Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 206
Filter
1.
Vaccine ; : 126145, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39034218

ABSTRACT

Protein-based subunit vaccines like RBD-Fc are promising tools to fight COVID-19. RBD-Fc fuses the receptor-binding domain (RBD) of the SARS-CoV-2 virus spike protein with the Fc region of human IgG1, making it more immunogenic than RBD alone. Earlier work showed that combining RBD-Fc with iNKT cell agonists as adjuvants improved neutralizing antibodies but did not sufficiently enhance T cell responses, a limitation RBD-Fc vaccines share with common adjuvants. Here we demonstrate that aluminum hydroxide combined with α-C-GC, a C-glycoside iNKT cell agonist, significantly improved the RBD-Fc vaccine's induction of RBD-specific T-cell responses. Additionally, aluminum hydroxide with α-GC-CPOEt, a phosphonate diester derivative, synergistically elicited more robust neutralizing antibodies. Remarkably, modifying αGC with phosphate (OPO3H2) or phosphonate (CPO3H2) to potentially enhance aluminum hydroxide interaction did not improve efficacy over unmodified αGC with aluminum hydroxide. These findings underscore the straightforward yet potent potential of this approach in advancing COVID-19 vaccine development and provide insights for iNKT cell-based immunotherapy.

2.
Inflamm Res ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028491

ABSTRACT

BACKGROUND: Invariant natural killer T (iNKT) cells play protective or pathogenic roles in a variety of immune and inflammatory diseases. However, whether iNKT cells contribute to the progression of acute neuroinflammation remains unclear. Thus, we addressed this question with a mouse model of lipopolysaccharide (LPS)-induced acute neuroinflammation. METHODS: For induction of acute neuroinflammation, wild-type (WT) C57BL/6 (B6) mice were injected intraperitoneally (i.p.) with LPS for either three or five consecutive days, and then these mice were analyzed for brain-infiltrating leukocytes or mouse behaviors, respectively. To examine the role of iNKT cell activation in LPS-induced neuroinflammation, mice were injected i.p. with the iNKT cell agonist α-galactosylceramide (α-GalCer) seven days prior to LPS treatment. Immune cells infiltrated into the brain during LPS-induced neuroinflammation were determined by flow cytometry. In addition, LPS-induced clinical behavior symptoms such as depressive-like behavior and memory impairment in mice were evaluated by the open field and Y-maze tests, respectively. RESULTS: We found that iNKT cell-deficient Jα18 mutant mice display delayed disease progression and decreased leukocyte infiltration into the brain compared with WT mice, indicating that iNKT cells contribute to the pathogenesis of LPS-induced neuroinflammation. Since it has been reported that pre-treatment with α-GalCer, an iNKT cell agonist, can convert iNKT cells towards anti-inflammatory phenotypes, we next explored whether pre-activation of iNKT cells with α-GalCer can regulate LPS-induced neuroinflammation. Strikingly, we found that α-GalCer pre-treatment significantly delays the onset of clinical symptoms, including depression-like behavior and memory impairment, while decreasing brain infiltration of pro-inflammatory natural killer cells and neutrophils, in this model of LPS-induced neuroinflammation. Such anti-inflammatory effects of α-GalCer pre-treatment closely correlated with iNKT cell polarization towards IL4- and IL10-producing phenotypes. Furthermore, α-GalCer pre-treatment restored the expression of suppressive markers on brain regulatory T cells during LPS-induced neuroinflammation. CONCLUSION: Our findings provide strong evidence that α-GalCer-induced pre-activation of iNKT cells expands iNKT10 cells, mitigating depressive-like behaviors and brain infiltration of inflammatory immune cells induced by LPS-induced acute neuroinflammation. Thus, we suggest the prophylactic potential of iNKT cells and α-GalCer against acute neuroinflammation.

3.
JIMD Rep ; 65(4): 280-294, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38974607

ABSTRACT

Classic galactosemia (CG) arises from loss-of-function mutations in the Galt gene, which codes for the enzyme galactose-1-phosphate uridylyltransferase (GALT), a central component in galactose metabolism. The neonatal fatality associated with CG can be prevented by galactose dietary restriction, but for decades it has been known that limiting galactose intake is not a cure and patients often have lasting complications. Even on a low-galactose diet, GALT's substrate galactose-1-phosphate (Gal1P) is elevated and one hypothesis is that elevated Gal1P is a driver of pathology. Here we show that Gal1P levels were elevated above wildtype (WT) in Galt mutant mice, while mice doubly mutant for Galt and the gene encoding galactokinase 1 (Galk1) had normal Gal1P levels. This indicates that GALK1 is necessary for the elevated Gal1P in CG. Another hypothesis to explain the pathology is that an inability to metabolize galactose leads to diminished or disrupted galactosylation of proteins or lipids. Our studies reveal that levels of a subset of cerebrosides-galactosylceramide 24:1, sulfatide 24:1, and glucosylceramide 24:1-were modestly decreased compared to WT. In contrast, gangliosides were unaltered. The observed reduction in these 24:1 cerebrosides may be relevant to the clinical pathology of CG, since the cerebroside galactosylceramide is an important structural component of myelin, the 24:1 species is the most abundant in myelin, and irregularities in white matter, of which myelin is a constituent, have been observed in patients with CG. Therefore, impaired cerebroside production may be a contributing factor to the brain damage that is a common clinical feature of the human disease.

