Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Lett ; 25(4): 992-1008, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34967090

ABSTRACT

Diet composition is among the most important yet least understood dimensions of animal ecology. Inspired by the study of species abundance distributions (SADs), we tested for generalities in the structure of vertebrate diets by characterising them as dietary abundance distributions (DADs). We compiled data on 1167 population-level diets, representing >500 species from six vertebrate classes, spanning all continents and oceans. DADs near-universally (92.5%) followed a hollow-curve shape, with scant support for other plausible rank-abundance-distribution shapes. This strong generality is inherently related to, yet incompletely explained by, the SADs of available food taxa. By quantifying dietary generalisation as the half-saturation point of the cumulative distribution of dietary abundance (sp50, minimum number of foods required to account for 50% of diet), we found that vertebrate populations are surprisingly specialised: in most populations, fewer than three foods accounted for at least half the diet. Variation in sp50 was strongly associated with consumer type, with carnivores being more specialised than herbivores or omnivores. Other methodological (sampling method and effort, taxonomic resolution), biological (body mass, frugivory) and biogeographic (latitude) factors influenced sp50 to varying degrees. Future challenges include identifying the mechanisms underpinning the hollow-curve DAD, its generality beyond vertebrates, and the biological determinants of dietary generalisation.


Subject(s)
Ecology , Herbivory , Animals , Diet , Vertebrates
2.
Ecol Lett ; 24(3): 520-532, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33404158

ABSTRACT

Functional responses relate a consumer's feeding rates to variation in its abiotic and biotic environment, providing insight into consumer behaviour and fitness, and underpinning population and food-web dynamics. Despite their broad relevance and long-standing history, we show here that the types of density dependence found in classic resource- and consumer-dependent functional-response models equate to strong and often untenable assumptions about the independence of processes underlying feeding rates. We first demonstrate mathematically how to quantify non-independence between feeding and consumer interference and between feeding on multiple resources. We then analyse two large collections of functional-response data sets to show that non-independence is pervasive and borne out in previously hidden forms of density dependence. Our results provide a new lens through which to view variation in consumer feeding rates and disentangle the biological underpinnings of species interactions in multi-species contexts.


Subject(s)
Food Chain , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL