Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Language
Publication year range
1.
BMC Bioinformatics ; 25(1): 125, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519883

ABSTRACT

In the battle of the host against lentiviral pathogenesis, the immune response is crucial. However, several questions remain unanswered about the interaction with different viruses and their influence on disease progression. The simian immunodeficiency virus (SIV) infecting nonhuman primates (NHP) is widely used as a model for the study of the human immunodeficiency virus (HIV) both because they are evolutionarily linked and because they share physiological and anatomical similarities that are largely explored to understand the disease progression. The HIHISIV database was developed to support researchers to integrate and evaluate the large number of transcriptional data associated with the presence/absence of the pathogen (SIV or HIV) and the host response (NHP and human). The datasets are composed of microarray and RNA-Seq gene expression data that were selected, curated, analyzed, enriched, and stored in a relational database. Six query templates comprise the main data analysis functions and the resulting information can be downloaded. The HIHISIV database, available at  https://hihisiv.github.io , provides accurate resources for browsing and visualizing results and for more robust analyses of pre-existing data in transcriptome repositories.


Subject(s)
HIV Infections , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Humans , Simian Immunodeficiency Virus/genetics , HIV , Simian Acquired Immunodeficiency Syndrome/genetics , Disease Progression , Immunity , Gene Expression
2.
Genes (Basel) ; 14(6)2023 06 11.
Article in English | MEDLINE | ID: mdl-37372430

ABSTRACT

The likelihood of being diagnosed with thyroid cancer has increased in recent years; it is the fastest-expanding cancer in the United States and it has tripled in the last three decades. In particular, Papillary Thyroid Carcinoma (PTC) is the most common type of cancer affecting the thyroid. It is a slow-growing cancer and, thus, it can usually be cured. However, given the worrying increase in the diagnosis of this type of cancer, the discovery of new genetic markers for accurate treatment and prognostic is crucial. In the present study, the aim is to identify putative genes that may be specifically relevant in PTC through bioinformatic analysis of several gene expression public datasets and clinical information. Two datasets from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) dataset were studied. Statistics and machine learning methods were sequentially employed to retrieve a final small cluster of genes of interest: PTGFR, ZMAT3, GABRB2, and DPP6. Kaplan-Meier plots were employed to assess the expression levels regarding overall survival and relapse-free survival. Furthermore, a manual bibliographic search for each gene was carried out, and a Protein-Protein Interaction (PPI) network was built to verify existing associations among them, followed by a new enrichment analysis. The results revealed that all the genes are highly relevant in the context of thyroid cancer and, more particularly interesting, PTGFR and DPP6 have not yet been associated with the disease up to date, thus making them worthy of further investigation as to their relationship to PTC.


Subject(s)
Gene Expression Regulation, Neoplastic , Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary/metabolism , Neoplasm Recurrence, Local/genetics , Thyroid Neoplasms/pathology , Computational Biology , Gene Expression
3.
J Comput Biol ; 26(8): 866-874, 2019 08.
Article in English | MEDLINE | ID: mdl-31063414

ABSTRACT

Microarray technology is widely recognized as one of the most important tools when it comes to understanding genetic expression in biological processes. In light of the thousands of gene expression level measurements (including measurements across a number of conditions), identifying differentially expressed genes necessarily implies data mining or large-scale multiple testing procedures. To date, advances with regard to this field have been multivariate-descriptive or inferential-univariate in nature and therefore have important limitations regarding the biological validity of detected genes. In the present article, we present a new multivariate inferential method designed to detect active differentially expressed genes in gene expression data. The proposed method estimates false discovery rates using artificial components. Our method excels when applied to the most common gene expression data structures, providing new insights into differentially expressed genes. The method described herein was programmed in an R-Bioconductor package called acde that has been available since 2015.


