Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
J Clin Med ; 12(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36769815

ABSTRACT

Facial skin aging is an important psychophysical and social concern, especially in women. We compared facial parameters reflecting aging of the skin in 1999 and 2010 in 86 female volunteers. Then, all subjects applied three Galactomyces ferment filtrate-containing skin care products (G3 products; SK-II Facial Treatment Essence, SK-II Cellumination Essence, and SK-II Skin Signature Cream) twice daily for 12 months (M), with the skin parameters being measured at 2 M, 8 M, and 12 M during this period. Facial skin aging parameters such as wrinkles, hyperpigmented spots, and roughness significantly deteriorated during the 11-year interval. This 11-year aging process was associated with reduced hydration and increased transepidermal water loss (TEWL). Notably, treatment with G3 products significantly and cumulatively increased skin hydration with a correlated reduction of TEWL during the 12 M treatment period. Such treatment also significantly and cumulatively reversed the 11-year facial skin aging in the three parameters of wrinkles, spots, and roughness. These results suggest that facial skin retains the potential to recover from the aging process when it is applied with appropriate cosmetic agents.

2.
J Clin Med ; 11(21)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36362566

ABSTRACT

Skincare products play a crucial role in preventing the dry skin induced by various causes. Certain ingredients can help to improve the efficacy of skincare products. Galactomyces ferment filtrate (GFF) is such a functional ingredient. Its use originated from the empirical observation that the hands of sake brewers who deal with yeast fermentation retain a beautiful and youthful appearance. Consequently, skincare products based on GFF are widely used throughout the world. Recent studies have demonstrated that GFF activates an aryl hydrocarbon receptor (AHR) and upregulates the expression of filaggrin, a pivotal endogenous source of natural moisturizing factors, in epidermal keratinocytes. It also activates nuclear factor erythroid-2-related factor 2 (NRF2), the antioxidative master transcription factor, and exhibits potent antioxidative activity against oxidative stress induced by ultraviolet irradiation and proinflammatory cytokines, which also accelerate inflammaging. GFF-mediated NRF2 activation downregulates the expression of CDKN2A, which is known to be overexpressed in senescent keratinocytes. Moreover, GFF enhances epidermal terminal differentiation by upregulating the expression of caspase-14, claudin-1, and claudin-4. It also promotes the synthesis of the antiinflammatory cytokine IL-37 and downregulates the expression of proallergic cytokine IL-33 in keratinocytes. In addition, GFF downregulates the expression of the CXCL14 and IL6R genes, which are involved in inflammaging. These beneficial properties might underpin the potent barrier-protecting and anti-inflammaging effects of GFF-containing skin formulae.

3.
J Clin Med ; 11(16)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36012891

ABSTRACT

Galactomyces ferment filtrate (GFF, Pitera™) is a cosmetic ingredient known to have multiple skin care benefits, such as reducing redness and pore size via the topical application of its moisturizer form. Although GFF is known to act partly as an antioxidative agonist for the aryl hydrocarbon receptor (AHR), its significance in keratinocyte biology is not fully understood. In this study, we conducted a transcriptomic analysis of GFF-treated human keratinocytes. Three different lots of GFF consistently modulated 99 (22 upregulated and 77 downregulated) genes, including upregulating cytochrome P450 1A1 (CYP1A1), a specific downstream gene for AHR activation. GFF also enhanced the expression of epidermal differentiation/barrier-related genes, such as small proline-rich proteins 1A and 1B (SPRR1A and SPRR1B), as well as wound healing-related genes such as serpin B2 (SERPINB2). Genes encoding components of tight junctions claudin-1 (CLDN1) and claudin-4 (CLDN4) were also target genes upregulated in the GFF-treated keratinocytes. In contrast, the three lots of GFF consistently downregulated the expression of inflammation-related genes such as chemokine (C-X-C motif) ligand 14 (CXCL14) and interleukin-6 receptor (IL6R). These results highlight the beneficial properties of GFF in maintaining keratinocyte homeostasis.

4.
J Clin Med ; 11(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35456214

ABSTRACT

Mask wearing is described as one of the main public health measures against COVID-19. Mask wearing induces various types of subjective and objective facial skin damage, such as hair pore dilatation and redness. Facial pore size and redness show morning-to-evening intra-day fluctuations. It remains unknown whether mask usage affects fluctuations in pore size and redness. We measured facial skin hydration, transepidermal water loss (TEWL), pore size, and redness four times a day for 6 weeks in 20 healthy young women. After a 2-week no-mask-usage period (baseline period), all subjects wore unwoven masks for 2 weeks; then, for the following 2 weeks, they applied masks after the topical application of a moisturizer containing a Galactomyces ferment filtrate (GFF) skin care formula (Pitera™). We demonstrated that mask wearing significantly increased the intra-day fluctuations of pore size, redness, and TEWL. In addition, significant correlations were evident among these three parameters. Notably, these mask-induced skin changes were significantly improved, achieving a return to baseline levels, by the application of a GFF-containing moisturizer. In conclusion, mask wearing aggravates intra-day fluctuations in pore size and redness. Appropriate moisturization can minimize this mask-related skin damage, most likely by normalizing the elevated TEWL.

5.
J Clin Med ; 10(11)2021 Jun 05.
Article in English | MEDLINE | ID: mdl-34198790

ABSTRACT

Young women often complain about the daily fluctuation of their facial skin conditions. However, no objective study has been carried out on such changes. This study is aimed at quantitatively elucidating daily skin fluctuation and evaluating the efficacy of cosmetic skin care treatment. We developed the first portable and self-guided facial skin imaging device (eMR Pro) to reproducibly capture facial images at home. Two 8 week clinical studies were then conducted to analyze daily skin fluctuation of facial pore areas, roughness and redness in young Japanese women (n = 47 in study 1 and n = 57 in study 2) by collecting facial images three times a day, during the morning after wake-up, during the morning after face wash, and during the evening after face wash. After a 4 week baseline measurement period (week -4 to week -1), all subjects applied Galactomyces ferment filtrate (GFF, Pitera®) skin care formula twice a day for 4 weeks (week 1 to week 4). These three skin conditions did exhibit different fluctuation patterns. The pore area and roughness showed the "morning after wake-up"-largest fluctuation pattern, whereas redness showed the "evening after face wash"-largest fluctuation pattern. GFF treatment significantly reduced the net values and delta fluctuation of pore area, roughness, and redness, which were consistently observed in two studies. In conclusion, the daily fluctuation of facial skin conditions is potentially a new target field for investigating healthy skin maintenance.

SELECTION OF CITATIONS
SEARCH DETAIL