiling , MicroRNAs/metabolism , Hippocampus/metabolism , Disease Models, Animal , Prenatal Exposure Delayed Effects/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
4.
Brain Res ; 1815: 148463, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37328088

ABSTRACT

AIMS: Glutamate-induced excitotoxicity is mainly mediated by neuronal NMDA receptors; however, it is unclear how astrocytes are involved in this phenomenon. This study aimed to explore the effects of excess glutamate on astrocytes both in vitro and in vivo. METHODS: We used astrocyte-enriched cultures (AECs), in which microglia were removed from mixed glial cultures, to investigate the effects of extracellular glutamate on these cells by microarray, quantitative PCR, ELISA, and immunostaining. We also examined the production of lipocalin-2 (Lcn2) by immunohistochemistry in the brains of mice after status epilepticus induced by pilocarpine and by ELISA in the cerebrospinal fluid (CSF) of patients characterised by status epilepticus. RESULTS: Microarray analysis identified Lcn2 as a factor upregulated in AECs by excess glutamate; glutamate addition increased Lcn2 in the cytoplasm of astrocytes and AECs released Lcn2 in a concentration-dependent manner. Lcn2 production was reduced by chemical inhibition of metabotropic glutamate receptor or siRNA knockdown of metabotropic glutamate receptor 3. Furthermore, Lcn2 was increased in the astrocytes of a status epilepticus mouse model and in the CSF of human patients. CONCLUSION: These results indicate that astrocytes stimulate Lcn2 production via metabotropic glutamate receptor 3 in response to high concentrations of glutamate.


Subject(s)
Astrocytes , Status Epilepticus , Humans , Mice , Animals , Lipocalin-2/genetics , Glutamic Acid/pharmacology , Neuroglia , Status Epilepticus/chemically induced
5.
Genes (Basel) ; 14(3)2023 02 24.
Article in English | MEDLINE | ID: mdl-36980845

ABSTRACT

BACKGROUND: Personal variations in genetic risk for schizophrenia relate to its phenotypic heterogeneity-both in disorder development and clinical manifestations. Abnormal glutamatergic neurotransmitter system functioning is integrated in the pathogenesis of schizophrenia. METHODS: A sample of 805 Russian schizophrenia patients from the Siberian Federal region was investigated. We examined the association of 39 single nucleotide polymorphisms in eight genes (GRIN2A, GRIN2B, SLC1A2, SLC1A3, SLC17A7, GRM3, GRM7, and GRM8) involved in the glutamatergic system with the development of clinical heterogeneity of schizophrenia. The MassARRAY Analyzer 4 was used for genotyping. RESULTS: GRIN2A rs11644461, rs8057394 and GRIN2B rs7313149 are associated with the continuous type of schizophrenia. The GRIN2A rs8057394*G allele is a relative risk factor (p = 0.019) for developing the continuous type of schizophrenia. We found a nominally significant association between negative symptoms of schizophrenia and SLC17A7 rs62126236. The SLC17A7 rs62126236*T allele has a protective effect (p = 0.039) against predominant negative symptoms in schizophrenia. The total Positive and Negative Syndrome Scale (PANSS) scores were significantly associated with GRIN2A rs9788936 after adjusting for multiple testing (p = 0.001). CONCLUSIONS: In this study the contribution of the glutamatergic gene polymorphisms to the clinical heterogeneity of schizophrenia has been demonstrated.