Subject(s)
Algorithms , Databases, Nucleic Acid , Gene Expression Profiling , Gene Expression Regulation , Models, Genetic , Oligonucleotide Array Sequence Analysis , Data Interpretation, Statistical
4.
BioData Min ; 11: 16, 2018.
Article in English | MEDLINE | ID: mdl-30100924

ABSTRACT

BACKGROUND: Biologists aim to understand the genetic background of diseases, metabolic disorders or any other genetic condition. Microarrays are one of the main high-throughput technologies for collecting information about the behaviour of genetic information on different conditions. In order to analyse this data, clustering arises as one of the main techniques used, and it aims at finding groups of genes that have some criterion in common, like similar expression profile. However, the problem of finding groups is normally multi dimensional, making necessary to approach the clustering as a multi-objective problem where various cluster validity indexes are simultaneously optimised. They are usually based on criteria like compactness and separation, which may not be sufficient since they can not guarantee the generation of clusters that have both similar expression patterns and biological coherence. METHOD: We propose a Multi-Objective Clustering algorithm Guided by a-Priori Biological Knowledge (MOC-GaPBK) to find clusters of genes with high levels of co-expression, biological coherence, and also good compactness and separation. Cluster quality indexes are used to optimise simultaneously gene relationships at expression level and biological functionality. Our proposal also includes intensification and diversification strategies to improve the search process. RESULTS: The effectiveness of the proposed algorithm is demonstrated on four publicly available datasets. Comparative studies of the use of different objective functions and other widely used microarray clustering techniques are reported. Statistical, visual and biological significance tests are carried out to show the superiority of the proposed algorithm. CONCLUSIONS: Integrating a-priori biological knowledge into a multi-objective approach and using intensification and diversification strategies allow the proposed algorithm to find solutions with higher quality than other microarray clustering techniques available in the literature in terms of co-expression, biological coherence, compactness and separation.

5.
Electron. j. biotechnol ; Electron. j. biotechnol;17(2): 79-82, Mar. 2014. tab
Article in English | LILACS | ID: lil-714276

ABSTRACT

Background Molecular mechanisms of plant-pathogen interactions have been studied thoroughly but much about them is still unknown. A better understanding of these mechanisms and the detection of new resistance genes can improve crop production and food supply. Extracting this knowledge from available genomic data is a challenging task. Results Here, we evaluate the usefulness of clustering, data-mining and regression to identify potential new resistance genes. Three types of analyses were conducted separately over two conditions, tomatoes inoculated with Phytophthora infestans and not inoculated tomatoes. Predictions for 10 new resistance genes obtained by all applied methods were selected as being the most reliable and are therefore reported as potential resistance genes. Conclusion Application of different statistical analyses to detect potential resistance genes reliably has shown to conduct interesting results that improve knowledge on molecular mechanisms of plant resistance to pathogens.


Subject(s)
Plant Diseases/genetics , Genes, Plant , Solanum lycopersicum/genetics , Disease Resistance/genetics , Gene Expression , Likelihood Functions , Classification , Phytophthora infestans , Data Mining , Crop Production
6.
Genet. mol. res. (Online) ; Genet. mol. res. (Online);4(3): 514-524, 2005. ilus, graf
Article in English | LILACS | ID: lil-444960

ABSTRACT

Several advanced techniques have been proposed for data clustering and many of them have been applied to gene expression data, with partial success. The high dimensionality and the multitude of admissible perspectives for data analysis of gene expression require additional computational resources, such as hierarchical structures and dynamic allocation of resources. We present an immune-inspired hierarchical clustering device, called hierarchical artificial immune network (HaiNet), especially devoted to the analysis of gene expression data. This technique was applied to a newly generated data set, involving maize plants exposed to different aluminum concentrations. The performance of the algorithm was compared with that of a self-organizing map, which is commonly adopted to deal with gene expression data sets. More consistent and informative results were obtained with HaiNet.


Subject(s)
Computational Biology/methods , Models, Immunological , Gene Expression Profiling/methods , Neural Networks, Computer , Algorithms , Cluster Analysis
SELECTION OF CITATIONS
SEARCH DETAIL