Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Biodivers Data J ; 11: e101333, 2023.
Article in English | MEDLINE | ID: mdl-38327347

ABSTRACT

Different from the true oyster (family Ostreidae), the molecular diversity of the gryphaeid oyster (family Gryphaeidae) has never been sufficiently investigated. In the present study, the complete mitochondrial (mt) genome of Hyotissasinensis was sequenced and compared with those of other ostreoids. The total length of H.sinensis mtDNA is 30,385 bp, encoding 12 protein-coding-genes (PCGs), 26 transfer RNA (tRNA) genes and two ribosomal RNA (rRNA) genes. The nucleotide composition and codon usage preference of H.sinensis mtDNA is similar to that of H.hyotis within the same genus. On the other hand, the presence of three trnM and three trnL genes of H.sinensis was not detected neither in H.hyotis nor other ostroid species. Another unique character of H.sinensis mtDNA is that both rrnS and rrnL have a nearly identical duplication. The PCG order of H.sinensis is identical to H.hyotis and the two congener species also share an identical block of 12 tRNA genes. The tRNA rearrangements mostly happen in the region from Cox1 to Nad3, the same area where the duplicated genes are located. The rearrangements within Gryphaeidae could be explained by a "repeat-random loss model". Phylogenetic analyses revealed Gryphaeidae formed by H.sinensis + H.hyotis as sister to Ostreidae, whereas the phylogenetic relationship within the latter group remains unresolved. The present study indicated the mitogenomic diversity within Gryphaeidae and could also provide important data for future better understanding the gene order rearrangements within superfamily Ostreoidea.

2.
BMC Genomics ; 21(1): 442, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32590931

ABSTRACT

BACKGROUND: Order Chaetophorales currently includes six families, namely Schizomeridaceae, Aphanochaetaceae, Barrancaceae, Uronemataceae, Fritschiellaceae, and Chaetophoraceae. The phylogenetic relationships of Chaetophorales have been inferred primarily based on short and less informative rDNA sequences. This study aimed to phylogenetically reconstruct order Chaetophorales and determine the taxonomic scheme, and to further understand the evolution of order Chaetophorales. RESULTS: In the present study, seven complete and five fragmentary chloroplast genomes were harvested. Phylogenomic and comparative genomic analysis were performed to determine the taxonomic scheme within Chaetophorales. Consequently, Oedogoniales was found to be a sister to a clade linking Chaetophorales and Chaetopeltidales. Schizomeriaceae, and Aphanochaetaceae clustered into a well-resolved basal clade in Chaetophorales, inconsistent with the results of phylogenetic analysis based on rDNA sequences. Comparative genomic analyses revealed that the chloroplast genomes of Schizomeriaceae and Aphanochaetaceae were highly conserved and homologous, highlighting the closest relationship in this order. Germination types of zoospores precisely correlated with the phylogenetic relationships. CONCLUSIONS: chloroplast genome structure analyses, synteny analyses, and zoospore germination analyses were concurrent with phylogenetic analyses based on the chloroplast genome, and all of them robustly determined the unique taxonomic scheme of Chaetophorales and the relationships of Oedogoniales, Chaetophorales, and Chaetopeltidales.


Subject(s)
Chlorophyceae/classification , Chloroplasts/genetics , Sequence Analysis, DNA/methods , Chlorophyceae/genetics , Chlorophyceae/growth & development , DNA, Ribosomal/genetics , Evolution, Molecular , Genome, Chloroplast , Genomics , Germination , Phylogeny , Synteny
3.
Int J Biol Macromol ; 121: 572-579, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30315882

ABSTRACT

Chalcidoidea (chalcidoid wasps) are an abundant and megadiverse insect group with both ecological and economical importance. Here we report a complete mitochondrial genome in Chalcidoidea from Pteromalus puparum (Pteromalidae). Eight tandem repeats followed by 6 reversed repeats were detected in its 3308 bp control region. This long and complex control region may explain failures of amplifying and sequencing of complete mitochondrial genomes in some chalcidoids. In addition to 37 typical mitochondrial genes, an extra identical isoleucine tRNA (trnI) was detected at the opposite end of the control region. This recent mitochondrial gene duplication indicates that gene arrangements in chalcidoids are ongoing. A comparison among available chalcidoid mitochondrial genomes reveals rapid gene order rearrangements overall and high protein substitution rates in most chalcidoid taxa. In addition, we identified 24 nuclear sequences of mitochondrial origin (NUMTs) in P. puparum, summing up to 9989 bp, with 3617 bp of these NUMTs originating from mitochondrial coding regions. NUMTs abundance in P. puparum is only one-twelfth of that in its relative, Nasonia vitripennis. Based on phylogenetic analysis, we provide evidence that a faster nuclear degradation rate contributes to the reduced NUMT numbers in P. puparum. Overall, our study shows unusually high rates of mitochondrial evolution and considerable variation in NUMT accumulation in Chalcidoidea.