4.
J Control Release ; 370: 379-391, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697317

ABSTRACT

Although various types of mRNA-based vaccines have been explored, the optimal conditions for induction of both humoral and cellular immunity remain rather unknown. In this study, mRNA vaccines of nucleoside-modified mRNA in lipoplexes (LPXs) or lipid nanoparticles (LNPs) were evaluated after administration in mice through different routes, assessing mRNA delivery, tolerability and immunogenicity. In addition, we investigated whether mRNA vaccines could benefit from the inclusion of the adjuvant alpha-galactosylceramide (αGC), an invariant Natural Killer T (iNKT) cell ligand. Intramuscular (IM) vaccination with ovalbumin (OVA)-encoding mRNA encapsulated in LNPs adjuvanted with αGC showed the highest antibody- and CD8+ T cell responses. Furthermore, we observed that addition of signal peptides and endocytic sorting signals of either LAMP1 or HLA-B7 in the OVA-encoding mRNA sequence further enhanced CD8+ T cell activation although reducing the induction of IgG antibody responses. Moreover, mRNA LNPs with the ionizable lipidoid C12-200 exhibited higher pro-inflammatory- and reactogenic activity compared to mRNA LNPs with SM-102, correlating with increased T cell activation and antitumor potential. We also observed that αGC could further enhance the cellular immunity of clinically relevant mRNA LNP vaccines, thereby promoting therapeutic antitumor potential. Finally, a Listeria monocytogenes mRNA LNP vaccine supplemented with αGC showed synergistic protective effects against listeriosis, highlighting a key advantage of co-activating iNKT cells in antibacterial mRNA vaccines. Taken together, our study offers multiple insights for optimizing the design of mRNA vaccines for disease applications, such as cancer and intracellular bacterial infections.


Subject(s)
Cancer Vaccines , Galactosylceramides , Mice, Inbred C57BL , Nanoparticles , Ovalbumin , Animals , Galactosylceramides/administration & dosage , Galactosylceramides/chemistry , Cancer Vaccines/administration & dosage , Cancer Vaccines/immunology , Female , Nanoparticles/chemistry , Nanoparticles/administration & dosage , Ovalbumin/immunology , Ovalbumin/administration & dosage , mRNA Vaccines , Adjuvants, Immunologic/administration & dosage , CD8-Positive T-Lymphocytes/immunology , RNA, Messenger/administration & dosage , Mice , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/immunology , Neoplasms/immunology , Neoplasms/therapy , Lipids/chemistry , Liposomes
5.
Pharmaceutics ; 16(5)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38794243

ABSTRACT

Cancer vaccines have emerged as a potent strategy to improve cancer immunity, with or without the combination of checkpoint blockade. In our investigation, liposomal formulations containing synthetic long peptides and α-Galactosylceramide, along with a DC-SIGN-targeting ligand, Lewis Y (LeY), were studied for their anti-tumor potential. The formulated liposomes boosted with anti-CD40 adjuvant demonstrated robust invariant natural killer (iNKT), CD4+, and CD8+ T-cell activation in vivo. The incorporation of LeY facilitated the targeting of antigen-presenting cells expressing DC-SIGN in vitro and in vivo. Surprisingly, mice vaccinated with LeY-modified liposomes exhibited comparable tumor reduction and survival rates to those treated with untargeted counterparts despite a decrease in antigen-specific CD8+ T-cell responses. These results suggest that impaired induction of antigen-specific CD8+ T-cells via DC-SIGN targeting does not compromise anti-tumor potential, hinting at alternative immune activation routes beyond CD8+ T-cell activation.

6.
Breast Cancer Res ; 26(1): 78, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750591

ABSTRACT

BACKGROUND: Metastatic breast cancer is a leading cause of cancer death in woman. Current treatment options are often associated with adverse side effects and poor outcomes, demonstrating the need for effective new treatments. Immunotherapies can provide durable outcomes in many cancers; however, limited success has been achieved in metastatic triple negative breast cancer. We tested whether combining different immunotherapies can target metastatic triple negative breast cancer in pre-clinical models. METHODS: Using primary and metastatic 4T1 triple negative mammary carcinoma models, we examined the therapeutic effects of oncolytic vesicular stomatitis virus (VSVΔM51) engineered to express reovirus-derived fusion associated small transmembrane proteins p14 (VSV-p14) or p15 (VSV-p15). These viruses were delivered alone or in combination with natural killer T (NKT) cell activation therapy mediated by adoptive transfer of α-galactosylceramide-loaded dendritic cells. RESULTS: Treatment of primary 4T1 tumors with VSV-p14 or VSV-p15 alone increased immunogenic tumor cell death, attenuated tumor growth, and enhanced immune cell infiltration and activation compared to control oncolytic virus (VSV-GFP) treatments and untreated mice. When combined with NKT cell activation therapy, oncolytic VSV-p14 and VSV-p15 reduced metastatic lung burden to undetectable levels in all mice and generated immune memory as evidenced by enhanced in vitro recall responses (tumor killing and cytokine production) and impaired tumor growth upon rechallenge. CONCLUSION: Combining NKT cell immunotherapy with enhanced oncolytic virotherapy increased anti-tumor immune targeting of lung metastasis and presents a promising treatment strategy for metastatic breast cancer.


Subject(s)
Natural Killer T-Cells , Oncolytic Virotherapy , Oncolytic Viruses , Animals , Female , Mice , Natural Killer T-Cells/immunology , Oncolytic Virotherapy/methods , Humans , Cell Line, Tumor , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , Immunotherapy/methods , Vesicular stomatitis Indiana virus/genetics , Vesicular stomatitis Indiana virus/immunology , Triple Negative Breast Neoplasms/therapy , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology , Combined Modality Therapy , Neoplasm Metastasis , Vesiculovirus/genetics , Dendritic Cells/immunology , Breast Neoplasms/therapy , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Disease Models, Animal
7.
Int Immunopharmacol ; 132: 111909, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38554446

ABSTRACT

Adjuvants enhance the body's immune response to a vaccine, often leading to better protection against diseases. Monophosphoryl lipid A analogues (MPLA, TLR4 agonists), α-galactosylceramide analogues (NKT cell agonists), and imidazoquinoline compounds (TLR7/8 agonists) are emerging novel adjuvants on market or under clinical trials. Despite significant interest in these adjuvants, a direct comparison of their adjuvant activities remains unexplored. We initially assessed the activities of various adjuvants from three distinct categories using the SARS-CoV-2 RBD trimer antigen. TLR4 and TLR7/8 agonists are discovered to elicit robust IgG2a/2b antibodies, which is crucial for eliciting antibody dependent cytotoxicity. While α-galactosylceramide analogs induced mainly IgG1 antibody. Then, because of the flexibility of the TLR7/8 agonist, we designed and synthesized a tri-component self-adjuvanting SARS-CoV-2 RBD vaccine, featuring a covalent TLR7 agonist and targeting mannoside. Animal studies indicated that this vaccine generated antigen-specific humoral immunity. Yet, its immunogenicity seems compromised, indicating the complexity of the vaccine.


Subject(s)
Adjuvants, Immunologic , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Toll-Like Receptor 7 , Toll-Like Receptor 7/agonists , Animals , COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Adjuvants, Immunologic/pharmacology , Humans , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Female , Mice , Antibodies, Viral/blood , Antibodies, Viral/immunology , Immunogenicity, Vaccine , Adjuvants, Vaccine , Spike Glycoprotein, Coronavirus/immunology , Mice, Inbred BALB C , Immunity, Humoral/drug effects , Immunoglobulin G/blood , Immunoglobulin G/immunology
8.
Cancers (Basel) ; 16(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38254878

ABSTRACT

Galactosylceramide (GalCer) increases the resistance of breast cancer cells to doxorubicin, paclitaxel, and cisplatin by acting as an anti-apoptotic molecule. GalCer was found to specifically downregulate the levels of the pro-apoptotic TNFRSF1B and TNFRSF9 genes and upregulate the levels of the anti-apoptotic BCL2 gene, suggesting that this glycosphingolipid regulates their expression at the transcriptional level. Consistent with this hypothesis, MDA-MB-231 and MCF7 breast cancer cells with high levels of GalCer showed lower activity of the TNFRSF1B and TNFRSF9 promoters than cells lacking GalCer. In contrast, the activity of the BCL2 promoter was higher in MCF7 cells overproducing GalCer than in MCF7 cells without GalCer. However, no difference in BCL2 promoter activity was observed between MDA-MB-231 cells with high and no GalCer content. Instead, we found that high levels of GalCer increased the stability of Bcl-2 mRNA. Subsequent studies showed that breast cancer cells with high levels of GalCer are characterized by significantly lower expression of P53. Importantly, inhibition of P53 expression by siRNA in MCF7 and MDA-MB-231 cells lacking GalCer resulted in decreased expression and promoter activity of the TNFRS1B and TNFRSF9 genes. On the other hand, increased expression and promoter activity of the BCL2 gene was found in such MCF7 cells, and increased stability of Bcl-2 transcripts was observed in such MDA-MB-231 cells. Taken together, these data strongly suggest that the regulatory protein that simultaneously increases the expression of the TNFRSF1B and TNFRSF9 genes and decreases the expression of the BCL2 gene and the stability of Bcl-2 transcripts is most likely P53, the expression of which is GalCer dependent.

9.
Cells ; 12(24)2023 12 18.
Article in English | MEDLINE | ID: mdl-38132174

ABSTRACT

Natural killer T (NKT) cells are unconventional T cells that are activated by glycolipid antigens. They can produce a variety of inflammatory and regulatory cytokines and, therefore, modulate multiple aspects of the immune response in different pathological settings, including autoimmunity. NKT cells have also been implicated in the immunopathogenesis of autoimmune hepatitis, and in this review we summarize and analyze the main studies investigating the involvement and/or homeostasis of NKT cells in this disease. In detail, the evidence from both basic and clinical research has been specifically analyzed. Even though the experimental murine models supported a relevant role of NKT cells in immune-mediated hepatic injury, very few studies specifically investigated NKT cell homeostasis in patients with autoimmune hepatitis; however, these initial studies reported some alterations of NKT cells in these patients, which may also correlate with the disease activity to some extent. Further clinical studies are needed to investigate the potential role and use of NKT cell analysis as a disease marker of clinical relevance, and to better understand the precise cellular and molecular mechanisms by which NKT cells contribute to the pathogenesis of autoimmune hepatitis.


Subject(s)
Hepatitis, Autoimmune , Natural Killer T-Cells , Humans , Animals , Mice , Cytokines , Killer Cells, Natural
10.
Front Immunol ; 14: 1293158, 2023.
Article in English | MEDLINE | ID: mdl-38022648

ABSTRACT

Introduction: Peanut allergy is one of the most prevalent food allergies globally. Currently, most research into the mechanisms involved in protein allergy focuses on the protein allergens under investigation, and information on the function of accompanying compounds, such as lipids, is scarce. Thus, this research investigates the role of peanut-associated lipids and invariant natural killer T (iNKT) cells in peanut allergy using a novel, human, in vitro assay. Methods: PBMCs from non-allergic and peanut-allergic subjects were stimulated with the glycolipid, α-Galactosylceramide (α-GalCer), over 14 days for iNKT cell expansion. Autologous dendritic cells (DCs) were stimulated with either peanut oil, the lipid-binding peanut allergen, Ara h 8, or both peanut oil and Ara h 8. The expanded iNKT cells were then immunomagnetically isolated and co-cultured for 5 h with autologous DCs, and cytokine expression was measured by flow cytometry. Results: A 5-fold higher iNKT cell population was observed in peanut-allergic subject peripheral blood compared to non-allergic controls. In all subjects, conventional flow analysis highlighted iNKTs co-cultured with autologous α-GalCer-pulsed DCs displayed increased IL-4 and IFN-y secretion within 5 hours of co-culture. A 10-parameter unsupervised clustering analysis of iNKT phenotype found significantly more CD3+CD8+CD25+IL-4+IL-5+IL-10+IFNγ+ cells in non-allergic adults following culture with peanut oil. Conclusion: For the first time, we show iNKT cells are more abundant in peanut-allergic adults compared to non-allergic adults, and peanut lipid-exposed iNKT cells resulted in the identification of a subset of CD8+ iNKT cells which was significantly lower in peanut-allergic adults. Thus, this study proposes a role for iNKT cells and peanut allergen-associated lipids in peanut allergy.


Subject(s)
Natural Killer T-Cells , Peanut Hypersensitivity , Humans , Adult , Peanut Oil , Arachis , Interleukin-4 , CD8-Positive T-Lymphocytes , Allergens
11.
Microorganisms ; 11(8)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37630653

ABSTRACT

Fungal glycosphingolipids (GSLs) are important membrane components which play a key role in vesicle trafficking. To assess the importance of GSLs in the fungal life cycle, we performed a mutant phenotypic study of the acidic and neutral GSL biosynthetic pathways in Neurospora crassa. GSL biosynthesis begins with two reactions leading up to the formation of dihydrosphingosine. The first of these reactions is catalyzed by serine palmitoyltransferase and generates 3-keto dihydrosphinganine. In N. crassa, this reaction is catalyzed by GSL-1 and GSL-2 and is required for viability. The second reaction is carried out by GSL-3, a 3-keto dihydrosphinoganine reductase to generate dihydrosphingosine, which is used for the synthesis of neutral and acidic GSLs. We found that deletion mutations in the acidic GSL pathway leading up to the formation of mannosylinositol-phosphoceramide are lethal, indicating that acidic GSLs are essential for viability in N. crassa. Once mannosylinositol-phosphoceramide is made, it is further modified by GSL-5, an inositol-phosphoceramide-B C26 hydroxylase, which adds a hydroxyl group to the amide-linked fatty acid. GSL-5 is not required for viability but gives a clear mutant phenotype affecting all stages of the life cycle. Our results show that the synthesis of mannosylinositol-phosphoceramide is required for viability and that the modification of the amide-linked fatty acid is important for acidic GSL functionality. We also examined the neutral GSL biosynthetic pathway and identified the presence of glucosylceramide. The deletion of neutral GSL biosynthetic genes affected hyphal morphology, vegetative growth rate, conidiation, and female development. Our results indicate that the synthesis of neutral GSLs is essential for normal growth and development of N. crassa.

12.
Am J Cancer Res ; 13(6): 2439-2451, 2023.
Article in English | MEDLINE | ID: mdl-37424825

ABSTRACT

Cancer immunotherapy has emerged as a promising approach for treating various malignancies. In this study, we investigated the combined therapeutic effects of mesenchymal stem cells expressing cytosine deaminase (MSC/CD) and 5-fluorocytosine (5-FC) with α-galactosylceramide (α-GalCer) in a colon cancer model. Our findings demonstrated that the combination of MSC/CD, 5-FC, and α-GalCer resulted in enhanced antitumor activity compared to the individual treatments. This was evidenced by increased infiltration of immune cells, such as natural killer T (NKT) cells, antigen-presenting cells (APCs), T cells, and natural killer (NK) cells, in the tumor microenvironment, as well as elevated expression of proinflammatory cytokines and chemokines. Furthermore, we observed no significant hepatotoxicity following the combined treatment. Our study highlights the potential therapeutic benefits of combining MSC/CD, 5-FC, and α-GalCer for colon cancer treatment and contributes valuable insights to the field of cancer immunotherapy. Future research should focus on elucidating the underlying mechanisms and exploring the applicability of these findings to other cancer types and immunotherapy strategies.

13.
Glia ; 71(11): 2591-2608, 2023 11.
Article in English | MEDLINE | ID: mdl-37475643

ABSTRACT

Brain function relies on both rapid electrical communication in neural circuitry and appropriate patterns or synchrony of neural activity. Rapid communication between neurons is facilitated by wrapping nerve axons with insulation by a myelin sheath composed largely of different lipids. Recent evidence has indicated that the extent of myelination of nerve axons can adapt based on neural activity levels and this adaptive myelination is associated with improved learning of motor tasks, suggesting such plasticity may enhance effective learning. In this study, we examined whether another aspect of myelin plasticity-changes in myelin lipid synthesis and composition-may also be associated with motor learning. We combined a motor learning task in mice with in vivo two-photon imaging of neural activity in the primary motor cortex (M1) to distinguish early and late stages of learning and then probed levels of some key myelin lipids using mass spectrometry analysis. Sphingomyelin levels were elevated in the early stage of motor learning while galactosylceramide levels were elevated in the middle and late stages of motor learning, and these changes were correlated across individual mice with both learning performance and neural activity changes. Targeted inhibition of oligodendrocyte-specific galactosyltransferase expression, the enzyme that synthesizes myelin galactosylceramide, impaired motor learning. Our results suggest regulation of myelin lipid composition could be a novel facet of myelin adaptations associated with learning.


Subject(s)
Galactosylceramides , Myelin Sheath , Mice , Animals , Myelin Sheath/metabolism , Galactosylceramides/metabolism , Axons/metabolism , Neurons/metabolism , Oligodendroglia/physiology
14.
Cell Immunol ; 386: 104703, 2023 04.
Article in English | MEDLINE | ID: mdl-36889216

ABSTRACT

Epigenetic regulation affects the development and differentiation of iNKT cells. Our previous study found that the number of iNKT cells in thymus of RA mice was reduced and the ratio of subsets was unbalanced, but the related mechanism remains unclear. We adopted an adoptive infusion of iNKT2 cells with specific phenotypes and functions to RA mice and used the α-Galcer treatment group as control. The findings revealed that: 1. Adoptive treatment of iNKT cells decreased the proportion of iNKT1 and iNKT17 subsets in the thymus of RA mice, and increased the proportion of iNKT2 subsets. 2. Following treatment with iNKT cells, the expression of PLZF in thymus DP T cells was increased whereas the expression of T-bet in thymus iNKT cells was decreased in RA mice. 3. Adoptive therapy reduced the modification levels of H3Kb7me3 and H3K4me3 in the promoter regions of Zbtb16 (encoding PLZF) and Tbx21 (encoding T-bet) gene in thymus DP T cells and iNKT cells, and the reduction of H3K4me3 was particularly significant in the cell treatment group. Furthermore, adoptive therapy also upregulated the expression of UTX (histone demethylase) in thymus lymphocytes of RA mice. As a result, it is hypothesized that adoptive therapy of iNKT2 cells may affect the level of histone methylation in the promoter region of important transcription factor genes for iNKT development and differentiation, thereby directly or indirectly correcting the imbalance of iNKT subsets in the thymus of RA mice. These findings offer a fresh rationale and concept for the management of RA that targets.


Subject(s)
Epigenesis, Genetic , Natural Killer T-Cells , Mice , Animals , Natural Killer T-Cells/metabolism , Thymus Gland , Cell Differentiation , Thymocytes , Mice, Inbred C57BL
15.
J Control Release ; 356: 507-524, 2023 04.
Article in English | MEDLINE | ID: mdl-36907564

ABSTRACT

We developed an orally delivered nanoemulsion that induces cancer immunization. It consists of tumor antigen-loaded nano-vesicles carrying the potent invariant natural killer T-cell (iNKT) activator α-galactosylceramide (α-GalCer), to trigger cancer immunity by effectively activating both innate and adaptive immunity. It was validated that adding bile salts to the system boosted intestinal lymphatic transport as well as the oral bioavailability of ovalbumin (OVA) via the chylomicron pathway. To increase intestinal permeability further and amplify the antitumor responses, an ionic complex of cationic lipid 1,2-dioleyl-3-trimethylammonium propane (DTP) with sodium deoxycholate (DA) (DDP) and α-GalCer were anchored onto the outer oil layer to form OVA-NE#3. As expected, OVA-NE#3 exhibited tremendously improved intestinal cell permeability as well as enhanced delivery to mesenteric lymph nodes (MLNs). Subsequent activation of dendritic cells and iNKTs, in MLNs were also observed. Tumor growth in OVA-expressing mice with melanoma was more strongly suppressed (by 71%) after oral administration of OVA-NE#3 than in untreated controls, confirming the strong immune response induced by the system. The serum levels of OVA-specific IgG1 and IgG2a were 3.52- and 6.14-fold higher than in controls. Treating OVA-NE#3 increased the numbers of tumor-infiltrating lymphocytes, including cytotoxic T-cell and M1-like macrophage. Antigen- and α-GalCer-associated enrichment of dendritic cells and iNKTs in tumor tissues also increased after OVA-NE#3 treatment. These observations indicate that our system induces both cellular and humoral immunity by targeting the oral lymphatic system. It may offer a promising oral anti-cancer vaccination strategy that involves the induction of systemic anti-cancer immunization.


Subject(s)
Antigens, Neoplasm , Melanoma , Mice , Animals , Ovalbumin , Immunization , Mice, Inbred C57BL
16.
Viruses ; 15(3)2023 03 02.
Article in English | MEDLINE | ID: mdl-36992381

ABSTRACT

Tumor-associated antigens (TAAs) represent attractive targets in the development of anti-cancer vaccines. The filamentous bacteriophage is a safe and versatile delivery nanosystem, and recombinant bacteriophages expressing TAA-derived peptides at a high density on the viral coat proteins improve TAA immunogenicity, triggering effective in vivo anti-tumor responses. To enhance the efficacy of the bacteriophage as an anti-tumor vaccine, we designed and generated phage particles expressing a CD8+ peptide derived from the human cancer germline antigen NY-ESO-1 decorated with the immunologically active lipid alpha-GalactosylCeramide (α-GalCer), a potent activator of invariant natural killer T (iNKT) cells. The immune response to phage expressing the human TAA NY-ESO-1 and delivering α-GalCer, namely fdNY-ESO-1/α-GalCer, was analyzed either in vitro or in vivo, using an HLA-A2 transgenic mouse model (HHK). By using NY-ESO-1-specific TCR-engineered T cells and iNKT hybridoma cells, we observed the efficacy of the fdNY-ESO-1/α-GalCer co-delivery strategy at inducing activation of both the cell subsets. Moreover, in vivo administration of fdNY-ESO-1 decorated with α-GalCer lipid in the absence of adjuvants strongly enhances the expansion of NY-ESO-1-specific CD8+ T cells in HHK mice. In conclusion, the filamentous bacteriophage delivering TAA-derived peptides and the α-GalCer lipid may represent a novel and promising anti-tumor vaccination strategy.


Subject(s)
Membrane Proteins , Neoplasms , Humans , Mice , Animals , Membrane Proteins/metabolism , CD8-Positive T-Lymphocytes , Galactosylceramides/metabolism , Antigens, Neoplasm , Peptides , Mice, Transgenic , Antibodies/metabolism
17.
Proc Natl Acad Sci U S A ; 120(14): e2218823120, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36996106

ABSTRACT

Myelin is a multilayered membrane that tightly wraps neuronal axons, enabling efficient, high-speed signal propagation. The axon and myelin sheath form tight contacts, mediated by specific plasma membrane proteins and lipids, and disruption of these contacts causes devastating demyelinating diseases. Using two cell-based models of demyelinating sphingolipidoses, we demonstrate that altered lipid metabolism changes the abundance of specific plasma membrane proteins. These altered membrane proteins have known roles in cell adhesion and signaling, with several implicated in neurological diseases. The cell surface abundance of the adhesion molecule neurofascin (NFASC), a protein critical for the maintenance of myelin-axon contacts, changes following disruption to sphingolipid metabolism. This provides a direct molecular link between altered lipid abundance and myelin stability. We show that the NFASC isoform NF155, but not NF186, interacts directly and specifically with the sphingolipid sulfatide via multiple binding sites and that this interaction requires the full-length extracellular domain of NF155. We demonstrate that NF155 adopts an S-shaped conformation and preferentially binds sulfatide-containing membranes in cis, with important implications for protein arrangement in the tight axon-myelin space. Our work links glycosphingolipid imbalances to disturbance of membrane protein abundance and demonstrates how this may be driven by direct protein-lipid interactions, providing a mechanistic framework to understand the pathogenesis of galactosphingolipidoses.


Subject(s)
Demyelinating Diseases , Sulfoglycosphingolipids , Humans , Glycosphingolipids/metabolism , Carrier Proteins/metabolism , Nerve Growth Factors/metabolism , Myelin Sheath/metabolism , Cell Adhesion Molecules/metabolism , Demyelinating Diseases/pathology
18.
Cancer Immunol Immunother ; 72(7): 2267-2282, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36881133

ABSTRACT

AIM: We have previously reported that polyfunctional T cell responses can be induced to the cancer testis antigen NY-ESO-1 in melanoma patients injected with mature autologous monocyte-derived dendritic cells (DCs) loaded with long NY-ESO-1-derived peptides together with α-galactosylceramide (α-GalCer), an agonist for type 1 Natural Killer T (NKT) cells. OBJECTIVE: To assess whether inclusion of α-GalCer in autologous NY-ESO-1 long peptide-pulsed DC vaccines (DCV + α-GalCer) improves T cell responses when compared to peptide-pulsed DC vaccines without α-GalCer (DCV). DESIGN, SETTING AND PARTICIPANTS: Single-centre blinded randomised controlled trial in patients ≥ 18 years old with histologically confirmed, fully resected stage II-IV malignant cutaneous melanoma, conducted between July 2015 and June 2018 at the Wellington Blood and Cancer Centre of the Capital and Coast District Health Board. INTERVENTIONS: Stage I. Patients were randomised to two cycles of DCV or DCV + α-GalCer (intravenous dose of 10 × 106 cells, interval of 28 days). Stage II. Patients assigned to DCV + α-GalCer were randomised to two further cycles of DCV + α-GalCer or observation, while patients initially assigned to DCV crossed over to two cycles of DCV + α-GalCer. OUTCOME MEASURES: Primary: Area under the curve (AUC) of mean NY-ESO-1-specific T cell count detected by ex vivo IFN-γ ELISpot in pre- and post-treatment blood samples, compared between treatment arms at Stage I. Secondary: Proportion of responders in each arm at Stage I; NKT cell count in each arm at Stage I; serum cytokine levels at Stage I; adverse events Stage I; T cell count for DCV + α-GalCer versus observation at Stage II, T cell count before versus after cross-over. RESULTS: Thirty-eight patients gave written informed consent; 5 were excluded before randomisation due to progressive disease or incomplete leukapheresis, 17 were assigned to DCV, and 16 to DCV + α-GalCer. The vaccines were well tolerated and associated with increases in mean total T cell count, predominantly CD4+ T cells, but the difference between the treatment arms was not statistically significant (difference - 6.85, 95% confidence interval, - 21.65 to 7.92; P = 0.36). No significant improvements in T cell response were associated with DCV + α-GalCer with increased dosing, or in the cross-over. However, the NKT cell response to α-GalCer-loaded vaccines was limited compared to previous studies, with mean circulating NKT cell levels not significantly increased in the DCV + α-GalCer arm and no significant differences in cytokine response between the treatment arms. CONCLUSIONS: A high population coverage of NY-ESO-1-specific T cell responses was achieved with a good safety profile, but we failed to demonstrate that loading with α-GalCer provided an additional advantage to the T cell response with this cellular vaccine design. CLINICAL TRIAL REGISTRATION: ACTRN12612001101875. Funded by the Health Research Council of New Zealand.


Subject(s)
Melanoma , Skin Neoplasms , Male , Humans , Adolescent , Skin Neoplasms/therapy , Skin Neoplasms/metabolism , Peptides/metabolism , Antibodies/metabolism , Cytokines/metabolism , Dendritic Cells , Antigens, Neoplasm , Melanoma, Cutaneous Malignant
19.
Cancer Lett ; 561: 216149, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36990268

ABSTRACT

Invariant natural killer T (iNKT) cells are innate-like T cells that are abundant in liver sinusoids and play a critical role in tumor immunity. However, the role of iNKT cells in pancreatic cancer liver metastasis (PCLM) has not been fully explored. In this study, we employed a hemi-spleen pancreatic tumor cell injection mouse model of PCLM, a model that closely mimics clinical conditions in humans, to explore the role of iNKT cells in PCLM. Activation of iNKT cells with α-galactosylceramide (αGC) markedly increased immune cell infiltration and suppressed PCLM progression. Via single cell RNA sequencing (scRNA-seq) we profiled over 30,000 immune cells from normal liver and PCLM with or without αGC treatment and were able to characterize the global changes of the immune cells in the tumor microenvironment upon αGC treatment, identifying a total of 12 subpopulations. Upon treatment with αGC, scRNA-Seq and flow cytometry analyses revealed increased cytotoxic activity of iNKT/NK cells and skewing CD4 T cells towards a cytotoxic Th1 profile and CD8 T cells towards a cytotoxic profile, characterized by higher proliferation and reduced exhaustion marker PD1 expression. Moreover, αGC treatment excluded tumor associated macrophages. Lastly, imaging mass cytometry analysis uncovered the reduced epithelial to mesenchymal transition related markers and increased active CD4 and CD8 T cells in PCLM with αGC treatment. Overall, our findings uncover the protective function of activated iNKT cells in pancreatic cancer liver metastasis through increased NK and T cell immunity and decreased tumor associated macrophages.


Subject(s)
Liver Neoplasms , Natural Killer T-Cells , Pancreatic Neoplasms , Animals , Mice , Humans , Epithelial-Mesenchymal Transition , Single-Cell Gene Expression Analysis , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Image Cytometry , Lymphocyte Activation , Tumor Microenvironment
20.
Biomedicines ; 11(2)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36831084

ABSTRACT

Horse-derived ceramide (HC), which contains galactosylceramides as its main component, significantly improves skin symptoms when applied topically to patients with atopic dermatitis. We speculated that efficacy resulted from the amelioration of epidermal ceramide metabolism, and we characterized those effects using reconstructed human epidermal equivalents. Lipid analysis, RT-PCR and Western blotting revealed that HC significantly increased the total ceramide content of the stratum corneum (SC), accompanied by significantly increased gene and/or protein expression levels of ceramide synthase (CERS) 3, fatty acid elongase (ELOVL) 4, glucosylceramide synthase (GCS), ß-glucocerebrosidase, sphingomyelin synthase and acid sphingomyelinase. Mechanistic analyses using cultures of primary human keratinocytes revealed the marked stimulatory effects of HC on the mRNA expression levels of CERS3, ELOVL4 and GCS under high calcium-derived differentiation conditions. Signaling analyses demonstrated that an antagonist of PPARß/δ significantly abrogated the HC-stimulated mRNA expression levels of GCS, CERS3 and ELOVL4. GW9662, an antagonist of PPARγ, significantly abolished the HC-up-regulated mRNA expression levels of GCS and ELOVL4, but not of CERS3. These findings suggest that HC has the distinct potential to accentuate the expression of GCS, CERS3 and ELOVL4 via the activation of PPARß/δ and/or PPARγ to accelerate ceramide synthesis in the SC.

SELECTION OF CITATIONS
SEARCH DETAIL