Subject(s)
Schizophrenia , Humans , Schizophrenia/genetics , Polymorphism, Single Nucleotide , Phenotype , Alleles , Receptors, N-Methyl-D-Aspartate/genetics
6.
Ecotoxicol Environ Saf ; 229: 113085, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34920184

ABSTRACT

Cadmium (Cd) is a toxic heavy metal that can facilitate the development and progression of breast cancer (BC). Emerging evidence has indicated that the progression of Cd-exposed BC is related to the dysregulation of microRNAs (miRNAs). The purpose of our study was to investigate the expression pattern and underlying mechanisms of miR-374c-5p in Cd-mediated BC progression. In this study, T-47D cells and MCF-7 cells were treated with different concentrations of Cd (0.1, 1 and 10 µM) for 72 h. MiR-374c-5p expression was downregulated, and transfection of miR-374c-5p mimics significantly decreased BC cell proliferation, migration and invasion induced by 10 µM Cd. Importantly, we used the Cytoscape software plugin cytoHubba to analyse the intersected genes between our RNA-Seq results and the mirDIP database, and six hub genes (CNR1, CXCR4, GRM3, RTN1, SLC1A6 and ZEB1) were identified as potential direct targets of miR-374c-5p in our model; however, luciferase reporter assays indicated that miR-374c-5p only repressed GRM3 by directly binding to its 3'-untranslated region (UTR). Of note, we verified that suppression of N6-methyladenosine (m6A) modification led to miR-374c-5p downregulation by decreasing its RNA transcript stability. Together, these findings demonstrated that m6A modification of pri-miRNA-374c blocks miRNA-374c-5p maturation and then activates GRM3 expression, which drives BC cell metastasis after Cd exposure.


Subject(s)
Breast Neoplasms , MicroRNAs , Adenosine/analogs & derivatives , Breast Neoplasms/genetics , Cadmium/toxicity , Cell Line, Tumor , Cell Movement , Cell Proliferation , Down-Regulation , Female , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics
7.
Front Aging Neurosci ; 13: 760270, 2021.
Article in English | MEDLINE | ID: mdl-34867287

ABSTRACT

Glutamate carboxypeptidase II (GCPII) expression in brain is increased by inflammation, and reduces NAAG (N-acetyl aspartyl glutamate) stimulation of mGluR3 signaling. Genetic insults in this signaling cascade are increasingly linked to cognitive disorders in humans, where increased GCPII and or decreased NAAG-mGluR3 are associated with impaired prefrontal cortical (PFC) activation and cognitive impairment. As aging is associated with increased inflammation and PFC cognitive deficits, the current study examined GCPII and mGluR3 expression in the aging rat medial PFC, and tested whether GCPII inhibition with 2-(3-mercaptopropyl) pentanedioic acid (2-MPPA) would improve working memory performance. We found that GCPII protein was expressed on astrocytes and some microglia as expected from previous studies, but was also prominently expressed on neurons, and showed increased levels with advancing age. Systemic administration of the GCPII inhibitor, 2-MPPA, improved working memory performance in young and aged rats, and also improved performance after local infusion into the medial PFC. As GCPII inhibitors are well-tolerated, they may provide an important new direction for treatment of cognitive disorders associated with aging and/or inflammation.

8.
Front Neurosci ; 15: 722592, 2021.
Article in English | MEDLINE | ID: mdl-34456681

ABSTRACT

Epilepsy (affects about 70 million people worldwide) is one of the most prevalent brain disorders and imposes a huge economic burden on society. Epilepsy has a strong genetic component. In this study, we perform the largest genome-wide meta-analysis of epilepsy (N = 8,00,869 subjects) by integrating four large-scale genome-wide association studies (GWASs) of epilepsy. We identified three genome-wide significant (GWS) (p < 5 × 10-8) risk loci for epilepsy. The risk loci on 7q21.11 [lead single nucleotide polymorphism (SNP) rs11978015, p = 9.26 × 10-9] and 8p23.1 (lead SNP rs28634186, p = 4.39 × 10-8) are newly identified in the present study. Of note, rs11978015 resides in upstream of GRM3, which encodes glutamate metabotropic receptor 3. GRM3 has pivotal roles in neurotransmission and is involved in most aspects of normal brain function. In addition, we also identified three genes (TTC21B, RP11-375N15.2, and TNKS) whose cis-regulated expression level are associated with epilepsy, indicating that risk variants may confer epilepsy risk through regulating the expression of these genes. Our study not only provides new insights into genetic architecture of epilepsy but also prioritizes potential molecular targets (including GRM3 and TTC21B) for development of new drugs and therapeutics for epilepsy.

9.
Mol Ther Oncolytics ; 20: 166-174, 2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33575479

ABSTRACT

Glioblastoma is an invariably deadly disease. A subpopulation of glioma stem-like cells (GSCs) drives tumor progression and treatment resistance. Two recent studies demonstrated that neurons form oncogenic glutamatergic electrochemical synapses with post-synaptic GSCs. This led us to explore whether glutamate signaling through G protein-coupled metabotropic receptors would also contribute to the malignancy of glioblastoma. We found that glutamate metabotropic receptor (Grm)3 is the predominantly expressed Grm in glioblastoma. Associations of GRM3 gene expression levels with survival are confined to the proneural gene expression subtype, which is associated with enrichment of GSCs. Using multiplexed single-cell qRT-PCR, GSC marker-based cell sorting, database interrogations, and functional assays in GSCs derived from patients' tumors, we establish Grm3 as a novel marker and potential therapeutic target in GSCs. We confirm that Grm3 inhibits adenylyl cyclase and regulates extracellular signal-regulated kinase. Targeting Grm3 disrupts self-renewal and promotes differentiation of GSCs. Thus, we hypothesize that Grm3 signaling may complement oncogenic functions of glutamatergic ionotropic receptor activity in neuroglial synapses, supporting a link between neuronal activity and the GSC phenotype. The novel class of highly specific Grm3 inhibitors that we characterize herein have been clinically tested as cognitive enhancers in humans with a favorable safety profile.

10.
Mol Cell Biochem ; 475(1-2): 227-237, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32839935

ABSTRACT

Many studies confirm that circular RNA (circRNA) plays an important regulatory role in the malignant progression of cancer, including melanoma. However, the role of a novel circRNA, circ_0079593, in melanoma is unclear. The expression levels of circ_0079593 and miR-516b were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was measured by cell counting kit-8 (CCK-8) assay, and cell migration and invasion were evaluated using transwell assay. Meanwhile, western blot (WB) analysis was employed to determine the levels of proliferation and metastasis-related proteins, as well as metabotropic glutamate receptor 3 (GRM3) protein. Furthermore, cell apoptosis was tested by detecting the cell apoptosis rate and Caspase-3 activity. The glucose consumption and lactate production of cells were measured to evaluate cell glucose metabolism. Moreover, dual-luciferase reporter assay and biotin-labeled RNA pull-down assay were used to confirm the interaction between miR-516b and circ_0079593 or GRM3. In addition, mice xenograft models were constructed to explore the effect of circ_0079593 on melanoma tumor growth in vivo. Our results discovered that circ_0079593 was highly expressed in melanoma, and its silencing suppressed melanoma cell proliferation, migration, invasion, glucose metabolism and promoted apoptosis. Moreover, we found that circ_0079593 could serve as a sponge of miR-516b, and miR-516b could target GRM3 in melanoma. The rescue experiments revealed that both miR-516b inhibitor and GRM3 overexpression could reverse the inhibition effect of circ_0079593 knockdown on melanoma progression. Additionally, in vivo experiments also revealed that circ_0079593 interference suppressed melanoma tumor growth. Our study concluded that circ_0079593 accelerated melanoma progression via upregulating GRM3 by sponging miR-516b, which suggested that circ_0079593 had the potential to be a new therapeutic biomarker for melanoma.


Subject(s)
Glucose/metabolism , Melanoma/pathology , MicroRNAs/genetics , RNA, Circular/genetics , Receptors, AMPA/metabolism , Animals , Apoptosis/physiology , Cell Line, Tumor , Cell Movement/physiology , Cell Proliferation/physiology , Humans , Male , Melanoma/genetics , Melanoma/metabolism , Mice , Mice, Nude , Neoplasm Metastasis , Receptors, AMPA/genetics , Xenograft Model Antitumor Assays
11.
Genes Brain Behav ; 19(8): e12684, 2020 11.
Article in English | MEDLINE | ID: mdl-32666635

ABSTRACT

Persistent changes in brain stress and glutamatergic function are associated with post-traumatic stress disorder (PTSD). Rodent exposure to the predator odor trimethylthiazoline (TMT) is an innate stressor that produces lasting behavioral consequences relevant to PTSD. As such, the goal of the present study was to assess early (6 hours and 2 days-Experiment 1) and late (4 weeks-Experiment 2) changes to gene expression (RT-PCR) related to stress and excitatory function following TMT exposure in male, Long-Evans rats. During TMT exposure, rats engaged in stress reactive behaviors, including digging and immobility. Further, the TMT group displayed enhanced exploration and mobility in the TMT-paired context 1 week after exposure, suggesting a lasting contextual reactivity. Gene expression analyses revealed upregulated FKBP5 6 hours post-TMT in the hypothalamus and dorsal hippocampus. Two days after TMT, GRM3 was downregulated in the prelimbic cortex and dorsal hippocampus, but upregulated in the nucleus accumbens. This may reflect an early stress response (FKBP5) that resulted in later glutamatergic adaptation (GRM3). Finally, another experiment 4 weeks after TMT exposure showed several differentially expressed genes known to mediate excitatory tripartite synaptic function in the prelimbic cortex (GRM5, DLG4 and SLC1A3 upregulated), infralimbic cortex (GRM2 downregulated, Homer1 upregulated), nucleus accumbens (GRM7 and SLC1A3 downregulated), dorsal hippocampus (FKBP5 and NR3C2 upregulated, SHANK3 downregulated) and ventral hippocampus (CNR1, GRM7, GRM5, SHANK3 and Homer1 downregulated). These data show that TMT exposure induces stress and excitatory molecular adaptations, which could help us understand the persistent glutamatergic dysfunction observed in PTSD.


Subject(s)
Brain/metabolism , Stress, Psychological/genetics , Animals , Brain/physiology , Disks Large Homolog 4 Protein/genetics , Disks Large Homolog 4 Protein/metabolism , Excitatory Amino Acid Transporter 1/genetics , Excitatory Amino Acid Transporter 1/metabolism , Excitatory Postsynaptic Potentials/genetics , Homer Scaffolding Proteins/genetics , Homer Scaffolding Proteins/metabolism , Male , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Predatory Behavior , Rats , Rats, Long-Evans , Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/metabolism , Stress, Psychological/etiology , Stress, Psychological/metabolism , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism , Thiazoles/toxicity
12.
Pharmacol Biochem Behav ; 190: 172852, 2020 03.
Article in English | MEDLINE | ID: mdl-31952939

ABSTRACT

Acute lipopolysaccharide (LPS) administration induces innate inflammatory signalling and produces sickness reaction characterized by reduced drinking, eating and reduced locomotor exploration, as well as emotional changes indicating increased helplessness/despair. LPS administration has been used to model behavioral and emotional responses to inflammatory reactions. Our aim was to find out whether the lack of metabotropic glutamate receptor 3 (mGluR3) in the knockout (KO) mice affects behavioral effects of LPS in vivo, as mGluR3 may have a role in inflammatory signalling. After LPS (1 mg/kg, i.p.) administration, we compared wild-type (WT) and mGluR3-KO mice for differences in gross appearance and locomotion at 3- and 6-h time points, anxiety-like behavior in the light-dark test at 24-h, depression-like behavior in the tail-suspension test at 25-h, and in the forced-swim test at 48-h time points. Body weight and water consumption were monitored. Based on behavioral scorings at the 3-h and 6-h time points, the mGluR3-KO mice reacted to LPS in a similar way as the WT mice. LPS-induced reductions in the body weight or water consumption did not differ between genotypes. Interestingly, LPS-induced reductions in the body temperature were significantly enhanced in male and female mGluR3-KO mice at 6-h and 3-h time points, respectively. In the light-dark anxiety-test the saline-treated mGluR3-KOs showed increased anxiolytic-like behaviors compared to the saline-treated WT mice. LPS treatment significantly reduced the KO entries to the light compartment to the same level as WT mice given saline. Total locomotion was significantly reduced in both genotypes by LPS. In the despair models, no genotype difference was observed after saline or LPS, neither had LPS treatment any significant effect on immobility. Although changes in glutamatergic neurotransmission may partly mediate effects of systemic LPS administration, mGluR3 appears not to be crucial in behavioral responses to acute activation of innate immune system.


Subject(s)
Behavior, Animal/drug effects , Gene Knockout Techniques , Lipopolysaccharides/pharmacology , Receptors, Metabotropic Glutamate/genetics , Animals , Anxiety/chemically induced , Body Temperature/drug effects , Body Weight/drug effects , Depression/chemically induced , Drinking/drug effects , Genotype , Inflammation/chemically induced , Locomotion/drug effects , Locomotion/genetics , Male , Mice , Mice, Knockout
13.
J Bacteriol ; 201(5)2019 03 01.
Article in English | MEDLINE | ID: mdl-30510145

ABSTRACT

Bacterial microcompartments (BMCs) are large (∼100-nm) protein shells that encapsulate enzymes, their substrates, and cofactors for the purposes of increasing metabolic reaction efficiency and protecting cells from toxic intermediates. The best-studied microcompartment is the carbon-fixing carboxysome that encapsulates ribulose-1,5-bisphosphate carboxylase and carbonic anhydrase. Other well-known BMCs include the Pdu and Eut BMCs, which metabolize 1,2-propanediol and ethanolamine, respectively, with vitamin B12-dependent diol dehydratase enzymes. Recent bioinformatic analyses identified a new prevalent type of BMC, hypothesized to utilize vitamin B12-independent glycyl radical enzymes to metabolize substrates. Here we use genetic and metabolic analyses to undertake in vivo characterization of the newly identified glycyl radical enzyme microcompartment 3 (GRM3) class of microcompartment clusters. Transcriptome sequencing analyses showed that the microcompartment gene cluster in the genome of the purple photosynthetic bacterium Rhodobacter capsulatus was expressed under dark anaerobic respiratory conditions in the presence of 1,2-propanediol. High-performance liquid chromatography and gas chromatography-mass spectrometry analyses showed that enzymes coded by this cluster metabolized 1,2-propanediol into propionaldehyde, propanol, and propionate. Surprisingly, the microcompartment pathway did not protect these cells from toxic propionaldehyde under the conditions used in this study, with buildup of this intermediate contributing to arrest of cell growth. We further show that expression of microcompartment genes is regulated by a two-component system located downstream of the microcompartment cluster.IMPORTANCE BMCs are protein shells that are designed to compartmentalize enzymatic reactions that require either sequestration of a substrate or the sequestration of toxic intermediates. Due to their ability to compartmentalize reactions, BMCs have also become attractive targets for bioengineering novel enzymatic reactions. Despite these useful features, little is known about the biochemistry of newly identified classes of BMCs. In this study, we have undertaken genetic and in vivo metabolic analyses of the newly identified GRM3 gene cluster.


Subject(s)
Bacterial Proteins/metabolism , Metabolic Networks and Pathways/genetics , Propylene Glycol/metabolism , Rhodobacter capsulatus/enzymology , Rhodobacter capsulatus/metabolism , 1-Propanol/metabolism , Aldehydes/metabolism , Anaerobiosis , Bacterial Proteins/genetics , Biotransformation , Chromatography, High Pressure Liquid , Computational Biology , Darkness , Mass Spectrometry , Multigene Family , Propionates/metabolism , Rhodobacter capsulatus/genetics
14.
Pigment Cell Melanoma Res ; 31(1): 115-119, 2018 01.
Article in English | MEDLINE | ID: mdl-28646617

ABSTRACT

Large-scale sequencing studies have revealed several genes that are recurrently mutated in melanomas. To annotate the melanoma genome, we have expressed tumor-associated variants of these genes in zebrafish and characterized their effects on melanocyte development and function. Here, we describe expression of tumor-associated variants of the recurrently mutated metabotropic glutamate receptor 3 (GRM3) gene. Unlike wild-type GRM3, tumor-associated GRM3 variants disrupted trafficking of melanosomes, causing their aggregation in the cell body. Melanosomes are trafficked in a cAMP-dependent manner, and drugs that directly or indirectly increased cAMP levels were able to suppress melanosome aggregation in mutant GRM3-expressing melanocytes. Our data show that oncogenic GRM3 variants dysregulate cAMP signaling, a heretofore unknown role for these oncogenes. cAMP signaling has been implicated in melanoma progression and drug resistance, and our data show that oncogenic properties of GRM3 could be mediated, at least in part, by alterations in cAMP signaling.


Subject(s)
Cyclic AMP/metabolism , Genetic Variation , Melanocytes/pathology , Melanoma/pathology , Melanosomes/pathology , Receptor, Metabotropic Glutamate 5/genetics , Zebrafish/metabolism , Animals , Humans , Melanocytes/metabolism , Melanoma/genetics , Melanoma/metabolism , Melanosomes/metabolism , Receptor, Metabotropic Glutamate 5/metabolism , Signal Transduction , Zebrafish/growth & development
15.
Cereb Cortex ; 28(3): 974-987, 2018 03 01.
Article in English | MEDLINE | ID: mdl-28108498

ABSTRACT

The newly evolved circuits in layer III of primate dorsolateral prefrontal cortex (dlPFC) generate the neural representations that subserve working memory. These circuits are weakened by increased cAMP-K+ channel signaling, and are a focus of pathology in schizophrenia, aging, and Alzheimer's disease. Cognitive deficits in these disorders are increasingly associated with insults to mGluR3 metabotropic glutamate receptors, while reductions in mGluR2 appear protective. This has been perplexing, as mGluR3 has been considered glial receptors, and mGluR2 and mGluR3 have been thought to have similar functions, reducing glutamate transmission. We have discovered that, in addition to their astrocytic expression, mGluR3 is concentrated postsynaptically in spine synapses of layer III dlPFC, positioned to strengthen connectivity by inhibiting postsynaptic cAMP-K+ channel actions. In contrast, mGluR2 is principally presynaptic as expected, with only a minor postsynaptic component. Functionally, increase in the endogenous mGluR3 agonist, N-acetylaspartylglutamate, markedly enhanced dlPFC Delay cell firing during a working memory task via inhibition of cAMP signaling, while the mGluR2 positive allosteric modulator, BINA, produced an inverted-U dose-response on dlPFC Delay cell firing and working memory performance. These data illuminate why insults to mGluR3 would erode cognitive abilities, and support mGluR3 as a novel therapeutic target for higher cognitive disorders.


Subject(s)
Memory, Short-Term/physiology , Neurons/cytology , Post-Synaptic Density/metabolism , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiology , Receptors, Metabotropic Glutamate/metabolism , Action Potentials/drug effects , Animals , Dose-Response Relationship, Drug , Excitatory Amino Acid Agents/pharmacology , Eye Movements/drug effects , Eye Movements/physiology , Female , Image Processing, Computer-Assisted , Macaca mulatta , Magnetic Resonance Imaging , Male , Memory, Short-Term/drug effects , Neurons/metabolism , Post-Synaptic Density/ultrastructure , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/ultrastructure , Rats , Receptors, Metabotropic Glutamate/ultrastructure , Spatial Learning/drug effects , Subcellular Fractions/drug effects
16.
Psychiatry Investig ; 14(5): 687-692, 2017 Sep.
Article in English | MEDLINE | ID: mdl-29042896

ABSTRACT

OBJECTIVE: Schizophrenia is a chronic neuropsychiatric disease afflicting around 1.1% of the population worldwide. Recently, MIR137, CACNA1C, CSMD1, DRD2, and GRM3 have been reported as the most robustly emerging candidates involved in the etiology of schizophrenia. In this case control study, we performed an association analysis of rs1625579 (MIR137), rs1006737, rs4765905 (CACNA1C), rs10503253 (CSMD1), rs1076560 (DRD2), rs12704290, rs6465084, and rs148754219 (GRM3) in Pakistani population. METHODS: Schizophrenia was diagnosed on the basis of the Diagnostic and Statistical Manual of Mental Disorders 4th ed (DSM-IV). Detailed clinical information, family history of all patients and healthy controls were collected. RFLP based case control association study was performed in a Pakistani cohort of 508 schizophrenia patients and 300 healthy control subjects. Alleles and genotype frequencies were calculated using SPSS. RESULTS: A significant difference in the genotype and allele frequencies for rs4765905, rs1076560 and rs6465084 were found between the patients and controls (p=0.000). CONCLUSION: This study provides substantial evidence supporting the role of CACNA1C, GRM3 and DRD2 as schizophrenia susceptibility genes in Pakistani population.

17.
Psychiatry Investigation ; : 687-692, 2017.
Article in English | WPRIM (Western Pacific) | ID: wpr-123484

ABSTRACT

OBJECTIVE: Schizophrenia is a chronic neuropsychiatric disease afflicting around 1.1% of the population worldwide. Recently, MIR137, CACNA1C, CSMD1, DRD2, and GRM3 have been reported as the most robustly emerging candidates involved in the etiology of schizophrenia. In this case control study, we performed an association analysis of rs1625579 (MIR137), rs1006737, rs4765905 (CACNA1C), rs10503253 (CSMD1), rs1076560 (DRD2), rs12704290, rs6465084, and rs148754219 (GRM3) in Pakistani population. METHODS: Schizophrenia was diagnosed on the basis of the Diagnostic and Statistical Manual of Mental Disorders 4th ed (DSM-IV). Detailed clinical information, family history of all patients and healthy controls were collected. RFLP based case control association study was performed in a Pakistani cohort of 508 schizophrenia patients and 300 healthy control subjects. Alleles and genotype frequencies were calculated using SPSS. RESULTS: A significant difference in the genotype and allele frequencies for rs4765905, rs1076560 and rs6465084 were found between the patients and controls (p=0.000). CONCLUSION: This study provides substantial evidence supporting the role of CACNA1C, GRM3 and DRD2 as schizophrenia susceptibility genes in Pakistani population.


Subject(s)
Humans , Alleles , Case-Control Studies , Cohort Studies , Diagnostic and Statistical Manual of Mental Disorders , Gene Frequency , Genotype , Pakistan , Polymorphism, Restriction Fragment Length , Schizophrenia
18.
Clin Immunol ; 160(2): 142-54, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26071318

ABSTRACT

Recently B-cell activating factor (BAFF) was identified by our group and others as a novel therapeutic target for the treatment of autoimmune diseases. To expand upon this, we utilized microarrays to screen for molecules upregulated in B cells from BAFF-inhibited mice with lupus-like disease and identified metabotropic glutamate receptor 3 (Grm3). In addition to confirming the expression of this receptor in B cells, a synthetic agonist of Grm3 was found to downregulate B cells and ameliorate autoimmune symptoms in mice. Conversely, a Grm3 antagonist increased B-cell numbers and further aggravated disease. Thus, these results suggest that activation of Grm3 ameliorates lupus-like disease in mice by reducing B cell numbers. Not only do the findings presented in this study increase our understanding of the inhibitory signals initiated on the surface of B cells, but they also identify a novel potential target for the treatment of autoimmune diseases.


Subject(s)
B-Lymphocytes/immunology , Lupus Erythematosus, Systemic/immunology , Multiple Sclerosis, Chronic Progressive/immunology , RNA, Messenger/metabolism , Receptors, Metabotropic Glutamate/immunology , Animals , B-Lymphocytes/metabolism , Cell Proliferation , Gene Expression Profiling , Humans , Kidney/pathology , Lupus Erythematosus, Systemic/genetics , Mice , Multiple Sclerosis, Chronic Progressive/genetics , Receptors, Metabotropic Glutamate/genetics , Reverse Transcriptase Polymerase Chain Reaction
19.
Neuropsychiatr Dis Treat ; 11: 823-33, 2015.
Article in English | MEDLINE | ID: mdl-25848280

ABSTRACT

To date, the role of metabotropic glutamate receptor 3 (GRM3) rs274622, rs1468412, rs917071, rs6465084, and rs2299225 polymorphisms in schizophrenia remains controversial. To provide a clearer picture for the effect of the five most studied GRM3 polymorphisms on risk of schizophrenia, this meta-analysis with eligible data from published studies was performed. Relevant case-control studies were retrieved by literature search and selected according to established inclusion criteria. Odds ratios with 95% confidence intervals were used to assess the strength of association. A total of 33 individual studies were identified and included in our meta-analysis: nine for rs1468412, with 5,314 cases and 6,147 controls; six for rs917071, with 2,660 cases and 3,517 controls; seven for rs274622, with 3,820 cases and 4,015 controls; five for rs2299225, with 3,492 cases and 3,735 controls; and six for rs6465084, with 4,960 cases and 5,613 controls. However, no significant association was found between these GRM3 polymorphisms and schizophrenia in the overall population. With respect to rs1468412 polymorphism, a finding of very borderline statistical significance emerged in dominant comparison model for non-Asian populations, calling for large-scale verification to assess the marginally elevated risk of schizophrenia. In conclusion, these GRM3 polymorphisms have limited effect on the risks of schizophrenia. Further large and well-designed studies are needed to confirm this conclusion.

20.
J Histochem Cytochem ; 63(6): 417-26, 2015 06.
Article in English | MEDLINE | ID: mdl-25739438

ABSTRACT

The inhibitory metabotropic glutamate receptor 3 (mGluR3) plays diverse and complex roles in brain function, including synaptic plasticity and neurotransmission. We recently found that mGluR3 is downregulated in the lateral septum (LS) of postpartum females using microarray and qPCR analysis. In this study, we used double fluorescence immunohistochemical approaches to characterize mGluR3 changes in LS of the postpartum brain. The number of mGluR3-immunoractive cells was significantly reduced in the dorsal (LSD) and intermediate (LSI) but not ventral (LSV) parts of the LS in postpartum versus virgin females. mGluR3 immunoreactivity in the LS was found predominantly in neurons (~70%), with a smaller portion (~20%-30%) in astrocytes. Colocalization analysis revealed a reduced mGluR3 expression in neurons but an increased astrocytic localization in postpartum LSI. This change in the pattern of expression suggests that mGluR3 expression is shifted from neurons to astrocytes in postpartum LS, and the decrease in mGluR3 is neuron-specific. Because mGluR3 is inhibitory and negatively regulates glutamate and GABA release, decreases in neuronal expression would increase glutamate and GABA signaling. Given our recent finding that ~90% of LS neurons are GABAergic, the present data suggest that decreases in mGluR3 are a mechanism for elevated GABA in LS in the postpartum state.


Subject(s)
Astrocytes/cytology , Mice , Neurons/cytology , Receptors, Metabotropic Glutamate/analysis , Septal Nuclei/cytology , Animals , Astrocytes/chemistry , Astrocytes/metabolism , Female , Immunohistochemistry , Mice/physiology , Neurons/chemistry , Neurons/metabolism , Postpartum Period , Receptors, Metabotropic Glutamate/metabolism , Septal Nuclei/chemistry , Septal Nuclei/physiology
SELECTION OF CITATIONS
SEARCH DETAIL