Subject(s)
Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Hymenoptera/genetics , Animals , Base Sequence , Evolution, Molecular , Gene Rearrangement , Genome, Mitochondrial/genetics , Insect Proteins/genetics , Species Specificity
4.
Genetica ; 146(6): 529-540, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30377874

ABSTRACT

Since 2007, the annual green tide disaster in the Yellow Sea has brought serious economic losses to China. There is no research on the genetic similarities of four constituent species of green tide algae at the genomic level. We previously determined the mitochondrial genomes of Ulva prolifera, Ulva linza and Ulva flexuosa. In the present work, the mitochondrial genome of another green tide (Ulva compressa) was sequenced and analyzed. With the length of 62,311 bp, it contained 29 encoding genes, 26 tRNAs and 10 open reading frames. By comparing these four mitochondrial genomes, we found that U. compressa was quite different from the other three types of Ulva species. However, there were similarities between U. prolifera and U. linza in the number, distribution and homology of open reading frames, evolutionary and codon variation of tRNA, evolutionary relationship and selection pressure of coding genes. Repetitive sequence analysis of simple sequence repeats, tandem repeat and forward repeats further supposed that they have evolved from the same origin. In addition, we directly analyzed gene homologies and translocation of four green tide algae by Mauve alignment. There were gene order rearrangements among them. With fast-evolving genomes, these four green algal mitochondria have both conservatism and variation, thus opening another window for the understanding of origin and evolution of Ulva.


Subject(s)
Genome, Mitochondrial , Ulva/genetics , Codon/genetics , Evolution, Molecular , Microsatellite Repeats , Open Reading Frames , RNA, Transfer/genetics , Sequence Homology, Nucleic Acid , Ulva/classification
5.
BMC Genomics ; 18(1): 840, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29096600

ABSTRACT

BACKGROUND: Complete mitochondrial genomes are much better suited for the taxonomic identification and phylogenetic studies of nematodes than morphology or traditionally-used molecular markers, but they remain unavailable for the entire Camallanidae family (Chromadorea). As the only published mitogenome in the Camallanina suborder (Dracunculoidea superfamily) exhibited a unique gene order, the other objective of this research was to study the evolution of mitochondrial architecture in the Spirurida order. Thus, we sequenced the complete mitogenome of the Camallanus cotti fish parasite and conducted structural and phylogenomic comparative analyses with all available Spirurida mitogenomes. RESULTS: The mitogenome is exceptionally large (17,901 bp) among the Chromadorea and, with 46 (pseudo-) genes, exhibits a unique architecture among nematodes. Six protein-coding genes (PCGs) and six tRNAs are duplicated. An additional (seventh) tRNA (Trp) was probably duplicated by the remolding of tRNA-Ser2 (missing). Two pairs of these duplicated PCGs might be functional; three were incomplete and one contained stop codons. Apart from Ala and Asp, all other duplicated tRNAs are conserved and probably functional. Only 19 unique tRNAs were found. Phylogenomic analysis included Gnathostomatidae (Spirurina) in the Camallanina suborder. CONCLUSIONS: Within the Nematoda, comparable PCG duplications were observed only in the enoplean Mermithidae family, but those result from mitochondrial recombination, whereas characteristics of the studied mitogenome suggest that likely rearrangement mechanisms are either a series of duplications, transpositions and random loss events, or duplication, fragmentation and subsequent reassembly of the mitogenome. We put forward a hypothesis that the evolution of mitogenomic architecture is extremely discontinuous, and that once a long period of stasis in gene order and content has been punctuated by a rearrangement event, such a destabilised mitogenome is much more likely to undergo subsequent rearrangement events, resulting in an exponentially accelerated evolutionary rate of mitogenomic rearrangements. Implications of this model are particularly important for the application of gene order similarity as an additive source of phylogenetic information. Chromadorean nematodes, and particularly Camallanina clade (with C. cotti as an example of extremely accelerated rate of rearrangements), might be a good model to further study this discontinuity in the dynamics of mitogenomic evolution.


Subject(s)
Chromadorea/genetics , Evolution, Molecular , Genome, Mitochondrial/genetics , Animals , Base Composition , Gene Duplication , Genome Size , Genomics , Phylogeny , RNA, Transfer/genetics
6.
Article in English | MEDLINE | ID: mdl-24865913

ABSTRACT

In this paper, we determined the whole mitochondrial DNA (mtDNA) sequence of Phoxinus lagowskii, a small freshwater fish that is distributed in rivers of north China, Russia and North Korea. The entire sequence of P. lagowskii mitochondrial genome is 16,699 bp in size, consisting of 13 protein-coding genes, 2 ribosomal RNA genes (12S rRNA and 16S rRNA), 22 transfer RNA genes (tRNA) and 1 putative control region. Most of the genes are encoded on the heavy strand except ND6 and eight tRNA genes (Gln, Ala, Asn, Cys, Try, Ser, Glu and Pro) encoded on the light strand.


Subject(s)
Cyprinidae/genetics , DNA, Mitochondrial/genetics , Genome, Mitochondrial , Animals , Base Sequence , Gene Order , Sequence Analysis, DNA/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL