Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 366
Filter
1.
Phytomedicine ; 135: 156033, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39306880

ABSTRACT

BACKGROUND: Diabetic peripheral neuropathy (DPN) is a serious complication of diabetes that lacks effective treatment. Gastrodin, the primary bioactive compound derived from Rhizoma Gastrodiae, has a long history in treating epilepsy and various central nervous system disorders. However, its effect on DPN remains uncertain. PURPOSE: This study aims to explore the therapeutic potential and underlying mechanisms of gastrodin in the treatment of DPN. METHOD: DPN model rats were induced with streptozotocin (STZ) injection and divided into four groups receiving either gastrodin at two doses (30 and 60 mg kg-1 per day), α-lipoic acid (positive drug, 60 mg kg-1 per day), or placebo. Healthy rats were administrated with placebo. The administrations began eight weeks post-STZ injection and continued for six weeks. Following a comprehensive evaluation of the neuroprotective effects, a systematic pharmacology-based approach was subsequently employed to investigate the underlying mechanism of gastrodin in vivo and in vitro. RESULTS: Gastrodin was demonstrated to effectively enhance peripheral nerve function and reduce pathological damages in DPN rats. Furthermore, gastrodin facilitated the expression of remyelination-related proteins and mitigated oxidative stress in DPN rats. Transcriptomic analysis indicated that the modulation of energy metabolism was pivotal in the neuroprotective effect of gastrodin, corroborated by targeted metabolomic analysis using high-performance ion chromatography coupled with mass spectrometry. Using network pharmacology analysis, 12 potential targets of gastrodin were identified. Among these, matrix metallopeptidase 9 (MMP9) was further validated as the primary target through molecular docking and cellular thermal shift assays. Functional Analysis of the potential targets underscored the pivotal role of AMPK signaling, and gastrodin demonstrated the capability to activate AMPK and inhibit MMP9 in vivo. In vitro studies further found that gastrodin enhanced antioxidant capacity and mitochondrial function of high glucose-cultured rat Schwann cells RSC96 in an AMPK-dependent manner. Inhibition of AMPK hindered the decrease of MMP9 induced by gastrodin in vitro. CONCLUSION: This study revealed the new role of gastrodin in alleviating DPN by restoring the homeostasis of energy metabolism through activating AMPK and inhibiting MMP9. These findings highlight gastrodin's potential as a novel therapeutic candidate against DPN, and underscores an appealing strategy of regulating energy metabolism for DPN therapy.

2.
Int J Mol Sci ; 25(17)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39273485

ABSTRACT

Gastrodia elata Blume is a traditional medicinal and food homology substance that has been used for thousands of years, is mainly distributed in China and other Asian countries, and has always been distinguished as a superior class of herbs. Gastrodin is the main active ingredient of G. elata Blume and has attracted increasing attention because of its extensive pharmacological activities. In addition to extraction and isolation from the original plant, gastrodin can also be obtained via chemical synthesis and biosynthesis. Gastrodin has significant pharmacological effects on the central nervous system, such as sedation and improvement of sleep. It can also improve epilepsy, neurodegenerative diseases, emotional disorders and cognitive impairment to a certain extent. Gastrodin is rapidly absorbed and widely distributed in the body and can also penetrate the blood-brain barrier. In brief, gastrodin is a promising natural small molecule with significant potential in the treatment of brain diseases. In this review, we summarised studies on the synthesis, pharmacological effects and pharmacokinetic characteristics of gastrodin, with emphasis on its effects on central nervous system disorders and the possible mechanisms, in order to find potential therapeutic applications and provide favourable information for the research and development of gastodin.


Subject(s)
Benzyl Alcohols , Central Nervous System Diseases , Glucosides , Benzyl Alcohols/pharmacokinetics , Benzyl Alcohols/therapeutic use , Benzyl Alcohols/pharmacology , Benzyl Alcohols/chemistry , Glucosides/pharmacokinetics , Glucosides/therapeutic use , Glucosides/chemistry , Glucosides/pharmacology , Humans , Animals , Central Nervous System Diseases/drug therapy , Central Nervous System Diseases/metabolism , Gastrodia/chemistry
3.
Pharmaceuticals (Basel) ; 17(9)2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39338362

ABSTRACT

Gastrodin, a highly potent compound found in the traditional Chinese medicine Gastrodia elata Blume, exhibits significant antihypertensive properties. However, its role and the mechanism behind its protective effects on hypertensive cardiac conditions are not well understood. This study aims to investigate the cardiac protective effects and underlying mechanisms of gastrodin in angiotensin II (Ang II)-induced hypertensive models, both in vivo and in vitro. Treatment with gastrodin significantly decreased blood pressure and the heart weight/tibial length (HW/TL) ratio and attenuated cardiac dysfunction and pathological damage in Ang II-infused C57BL/6 mice. RNA sequencing analysis (RNA-seq) revealed 697 up-regulated and 714 down-regulated transcripts, along with 1105 signaling pathways, in Ang II-infused C57BL/6 mice following gastrodin treatment, compared to Ang II-induced hypertensive mice. Furthermore, the analyses of the top 30 Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway indicated significant enrichment in apoptosis and the peroxiredoxin 2 (PRDX2)/p53 pathway. Consistently, gastrodin treatment significantly reduced myocardial apoptosis in both the cardiac tissues of Ang II-induced hypertensive mice and Ang II-stimulated H9c2 cells. Additionally, gastrodin treatment significantly decreased the protein levels of PRDX2, p53, cleaved caspase-3, cleaved caspase-9, and Bax/Bcl-2 ratio in the cardiac tissues of Ang II-infused mice and H9c2 cells stimulated with Ang II. In conclusion, gastrodin treatment can mitigate hypertension-induced myocardial apoptosis in hypertensive mice by inhibiting the PRDX2/p53 pathway.

4.
Heliyon ; 10(16): e36031, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39229547

ABSTRACT

Background: Gastrodin is the active monomer of the Chinese herb Rhizoma Gastrodiae with the largest quantity of active components. Gastrodin is commonly used in the treatment of central nervous system disorders such as headaches and epilepsy due to its sedating and hypnotic properties. Its pharmacological mechanism and clinical application have been extensively explored due to its low toxicity. Methods: To investigate the molecular mechanism of hepatic uptake of Gastrodin in rats, animals were randomly assigned to three groups: control group, rifampicin (RIF) group, and adrenalone (ADR) group. Blood samples were collected through the cardiac puncture 90, 180, and 300 min after injection, respectively. Rats were sacrificed 300 min after administration, and liver tissue was collected. Gastrodin concentration was determined by HPLC, and the Kp value was calculated. Results: After administering the inhibitors of organic cation transporters (OCTs) and organic anion transporting polypeptides (OATPs), the KP values in the experimental groups were significantly lower compared to the blank control group (P < 0.05). Conclusions: These findings imply that Gastrodin may be a substrate for both OCTs and OATPs.

5.
J Ethnopharmacol ; 337(Pt 1): 118785, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39241972

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Research suggests that traditional Chinese medicine (TCM) holds promise in offering innovative approaches to tackle neurodegenerative disorders. In our endeavor, we conducted a comprehensive bibliometric analysis to delve into the landscape of TCM research within the realm of neurodegenerative diseases, aiming to uncover the present scenario, breadth, and trends in this field. This analysis presents potentially valuable insights for the clinical application of traditional Chinese medicine and provides compelling evidence supporting its efficacy in the treatment of neurodegenerative conditions. AIM OF THE STUDY: The incidence of neurodegenerative diseases is on the rise, yet effective treatments are still lacking. Research indicates that TCM could offer novel perspectives for addressing neurodegenerative conditions. Nonetheless, the literature on this topic is intricate and multifaceted, with existing reviews offering only limited coverage. To gain a thorough understanding of TCM research in neurodegenerative diseases, we undertook a bibliometric analysis to explore the current status, scope, and trends in this area. MATERIALS AND METHODS: A literature search was carried out on April 1, 2024, utilizing the Web of Science Core Collection (WoSCC). Visualization and quantitative analyses were then performed with the assistance of CiteSpace, VOSviewer, and R software. RESULTS: A total of 6856 articles were retrieved in the search. Research on TCM for neurodegenerative diseases commenced in 1989 and has exhibited a notable overall growth since then. Main research contributors include East Asian countries like China, as well as the United States. Through our analysis, we identified 15 highly productive authors, 10 top-tier journals, 13 citation clusters, 11 influential articles, and observed a progression in keyword evolution across 4 distinct categories. In 2020, there was a significant upsurge in the knowledge base, collaboration efforts, and publication output within the field. This field is interdisciplinary: network pharmacology emerges as the cutting-edge paradigm in TCM research, while Alzheimer's disease remains a prominent focus among neurodegenerative conditions due to its evolving etiology. A burst detection analysis unveils that in 2024, the focal points of research convergence between TCM and neurodegenerative diseases lie in two key biological processes or mechanisms: autophagy and microbiota. CONCLUSIONS: For the first time, this study quantitatively and visually captures the evolution of TCM in addressing neurodegenerative diseases, showcasing a notable acceleration in recent years. Our findings underscore the pivotal role of interdisciplinary collaboration and the necessity for increased global partnerships. Network pharmacology, leveraging the advancements of the big data era, embraces a holistic and systematic approach as a novel paradigm in exploring traditional Chinese medicine and unraveling their fundamental mechanisms. Three ethnomedical plants-Tianma, Renshen, and Wuweizi-demonstrate the promise of their bioactive compounds in treating neurodegenerative disorders, bolstered by their extensive historical usage for such ailments. Moreover, our intricate analysis of the evolutionary trajectories of key themes such as targets and biomarkers substantially enriches our comprehension of the underlying mechanisms involved.

6.
Int Immunopharmacol ; 141: 113012, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39182268

ABSTRACT

The pathway of Janus-activated kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) (termed as JAK2/STAT3) plays an active role in stroke-related inflammation induced by ischemic stress. Gastrodin, the primary compound in Gastrodia elata Bl, has been identified for its notable neuroprotective effects and demonstrated to ameliorate cerebral ischemia-reperfusion but its exact mechanisms governing this defense are still unclear. This study aims to investigate whether gastrodin can regulate mitochondrial function via the JAK2/STAT3 pathway to limit cerebral ischemia-reperfusion. In vivo, gastrodin significantly reduced infarct volume, improved neurobiological function, attenuated neuronal apoptosis, oxidative stress, mitochondrial impairment, mtDNA leakage, and inflammatory responses. At the cellular level, gastrodin administration rescued OGD/R-induced cell apoptosis, oxidative stress, and mitochondrial dysfunction. Mechanistically, gastrodin notably suppressed Toll-like receptor 9 (TLR9) expression, important for the recognition of disrupted endogenous DNA to produce inflammatory reactions. Furthermore, gastrodin mitigated inflammation by inhibiting JAK2/STAT3 signaling, influencing inflammatory factors to aggravate inflammation. Notably, the effects of gastrodin were abolished by Coumermycin A1 (C-A1), a JAK2 agonist, validating the role of JAK2/STAT3 signaling. In summary, gastrodin enhances the protective effect against mitochondrial damage in ischemic stroke by inhibiting JAK2/STAT3 signaling. Gastrodin is a possible therapy for cerebral ischemia.


Subject(s)
Benzyl Alcohols , DNA, Mitochondrial , Glucosides , Ischemic Stroke , Janus Kinase 2 , Neuroprotective Agents , Oxidative Stress , STAT3 Transcription Factor , Signal Transduction , Toll-Like Receptor 9 , Benzyl Alcohols/pharmacology , Benzyl Alcohols/therapeutic use , Animals , Glucosides/pharmacology , Glucosides/therapeutic use , Janus Kinase 2/metabolism , STAT3 Transcription Factor/metabolism , Oxidative Stress/drug effects , Signal Transduction/drug effects , Male , Ischemic Stroke/drug therapy , Ischemic Stroke/metabolism , Ischemic Stroke/immunology , Toll-Like Receptor 9/metabolism , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Mice , Mice, Inbred C57BL , Inflammation/drug therapy , Apoptosis/drug effects , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Disease Models, Animal , Humans
7.
Small ; : e2401886, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39185812

ABSTRACT

Achilles tendinopathy (AT) is an injury caused by overuse of the Achilles tendon or sudden force on the Achilles tendon, with a considerable inflammatory infiltrate. As Achilles tendinopathy progresses, inflammation and inflammatory factors affect the remodeling of the extracellular matrix (ECM) of the tendon. Gastrodin(Gas), the main active ingredient of Astrodia has anti-inflammatory, antioxidant, and anti-apoptotic properties. The small intestinal submucosa (SIS) is a naturally decellularized extracellular matrix(dECM)material and has a high content of growth factors as well as good biocompatibility. However, the reparative effects of SIS and Gas on Achilles tendinopathy and their underlying mechanisms remain unknown. Here, it is found that SIS hydrogel loaded with gastrodin restored the mechanical strength of the Achilles tendon, facilitated ECM remodeling, and restored ordered collagen arrangement by promoting the translocation of protein synthesis. It also decreases the expression of inflammatory factors and reduces the infiltration of inflammatory cells by inhibiting the NF-κB signaling pathway. It is believed that through further research, Gas + SIS may be used in the future for the treatment of Achilles tendinopathy and other Achilles tendon injury disorders.

8.
Free Radic Biol Med ; 224: 103-116, 2024 08 21.
Article in English | MEDLINE | ID: mdl-39173893

ABSTRACT

Age-related macular degeneration (AMD), the leading cause of irreversible blindness in the elderly, is primarily characterized by the degeneration of the retinal pigment epithelium (RPE). However, effective therapeutic options for dry AMD are currently lacking, necessitating further exploration into preventive and pharmaceutical interventions. This study aimed to investigate the protective effects of gastrodin on RPE cells exposed to oxidative stress. We constructed an in vitro oxidative stress model of 4-hydroxynonenal (4-HNE) and performed RNA-seq, and demonstrated the protective effect of gastrodin through mouse experiments. Our findings reveal that gastrodin can inhibit 4-HNE-induced oxidative stress, effectively improving the mitochondrial and lysosomal dysfunction of RPE cells. We further elucidated that gastrodin promotes autophagy and phagocytosis through activating the PPARα-TFEB/CD36 signaling pathway. Interestingly, these outcomes were corroborated in a mouse model, in which gastrodin maintained retinal integrity and reduced RPE disorganization and degeneration under oxidative stress. The accumulation of LC3B and SQSTM1 in mouse RPE-choroid was also reduced. Moreover, activating PPARα and downstream pathways to restore autophagy and phagocytosis, thereby countering RPE injury from oxidative stress. In conclusion, this study demonstrated that gastrodin maintains the normal function of RPE cells by reducing oxidative stress, enhancing their phagocytic function, and restoring the level of autophagic flow. These findings suggest that gastrodin is a novel formulation with potential applications in the development of AMD disease.

9.
Plant Cell Rep ; 43(9): 214, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133328

ABSTRACT

KEY MESSAGE: We revealed the intrinsic transformation molecular mechanism of gastrodin by two ß-d-glucosidases (GeBGL1 and GeBGL9) during the processing of Gastrodia elata. Gastrodia elata is a plant resource with medicinal and edible functions, and its active ingredient is gastrodin. However, the intrinsic transformation molecular mechanism of gastrodin in G. elata has not been verified. We speculated that ß-d-glucosidase (BGL) may be the key enzymes hydrolyzing gastrodin. Here, we identified 11 GeBGL genes in the G. elata genome. These genes were unevenly distributed on seven chromosomes. These GeBGL proteins possessed motifs necessary for catalysis, namely, TF(I/M/L)N(T)E(Q)P and I(V/L)T(H/S)ENG(S). These GeBGLs were divided into five subgroups together with homologous genes from Arabidopsis thaliana, rice, and maize. Quantitative real-time PCR analysis showed GeBGL genes expression was tissue-specific. Gene cloning results showed two mutation sites in the GeBGL1 gene compared with the reference genome. And, the GeBGL4 gene has two indel fragments, which resulted in premature termination of translation and seemed to turn into a pseudogene. Furthermore, protein expression and enzyme activity results proved that GeBGL1 and GeBGL9 have the activity of hydrolyzing gastrodin into 4-hydroxybenzyl alcohol. This study revealed the function of ß-d-glucosidase in degrading active compounds during the G. elata processing for medicinal purposes. These results offer a theoretical foundation for elevating the standard and enhancing the quality of G. elata production.


Subject(s)
Benzyl Alcohols , Gastrodia , Gene Expression Regulation, Plant , Glucosides , Plant Proteins , Gastrodia/genetics , Gastrodia/metabolism , Benzyl Alcohols/metabolism , Glucosides/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Phylogeny , Genome, Plant
10.
Phytomedicine ; 133: 155900, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39094441

ABSTRACT

BACKGROUND: Although blood flow is restored after treatment of myocardial infarction (MI), myocardial ischemia and reperfusion (I/R) can cause cardiac injury, which is a leading cause of heart failure. Gastrodin (GAS) exerts protective effects against brain, heart, and kidney I/R. However, its pharmacological mechanism in myocardial I/R injury (MIRI) remains unclear. PURPOSE: GAS regulates autophagy in various diseases, such as acute hepatitis, vascular dementia, and stroke. We hypothesized that GAS could repair mitochondrial damage and regulate autophagy to protect against MIRI. STUDY DESIGN: Male C57BL/6 mice and H9C2 cells were subjected to I/R and hypoxia-reoxygenation (H/R) injury after GAS administration, respectively, to assess the impact of GAS on cardiomyocyte phenotypes, heart, and mitochondrial structure and function. The effect of GAS on cardiac function and mitochondrial structure in patients undergoing cardiac surgery has been observed in clinical practice. METHODS: The effects of GAS on cardiac structure and function, mitochondrial structure, and expression of related molecules in an animal model of MIRI were evaluated using immunohistochemical staining, enzyme-linked immunosorbent assay (ELISA), transmission electron microscopy, western blotting, and gene sequencing. Its effects on the morphological, molecular, and functional phenotypes of cardiomyocytes undergoing H/R were observed using immunohistochemical staining, real-time quantitative PCR, and western blotting. RESULTS: GAS significantly reduces myocardial infarct size and improves cardiac function in MIRI mice in animal models and increases cardiomyocyte viability and reduces cardiomyocyte damage in cellular models. In clinical practice, myocardial injury was alleviated with better cardiac function in patients undergoing cardiac surgery after the application of GAS; improvements in mitochondria and autophagy activation were also observed. GAS primarily exerts cardioprotective effects through activation of the PINK1/Parkin pathway, which promotes mitochondrial autophagy to clear damaged mitochondria. CONCLUSION: GAS can promote mitophagy and preserve mitochondria through PINK1/Parkin, thus indicating its tremendous potential as an effective perioperative myocardial protective agent.


Subject(s)
Benzyl Alcohols , Glucosides , Mice, Inbred C57BL , Mitophagy , Myocardial Reperfusion Injury , Myocytes, Cardiac , Protein Kinases , Ubiquitin-Protein Ligases , Animals , Myocardial Reperfusion Injury/drug therapy , Benzyl Alcohols/pharmacology , Glucosides/pharmacology , Mitophagy/drug effects , Male , Ubiquitin-Protein Ligases/metabolism , Mice , Myocytes, Cardiac/drug effects , Protein Kinases/metabolism , Cell Line , Disease Models, Animal , Humans , Myocardium/metabolism , Myocardial Infarction/drug therapy , Cardiotonic Agents/pharmacology
11.
Phytother Res ; 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39148368

ABSTRACT

Central nervous system (CNS)-related diseases have a high mortality rate, are a serious threat to physical and mental health, and have always been an important area of research. Gastrodin, the main active metabolite of Gastrodia elata Blume, used in Chinese medicine and food, has a wide range of pharmacological effects, mostly related to CNS disorders. This review aims to systematically summarize and discuss the effects and underlying mechanisms of gastrodin in the treatment of CNS diseases, and to assess its potential for further development as a lead drug in both biomedicine and traditional Chinese medicine. Studies on the pharmacological effects of gastrodin on the CNS indicate that it may exert anti-neurodegenerative, cerebrovascular protective, and ameliorative effects on diabetic encephalopathy, perioperative neurocognitive dysfunction, epilepsy, Tourette's syndrome, depression and anxiety, and sleep disorders through various mechanisms. To date, 110 gastrodin products have been approved for clinical use, but further multicenter clinical case-control studies are relatively scarce. Preclinical studies have confirmed that gastrodin can be used to treat CNS-related disorders. However, important concerns need to be addressed in the context of likely non-specific, assay interfering effects when gastrodin is studied using in vitro and in silico approaches, calling for a systematic assessment of the evidence to date. High-quality clinical trials should have priority to evaluate the therapeutic safety and clinical efficacy of gastrodin. Further experimental research using appropriate in vivo models is also needed, focusing on neurodegenerative diseases, cerebral ischemic and hypoxic diseases, brain damage caused by methamphetamine or heavy metals, and epilepsy.

12.
Foods ; 13(15)2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39123651

ABSTRACT

Inflammatory bowel diseases (IBDs) are commonly associated with dysfunctional intestinal barriers and disturbed gut microbiota. Gastrodin, a major bioactive ingredient of Gastrodia elata Blume, has been shown to exhibit anti-oxidation and anti-inflammation properties and could mitigate non-alcoholic fatty liver disease, but its role in modulating IBD remains elusive. The aim of this study was to investigate the impact of gastrodin on DSS-induced colitis in mice and explore its potential mechanisms. Gastrodin supplementation alleviated clinical symptoms such as weight loss, a shortened colon, and a high disease activity index. Meanwhile, gastrodin strengthened the intestinal barrier by increasing the 0expression of tight junction proteins and mucin. Furthermore, Gastrodin significantly reduced pro-inflammatory cytokine secretion in mice by downregulating the NF-κB and MAPK pathways. Gut microbiota analysis showed that gastrodin improved the DSS-disrupted microbiota of mice. These findings demonstrate that gastrodin could attenuate DSS-induced colitis by enhancing the intestinal barrier and modulating the gut microbiota, providing support for the development of a gastrodin-based strategy to prevent or combat IBD.

13.
Int J Mol Sci ; 25(14)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39062952

ABSTRACT

Gastrodin (GAS) is the main chemical component of the traditional Chinese herb Gastrodia elata (called "Tianma" in Chinese), which has been used to treat neurological conditions, including headaches, epilepsy, stroke, and memory loss. To our knowledge, it is unclear whether GAS has a therapeutic effect on Huntington's disease (HD). In the present study, we evaluated the effect of GAS on the degradation of mutant huntingtin protein (mHtt) by using PC12 cells transfected with N-terminal mHtt Q74. We found that 0.1-100 µM GAS had no effect on the survival rate of Q23 and Q74 PC12 cells after 24-48 h of incubation. The ubiquitin-proteasome system (UPS) is the main system that clears misfolded proteins in eukaryotic cells. Mutated Htt significantly upregulated total ubiquitinated protein (Ub) expression, decreased chymotrypsin-like, trypsin-like and caspase-like peptidase activity, and reduced the colocalization of the 20S proteasome with mHtt. GAS (25 µM) attenuated all of the abovementioned pathological changes, and the regulatory effect of GAS on mHtt was found to be abolished by MG132, a proteasome inhibitor. The autophagy-lysosome pathway (ALP) is another system for misfolded protein degradation. Although GAS downregulated the expression of autophagy markers (LC3II and P62), it increased the colocalization of LC3II with lysosomal associated membrane protein 1 (LAMP1), which indicates that ALP was activated. Moreover, GAS prevented mHtt-induced neuronal damage in PC12 cells. GAS has a selective effect on mHtt in Q74 PC12 cells and has no effect on Q23 and proteins encoded by other genes containing long CAGs, such as Rbm33 (10 CAG repeats) and Hcn1 (>30 CAG repeats). Furthermore, oral administration of 100 mg/kg GAS increased grip strength and attenuated mHtt aggregates in B6-hHTT130-N transgenic mice. This is a high dose (100 mg/kg GAS) when compared with experiments on HD mice with other small molecules. We will design more doses to evaluate the dose-response relationship of the inhibition effect of GAS on mHtt in our next study. In summary, GAS can promote the degradation of mHtt by activating the UPS and ALP, making it a potential therapeutic agent for HD.


Subject(s)
Autophagy , Benzyl Alcohols , Glucosides , Huntingtin Protein , Lysosomes , Proteasome Endopeptidase Complex , Ubiquitin , Animals , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Rats , Proteasome Endopeptidase Complex/metabolism , PC12 Cells , Autophagy/drug effects , Lysosomes/metabolism , Lysosomes/drug effects , Ubiquitin/metabolism , Benzyl Alcohols/pharmacology , Glucosides/pharmacology , Mice , Huntington Disease/metabolism , Huntington Disease/drug therapy , Huntington Disease/genetics , Proteolysis/drug effects , Mutation
14.
Discov Med ; 36(186): 1441-1452, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39054715

ABSTRACT

BACKGROUND: Synovial inflammation plays a crucial role in osteoarthritis (OA). Gastrodin (GAS), an active ingredient derived from the Gastrodia elata Blume rhizome, possesses antioxidant and anti-inflammatory pharmacological effects. This research aimed to evaluate the function and molecular mechanism of GAS on human fibroblast-like synoviocytes of osteoarthritis (HFLS-OA) induced by interleukin (IL)-1ß. METHODS: The impact of GAS on the viability of IL-1ß-treated HFLS-OA cells was assessed using the cell counting kit-8 (CCK-8). Quantitative real-time reverse transcription PCR (qRT-PCR) was employed to detect changes in IL-8, IL-6, monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor (TNF)-α, and Gremlin-1 mRNA expression in each group. Corresponding kits were utilized to measure the catalase (CAT) and superoxide dismutase (SOD) activities, as well as the nitric oxide (NO) level. Western blot analysis was conducted to examine the expression of extracellular matrix degradation-associated proteins and nuclear factor kappa-B (NF-κB) pathway-correlated proteins in each group. RESULTS: GAS significantly promoted the proliferation of IL-1ß-induced HFLS-OA cells and concurrently down-regulated Gremlin-1 mRNA expression (p < 0.05). Through the down-regulation of Gremlin-1 expression, GAS exhibited the following effects: decreased IL-8, IL-6, and TNF-α mRNA expression, as well as NO levels (p < 0.05); increased SOD and CAT activities (p < 0.05); down-regulated matrix metallopeptidase 13 (MMP-13) and MMP-1 protein expression levels (p < 0.01); and up-regulated collagen II protein expression level (p < 0.01) in IL-1ß-treated HFLS-OA cells. Additionally, GAS decreased phospho-inhibitory kappa B (p-IκB)/IκB, phospho-inhibitory kappa B kinase (p-IKK)/IKK, and p-p65/p65 ratios in IL-1ß-induced HFLS-OA cells by inhibiting Gremlin-1 expression (p < 0.01). CONCLUSION: GAS demonstrates a positive impact on inflammation, oxidative stress, and extracellular matrix degradation in IL-1ß-mediated HFLS-OA cells. This effect is achieved by suppressing Gremlin-1 expression and reducing NF-κB pathway activity.


Subject(s)
Benzyl Alcohols , Extracellular Matrix , Glucosides , Inflammation , Interleukin-1beta , NF-kappa B , Oxidative Stress , Synoviocytes , Humans , Glucosides/pharmacology , Interleukin-1beta/metabolism , Benzyl Alcohols/pharmacology , NF-kappa B/metabolism , Oxidative Stress/drug effects , Inflammation/metabolism , Inflammation/pathology , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Synoviocytes/drug effects , Synoviocytes/metabolism , Synoviocytes/pathology , Fibroblasts/metabolism , Fibroblasts/drug effects , Signal Transduction/drug effects , Osteoarthritis/pathology , Osteoarthritis/metabolism , Osteoarthritis/drug therapy , Intercellular Signaling Peptides and Proteins
15.
Phytomedicine ; 132: 155819, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38885579

ABSTRACT

BACKGROUND: Dysfunction of dopamine homeostasis (DAH), which is regulated by vesicular monoamine transporter 2 (VMAT2), is a vital cause of dopamine (DA) neurotoxicity and motor deficits in Parkinson's disease (PD). Gastrodin (4-hydroxybenzyl alcohol 4-O-ß-D-glucoside; GTD), a natural active compound derived from Gastrodia elata Blume, can be used to treat multiple neurological disorders, including PD. However, whether GTD regulates VMAT2-mediated DAH dysfunction in PD models remains unclear. PURPOSE: To explore whether GTD confers dopaminergic neuroprotection by facilitating DA vesicle storage and maintaining DAH in PD models. METHODS: Mice were treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and PC12 cells with 1-methyl-4-phenyl-pyridinium (MPP+) to induce PD characteristics. Multiple behavioural tests were performed to evaluate the motor functions of the mice. HPLC was used to measure DA and 3,4-dihydroxyphenylacetic acid (DOPAC) levels. Transmission electron microscopy was used to observe synaptic vesicles. Molecular docking and molecular dynamics were used to determine the binding affinity of GTD to the target protein. Reserpine (Res, a VMAT2 inhibitor) and PD0325901 (901, a MEK inhibitor) were employed to investigate the mechanism of GTD. Western blotting and immunohistochemistry were used to assess the expression of the target proteins. RESULTS: GTD attenuated motor deficits and dopaminergic neuronal injury, reversed the imbalance of DAH, and increased VMAT2 levels and vesicle volume in MPTP-induced mice. GTD ameliorated cell damage, ROS release, and dysfunction of DAH in MPP+-induced PC12 cells. Moreover, the neuroprotective effects of GTD were reversed by Res in vitro and in vivo. Furthermore, GTD can activate the MEK/ERK/CREB pathway to upregulate VMAT2 in vitro and in vivo. Interestingly, 901 reversed the effects of GTD on VMAT2 and dopaminergic neuronal impairment. CONCLUSION: GTD relieved PD-related motor deficits and dopaminergic neuronal impairment by facilitating MEK-depended VMAT2 to regulate DAH, which offers new insights into its therapeutic potential.


Subject(s)
Benzyl Alcohols , Dopamine , Glucosides , Homeostasis , Mice, Inbred C57BL , Vesicular Monoamine Transport Proteins , Animals , Benzyl Alcohols/pharmacology , Vesicular Monoamine Transport Proteins/metabolism , Glucosides/pharmacology , Dopamine/metabolism , PC12 Cells , Male , Mice , Rats , Homeostasis/drug effects , Parkinson Disease/drug therapy , Neuroprotective Agents/pharmacology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Disease Models, Animal , Molecular Docking Simulation , Gastrodia/chemistry
16.
Toxicol Res (Camb) ; 13(3): tfae085, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38883411

ABSTRACT

Objective: Screening and predicting potential targets for gastrodin antioxidant stress based on network pharmacology methods, and exploring the effect of gastrodin on lead acetate induced oxidative stress in PC12 cells through cell experiments. Methods: Through the Pharmaper database Predict the target of action of gastrodin. Through OMIM and GeneCards to collect oxidative stress targets from database, and intersect with drug targets to obtain drug disease intersection targets; Construct a PPI network diagram using the STRING database. Perform GO enrichment analysis and KEGG pathway enrichment analysis on intersection targets through the DAVID platform. Lead acetate (PbAc) exposure was used to establish a lead poisoning cell model, and intracellular ROS levels, ALB, AKT1, and Caspase-3 levels were measured. Results: A total of 288 targets of gastrodin action, 638 targets related to oxidative stress, and 62 drug disease intersection targets were obtained, among which core targets such as ALB, AKT1, CASP3 may be closely related to oxidative stress. KEGG pathway analysis showed that gastrodin antioxidant stress mainly involved in lipid, cancer pathway and other signaling pathways. The results of the cell experiment showed that 50 µM is the optimal effective concentration for PbAc induced ROS production in PC12 cells. Gastrodin significantly increased the ROS content of PC12 cells treated with PbAc, Upregulation of ALB expression and downregulation of AKT1 and CASP3 expression. Conclusions: Gastrodin may alleviate PbAc-induced ROS in PC12 cells, indicating potential protective effects against oxidative stress. Further studies are needed to confirm these findings and explore the underlying mechanisms.

17.
Article in English | MEDLINE | ID: mdl-38896272

ABSTRACT

Gastrodin (GAS), a bioactive compound derived from the orchid plant Gastrodia elata, exhibits numerous pharmacological effects. However, its effect on sleep deprivation (SD)-induced cardiac injury and the mechanisms are unknown. This study established SD mice model using a modified multiple platform water method and induced ferroptosis model in H9c2 cells using Erastin. The heart rate of mice was measured, and myocardial and mitochondrial structures were visualized using hematoxylin and eosin (H&E) staining and transmission electron microscopy (TEM). Myocardial injury, oxidative stress indicators, and Fe2+ levels were detected by the kit method. The reactive oxygen species (ROS) levels were detected by immunofluorescence, and SIRT6 and ferroptosis-associated protein expression levels were detected by Western blot. Reduced heart rate and abnormalities in myocardial tissue and mitochondrial structure were ameliorated in the SD group of mice after GAS treatment. GAS treatment reduced ROS levels in Erastin-induced H9c2 cells. GAS treatment reduced atrial natriuretic peptide (ANP), creatine kinase (CK), lactate dehydrogenase (LDH), malondialdehyde (MAD), and Fe2+ levels, and increased superoxide dismutase (SOD) and glutathione (GSH) levels in the SD and Erastin groups. Western blot showed that GAS treatment increased the expression of sirtuin 6 (SIRT6), solute carrier family 7 member 11 (SLC7A11), and glutathione peroxidase 4 (GPX4) and decreased the expression of P53 in SD and Erastin groups. The SIRT6 inhibitor OSS_128167 (OSS) reversed GAS treatment of Erastin-induced ferroptosis in H9c2 cells. These observations propose that GAS prevents myocardial injury in sleep-deprived mice by suppressing ferroptosis through SIRT6.

18.
Pharm Res ; 41(6): 1201-1216, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38834905

ABSTRACT

BACKGROUND: Some glucoside drugs can be transported via intestinal glucose transporters (IGTs), and the presence of carbohydrate excipients in pharmaceutical formulations may influence the absorption of them. This study, using gastrodin as probe drug, aimed to explore the effects of fructose, lactose, and arabic gum on intestinal drug absorption mediated by the glucose transport pathway. METHODS: The influence of fructose, lactose, and arabic gum on gastrodin absorption was assessed via pharmacokinetic experiments and single-pass intestinal perfusion. The expression of sodium-dependent glucose transporter 1 (SGLT1) and sodium-independent glucose transporter 2 (GLUT2) was quantified via RT‒qPCR and western blotting. Alterations in rat intestinal permeability were evaluated through H&E staining, RT‒qPCR, and immunohistochemistry. RESULTS: Fructose reduced the area under the curve (AUC) and peak concentration (Cmax) of gastrodin by 42.7% and 63.71%, respectively (P < 0.05), and decreased the effective permeability coefficient (Peff) in the duodenum and jejunum by 58.1% and 49.2%, respectively (P < 0.05). SGLT1 and GLUT2 expression and intestinal permeability remained unchanged. Lactose enhanced the AUC and Cmax of gastrodin by 31.5% and 65.8%, respectively (P < 0.05), and increased the Peff in the duodenum and jejunum by 33.7% and 26.1%, respectively (P < 0.05). SGLT1 and GLUT2 levels did not significantly differ, intestinal permeability increased. Arabic gum had no notable effect on pharmacokinetic parameters, SGLT1 or GLUT2 expression, or intestinal permeability. CONCLUSION: Fructose, lactose, and arabic gum differentially affect intestinal drug absorption through the glucose transport pathway. Fructose competitively inhibited drug absorption, while lactose may enhance absorption by increasing intestinal permeability. Arabic gum had no significant influence.


Subject(s)
Benzyl Alcohols , Excipients , Fructose , Glucose Transporter Type 2 , Glucose , Glucosides , Gum Arabic , Intestinal Absorption , Lactose , Rats, Sprague-Dawley , Sodium-Glucose Transporter 1 , Animals , Intestinal Absorption/drug effects , Glucosides/pharmacology , Glucosides/administration & dosage , Glucosides/pharmacokinetics , Sodium-Glucose Transporter 1/metabolism , Sodium-Glucose Transporter 1/genetics , Male , Glucose Transporter Type 2/metabolism , Glucose Transporter Type 2/genetics , Rats , Excipients/chemistry , Excipients/pharmacology , Glucose/metabolism , Lactose/chemistry , Benzyl Alcohols/pharmacology , Benzyl Alcohols/pharmacokinetics , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Biological Transport/drug effects , Permeability/drug effects
19.
BMC Complement Med Ther ; 24(1): 213, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835032

ABSTRACT

BACKGROUND: Gastrodin (GAS), a main bioactive component of the herbal plant, Gastrodia elata Blume, has shown to have beneficial effects on neuroinflammatory diseases such as Alzheimer's disease in animal studies and migraine in clinical studies. Inflammasome is a multimeric protein complex having a core of pattern recognition receptor and has been implicated in the development of neuroinflammatory diseases. Gastrodin has shown to modulate the activation of nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome. This study investigated the effects of GAS on the intensity of mechanical allodynia and associated changes in NLRP3 inflammasome expression at the spinal level using L5/6 spinal nerve ligation model (SNL) in rats. METHODS: Intrathecal (IT) catheter implantation and SNL were used for drug administration and pain model in male Sprague-Dawley rats. The effect of gastrodin or MCC950 (NLRP3 inflammasome inhibitor) on mechanical allodynia was measured by von Frey test. Changes in NLRP3 inflammasome components and interleukin-1ß (IL-1ß) and cellular expression were examined in the spinal cord and dorsal root ganglion. RESULTS: The expression of NLRP3 inflammasome components was found mostly in the neurons in the spinal cord and dorsal root ganglion. The protein and mRNA levels of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), caspase-1, and IL-1ß were upregulated in SNL animals compared to Sham animals. IT administration of GAS significantly attenuated the expression of NLRP3 inflammasome and the intensity of SNL-induced mechanical allodynia. NLRP3 inflammasome inhibitor, MCC950, also attenuated the intensity of allodynia, but the effect is less strong and shorter than that of GAS. CONCLUSIONS: Expression of NLRP3 inflammasome and IL-1ß is greatly increased and mostly found in the neurons at the spinal level in SNL model, and IT gastrodin exerts a significant anti-allodynic effect in SNL model partly through suppressing the expression of NLRP3 inflammasome.


Subject(s)
Benzyl Alcohols , Disease Models, Animal , Glucosides , Hyperalgesia , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Rats, Sprague-Dawley , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Benzyl Alcohols/pharmacology , Glucosides/pharmacology , Male , Rats , Inflammasomes/metabolism , Inflammasomes/drug effects , Hyperalgesia/drug therapy , Spinal Nerves/drug effects , Injections, Spinal
20.
Mol Neurobiol ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856794

ABSTRACT

Post-stroke depression (PSD) is a significant complication in stroke patients, increases long-term mortality, and exaggerates ischemia-induced brain injury. However, the underlying molecular mechanisms and effective therapeutic targets related to PSD have remained elusive. Here, we employed an animal behavioral model of PSD by combining the use of middle cerebral artery occlusion (MCAO) followed by spatial restraint stress to study the molecular underpinnings and potential therapies of PSD. Interestingly, we found that sub-chronic application of gastrodin (Gas), a traditional Chinese medicinal herb Gastrodia elata extraction, relieved depression-related behavioral deficits, increased the impaired expression of synaptic transmission-associated proteins, and restored the altered spine density in hippocampal CA1 of PSD animals. Furthermore, our results indicated that the anti-PSD effect of Gas was dependent on membrane cannabinoid-1 receptor (CB1R) expression. The contents of phosphorated protein kinase A (p-PKA) and phosphorated Ras homolog gene family member A (p(ser188)-RhoA) were decreased in the hippocampus of PSD-mice, which was reversed by Gas treatment, and CB1R depletion caused a diminished efficacy of Gas on p-PKA and p-RhoA expression. In addition, the anti-PSD effect of Gas was partially blocked by PKA inhibition or RhoA activation, indicating that the anti-PSD effect of Gas is associated with the CB1R-mediated PKA/RhoA signaling pathway. Together, our findings revealed that Gas treatment possesses protective effects against the post-stroke depressive-like state; the CB1R-involved PKA/RhoA signaling pathway is critical in mediating Gas's anti-PSD potency, suggesting that Gas application may be beneficial in the prevention and adjunctive treatment of PSD.

SELECTION OF CITATIONS
SEARCH DETAIL