Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39.062
Filter
1.
J Environ Sci (China) ; 148: 243-262, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095161

ABSTRACT

Because of the recent widespread usage of antibiotics, the acquisition and dissemination of antibiotic-resistance genes (ARGs) were prevalent in the majority of habitats. Generally, the biological wastewater treatment processes used in wastewater treatment plants have a limited efficiencies of antibiotics resistant bacteria (ARB) disinfection and ARGs degradation and even promote the proliferation of ARGs. Problematically, ARB and ARGs in effluent pose potential risks if they are not further treated. Photocatalytic oxidation is considered a promising disinfection technology, where the photocatalytic process generates many free radicals that enhance the interaction between light and deoxyribonucleic acid (DNA) for ARB elimination and subsequent degradation of ARGs. This review aims to illustrate the progress of photocatalytic oxidation technology for removing antibiotics resistant (AR) from wastewater in recent years. We discuss the sources and transfer of ARGs in wastewater. The overall removal efficiencies of ultraviolet radiation (UV)/chlorination, UV/ozone, UV/H2O2, and UV/sulfate-radical based system for ARB and ARGs, as well as the experimental parameters and removal mechanisms, are systematically discussed. The contribution of photocatalytic materials based on TiO2 and g-C3N4 to the inactivation of ARB and degradation of ARGs is highlighted, producing many free radicals to attack ARB and ARGs while effectively limiting the horizontal gene transfer (HGT) in wastewater. Finally, based on the reviewed studies, future research directions are proposed to realize specific photocatalytic oxidation technology applications and overcome current challenges.


Subject(s)
Waste Disposal, Fluid , Wastewater , Wastewater/chemistry , Waste Disposal, Fluid/methods , Bacteria , Disinfection/methods , Drug Resistance, Bacterial/genetics , Ultraviolet Rays , Water Purification/methods
2.
Gene ; 932: 148893, 2025 Jan 10.
Article in English | MEDLINE | ID: mdl-39197797

ABSTRACT

Flowers of Crocus sativus L. are immensely important not only for arrangement of floral whorls but more because each floral organ is dominated by a different class of specialized compounds. Dried stigmas of C. sativus flowers form commercial saffron, and are known to accumulate unique apocarotenoids like crocin, picrocrocin and safranal. Inspite of being a high value crop, the molecular mechanism regulating flower development in Crocus remains largely unknown. Moreover, it would be very interesting to explore any co-regulatory mechanism which controls floral architecture and secondary metabolic pathways which exist in specific floral organs. Here we report transcriptome wide identification of MADS box genes in Crocus. A total of 39 full length MADS box genes were identified among which three belonged to type I and 36 to type II class. Phylogeny classified them into 11 sub-clusters. Expression pattern revealed some stigma up-regulated genes among which CstMADS19 encoding an AGAMOUS gene showed high expression. Transient over-expression of CstMADS19 in stigmas of Crocus resulted in increased crocin by enhancing expression of pathway genes. Yeast one hybrid assay demonstrated that CstMADS19 binds to promoters of phytoene synthase and carotenoid cleavage dioxygenase 2 genes. Yeast two hybrid and BiFC assays confirmed interaction of CstMADS19 with CstMADS26 which codes for a SEPALATA gene. Co-overexpression of CstMADS19 and CstMADS26 in Crocus stigmas enhanced crocin content more than was observed when genes were expressed individually. Collectively, these findings indicate that CstMADS19 functions as a positive regulator of stigma based apocarotenoid biosynthesis in Crocus.


Subject(s)
Carotenoids , Crocus , Flowers , Gene Expression Regulation, Plant , MADS Domain Proteins , Plant Proteins , Crocus/genetics , Crocus/metabolism , Carotenoids/metabolism , Flowers/genetics , Flowers/metabolism , Flowers/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Phylogeny , Gene Expression Profiling/methods , Cyclohexenes/metabolism , Transcriptome , Terpenes/metabolism , Glucosides/metabolism , Glucosides/biosynthesis
3.
J Environ Sci (China) ; 150: 373-384, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306413

ABSTRACT

Reductive soil disinfestation (RSD) is commonly employed for soil remediation in greenhouse cultivation. However, its influence on antibiotic resistance genes (ARGs) in soil remains uncertain. This study investigated the dynamic changes in soil communities, potential bacterial pathogens, and ARG profiles under various organic material treatments during RSD, including distillers' grains, potato peel, peanut vine, and peanut vine combined with charcoal. Results revealed that applying diverse organic materials in RSD significantly altered bacterial community composition and diminished the relative abundance of potential bacterial pathogens (P < 0.05). The relative abundance of high-risk ARGs decreased by 10.7%-30.6% after RSD treatments, the main decreased ARG subtypes were AAC(3)_Via, dfrA1, ErmB, lnuB, aadA. Actinobacteria was the primary host of ARGs and was suppressed by RSD. Soil physicochemical properties, such as total nitrogen, soil pH, total carbon, were crucial factors affecting ARG profiles. Our findings demonstrated that RSD treatment inhibited pathogenic bacteria and could be an option for reducing high-risk ARG proliferation in soil.


Subject(s)
Drug Resistance, Microbial , Soil Microbiology , Soil , Soil/chemistry , Drug Resistance, Microbial/genetics , Genes, Bacterial , Bacteria/drug effects , Bacteria/genetics , Soil Pollutants/toxicity
4.
Methods Mol Biol ; 2850: 435-450, 2025.
Article in English | MEDLINE | ID: mdl-39363086

ABSTRACT

YeastFab is a Golden Gate-based cloning standard and parts repository. It is designed for modular, hierarchical assembly of transcription units and multi-gene assemblies for expression in Saccharomyces cerevisiae. This makes it a suitable toolbox to optimize the expression strength of heterologous genes in yeast. When cloning heterologous coding sequences into YeastFab vectors, in several cases we have observed toxicity to the cloning host Escherichia coli. The provided protocol details how to clone such toxic genes from multiple synthetic DNA fragments while adhering to the YeastFab standard. The presented cloning strategy includes a C-terminal FLAG tag that allows screening for constructs with a desired protein expression in yeast by western blot. The design allows scarlessly removing the tag through a Golden Gate reaction to facilitate cloning of expression constructs with the native, untagged transgene.


Subject(s)
Cloning, Molecular , Escherichia coli , Genetic Vectors , Saccharomyces cerevisiae , Cloning, Molecular/methods , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Genetic Vectors/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
5.
J Environ Sci (China) ; 147: 414-423, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003059

ABSTRACT

The anaerobic acid production experiments were conducted with the pretreated kitchen waste under pH adjustment. The results showed that pH 8 was considered to be the most suitable condition for acid production, especially for the formation of acetic acid and propionic acid. The average value of total volatile fatty acid at pH 8 was 8814 mg COD/L, 1.5 times of that under blank condition. The average yield of acetic acid and propionic acid was 3302 mg COD/L and 2891 mg COD/L, respectively. The activities of key functional enzymes such as phosphotransacetylase, acetokinase, oxaloacetate transcarboxylase and succinyl-coA transferase were all enhanced. To further explore the regulatory mechanisms within the system, the distribution of microorganisms at different levels in the fermentation system was obtained by microbial sequencing, results indicating that the relative abundances of Clostridiales, Bacteroidales, Chloroflexi, Clostridium, Bacteroidetes and Propionibacteriales, which were great contributors for the hydrolysis and acidification, increased rapidly at pH 8 compared with the blank group. Besides, the proportion of genes encoding key enzymes was generally increased, which further verified the mechanism of hydrolytic acidification and acetic acid production of organic matter under pH regulation.


Subject(s)
Fatty Acids, Volatile , Hydrogen-Ion Concentration , Fatty Acids, Volatile/metabolism , Fermentation , Acetic Acid/metabolism , Bioreactors
6.
J Environ Sci (China) ; 147: 582-596, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003073

ABSTRACT

As an emerging environmental contaminant, antibiotic resistance genes (ARGs) in tap water have attracted great attention. Although studies have provided ARG profiles in tap water, research on their abundance levels, composition characteristics, and potential threat is still insufficient. Here, 9 household tap water samples were collected from the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) in China. Additionally, 75 sets of environmental sample data (9 types) were downloaded from the public database. Metagenomics was then performed to explore the differences in the abundance and composition of ARGs. 221 ARG subtypes consisting of 17 types were detected in tap water. Although the ARG abundance in tap water was not significantly different from that found in drinking water plants and reservoirs, their composition varied. In tap water samples, the three most abundant classes of resistance genes were multidrug, fosfomycin and MLS (macrolide-lincosamide-streptogramin) ARGs, and their corresponding subtypes ompR, fosX and macB were also the most abundant ARG subtypes. Regarding the potential mobility, vanS had the highest abundance on plasmids and viruses, but the absence of key genes rendered resistance to vancomycin ineffective. Generally, the majority of ARGs present in tap water were those that have not been assessed and are currently not listed as high-threat level ARG families based on the World Health Organization Guideline. Although the current potential threat to human health posed by ARGs in tap water is limited, with persistent transfer and accumulation, especially in pathogens, the potential danger to human health posed by ARGs should not be ignored.


Subject(s)
Drinking Water , Drug Resistance, Microbial , Metagenomics , Drug Resistance, Microbial/genetics , Drinking Water/microbiology , China , Environmental Monitoring , Anti-Bacterial Agents/pharmacology , Water Microbiology
7.
J Environ Sci (China) ; 150: 422-431, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306417

ABSTRACT

In recent years, the biodegradable plastics has extensively used in industry, agriculture, and daily life. Herein, the effects of two biodegradable microplastics (BMPs), poly(butyleneadipate-co-terephthalate) (PBAT) and polyhydroxyalkanoate (PHA), on soil sulfamethoxazole (SMX) degradation and sul genes development were comparatively studied based on the type, dosage, and state. The addition of virgin BMPs significantly increased soil DOC following a sequential order PBAT > PHA and high dose > low dose. Meanwhile virgin PBAT significantly reduced soil pH. In general, the addition of BMPs not only promoted soil SMX degradation but also increased the abundance of sul genes, with an exception that pH reduction in virgin PBAT inhibited the proliferation of sul genes. The driving effects of BMPs on soil microbial diversity following the same order as that on DOC. Specific bacteria stimulated by BMPs, such as Arthrobacter and two genera affiliated with phylum TM7, accounted for the accelerated degradation of SMX. Intriguingly, UV-aging hindered the release of DOC from BMPs and the reduction in pH, mitigated the stimulation of microbial communities, and ultimately reduced the promotion effect of BMPs on SMX degradation and sul genes proliferation. Our results suggest that more attention should be paid to the proliferation risk of ARGs in the environment affected by BMPs and UV-aging can be employed sometimes to reduce this risk.


Subject(s)
Biodegradation, Environmental , Soil Microbiology , Soil Pollutants , Soil , Sulfamethoxazole , Sulfamethoxazole/toxicity , Soil/chemistry , Microplastics/toxicity , Ultraviolet Rays , Biodegradable Plastics
8.
Rev. biol. trop ; 72(1): e49359, ene.-dic. 2024. graf
Article in English | LILACS, SaludCR | ID: biblio-1559319

ABSTRACT

Abstract Introduction: A recent revision of the generic classification of the Trochilidae based on DNA sequences revealed many inconsistencies with the current generic classification, largely based on plumage characters subject to homoplasy, especially in the Trochilini, the largest tribe. A thorough generic reorganization brought the classification into accord with the phylogeny, but due to lack of genetic data, two species remained unclassified. One of these was the Mangrove Hummingbird, "Amazilia" boucardi, endemic to Costa Rica and included in the IUCN red list of threatened species. Objective: To obtain molecular evidence to clarify the generic relationships of "A." boucardi. Methods: We isolated DNA from tissues of this species and amplified 4 nuclear and 4 mitochondrial fragments and compared these with homologous fragments from 56 species in the Trochilini, constructing phylogenetic trees with maximum likelihood and Bayesian methods. Results: Our phylogenetic analyses confirmed the placement of boucardi in the Trochilini and definitely excluded it from Amazilia but placed it with high confidence in the genus Chrysuronia Bonaparte, 1850, within which its closest relative is C. coeruleogularis, which also inhabits mangroves. Conclusions: Our genetic data based on nuclear and mitochondrial regions clearly indicate the relationship of A. boucardi and L. coeruleogularis. Moreover, it is also supported by their habitat distribution in the mangroves of the Pacific coast of Costa Rica and Western Panama. Therefore, we suggested to exclude A. boucardi as "incertae sedis".


Resumen Introducción: Una revisión reciente de la clasificación de la familia Trochilidae con base en secuencias de ADN demostró muchas incongruencias con la clasificación genérica previa, que había sido hecho con base en caracteres del plumaje muy sujetos a homoplasia, especialmente en la tribu más grande, Trochillini. Una reorganización de los géneros logró llevar su clasificación genérica a la concordancia con la filogenia, pero debido a la ausencia de datos genéticos, dos especies permanecieron sin clasificar. Una de estas fue el colibrí de manglar Amazilia boucardi, una especie endémica de Costa Rica, considerada como amenazada en la lista roja de la UICN. Objetivo: Obtener evidencia molecular para esclarecer las relaciones genéricas de A. boucardi. Métodos: Se aisló ADN de tejidos de esta especie y se amplificaron 4 fragmentos de ADN del núcleo y 5 de la mitocondria, y se compararon con fragmentos homólogos de 56 especies en la tribu Trochillini, generando árboles filogenéticos con métodos de máxima verosimilitud y bayesiano. Resultados: Los análisis filogénticos obtenidos confirmaron la ubicación de boucardi en Trochilini y definitivamente la excluyó del género Amazilia, pero la ubicó con un alto grado de confianza en el género Chrysuronia Bonaparte, 1850, dentro los cuales su pariente más cercano es C. coeruleogularis, que también habita manglares. Conclusiones: Nuestros datos genéticos basados en regiones nucleares y mitocondriales indican claramente la relación entre A. boucardi and L. coeruleogularis. Es más, lo anterior se sustenta por su distribución en los manglares de la costa Pacífica de Costa Rica y oeste de Panamá. Por lo tanto, sugerimos excluir a A. boucardi como "incertae sedis".


Subject(s)
Animals , Birds/classification , DNA/analysis , Phylogeny , Costa Rica , Genes, Mitochondrial
9.
Cancer Immunol Immunother ; 73(12): 252, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39358617

ABSTRACT

Extramammary Paget's disease (EMPD) is a rare cutaneous malignancy characterized by its uncertain etiology and metastatic potential. Surgery remains the first-line clinical treatment for EMPD, but the efficacy of radiotherapy and chemotherapy remains to be fully evaluated, and new therapies for EMPD are urgently needed. In this study, we initially screened 815 EMPD patients in the Surveillance, Epidemiology, and End Results (SEER) database and analyzed their clinical features and prognostic factors. Using the dataset from the Genome Sequence Archive (GSA) database, we subsequently conducted weighted gene coexpression network analysis (WGCNA), gene set enrichment analysis (GSEA), gene set variation analysis (GSVA), and immune infiltration analyses, grouping the samples based on EMPD disease status and the levels of ERBB2 expression. The prognostic analysis based on the SEER database identified increased age at diagnosis, distant metastasis, and receipt of radiotherapy as independent risk factors for EMPD. Moreover, our results indicated that patients who received chemotherapy had worse prognoses than those who did not, highlighting the urgent need for novel treatment approaches for EMPD. Functional analysis of the GSA-derived dataset revealed that EMPD tissues were significantly enriched in immune-related pathways compared with normal skin tissues. Compared with those with high ERBB2 expression, tissues with low ERBB2 expression displayed greater immunogenicity and enrichment of immune pathways, particularly those related to B cells. These findings suggest that patients with low ERBB2 expression are likely to benefit from immunotherapy, especially B-cell-related immunotherapy.


Subject(s)
Immunotherapy , Paget Disease, Extramammary , Receptor, ErbB-2 , Humans , Prognosis , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Paget Disease, Extramammary/genetics , Paget Disease, Extramammary/therapy , Paget Disease, Extramammary/pathology , Paget Disease, Extramammary/metabolism , Female , Male , Aged , Immunotherapy/methods , Middle Aged , Molecular Targeted Therapy/methods , Biomarkers, Tumor/genetics , Aged, 80 and over , SEER Program , Skin Neoplasms/therapy , Skin Neoplasms/genetics , Skin Neoplasms/immunology , Skin Neoplasms/pathology
10.
World J Microbiol Biotechnol ; 40(11): 333, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39358646

ABSTRACT

The Staphylococcus genus comprises multiple pathogenic and opportunistic species that represent a risk to public health. Epidemiological studies require accurate taxonomic classification of isolates with enough resolution to distinguish clonal complexes. Unfortunately, 16 S rRNA molecular analysis and phenotypic characterization cannot distinguish all species and do not offer enough resolution to assess intraspecific diversity. Other approaches, such as Multilocus Sequence Tagging, provide higher resolution; however, they have been developed for Staphylococcus aureus and a few other species. Here, we developed a set of genus-targeted primers using five orthologous genes (pta, tuf, tpi, groEs, and sarA) to identify all Staphylococcus species within the genus. The primers were initially evaluated using 20 strains from the Collection of Microorganisms of Interest in Animal Health from AGROSAVIA (CMISA), and their amplified sequences were compared to a set of 33 Staphylococcus species. This allowed the taxonomic identification of the strains even on close species and the establishment of intraspecies diversity. To enhance the scope and cost-effectiveness of the proposed strategy, we customized the primer sets for an Illumina paired-end amplicon protocol, enabling gene multiplexing. We assessed five genes across 177 strains, generating 880 paired-end libraries from the CMISA. This approach significantly reduced sequencing costs, as all libraries can be efficiently sequenced in a single MiSeq run at a fraction (one-fourth or less) of the cost associated with Sanger sequencing. In summary, this method can be used for precise identification and diversity analysis of Staphylococcus species, offering an advancement over traditional techniques in both resolution and cost-effectiveness.


Subject(s)
Coagulase , DNA, Bacterial , RNA, Ribosomal, 16S , Staphylococcus , Staphylococcus/genetics , Staphylococcus/classification , Staphylococcus/isolation & purification , Staphylococcus/enzymology , Coagulase/metabolism , Coagulase/genetics , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , DNA Primers/genetics , Phylogeny , Staphylococcal Infections/microbiology , Animals , Genes, Bacterial/genetics , Bacterial Proteins/genetics , Sequence Analysis, DNA , Multilocus Sequence Typing , Bacterial Typing Techniques/methods , Genetic Markers , High-Throughput Nucleotide Sequencing
11.
BMC Plant Biol ; 24(1): 878, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39358741

ABSTRACT

BACKGROUND: Phytophthora palmivora is a devastating oomycete pathogen in durian, one of the most economically important crops in Southeast Asia. The use of fungicides in Phytophthora management may not be a long-term solution because of emerging chemical resistance issues. It is crucial to develop Phytophthora-resistant durian cultivars, and information regarding the underlying resistance mechanisms is valuable for smart breeding programs. RESULTS: In this study, we conducted RNA sequencing (RNA-seq) to investigate early gene expression responses (at 8, 24, and 48 h) after the P. palmivora infection in three durian cultivars, which included one resistant cultivar (Puangmanee; PM) and two susceptible cultivars (Monthong; MT and Kradumthong; KD). We performed co-expression and differential gene expression analyses to capture gene expression patterns and identify the differentially expressed genes. The results showed that genes encoding heat shock proteins (HSPs) were upregulated in all infected durians. The expression levels of genes encoding HSPs, such as ERdj3B, were high only in infected PM. A higher level of P. palmivora resistance in PM appeared to be associated with higher expression levels of various genes encoding defense and chitin response proteins, such as lysM domain receptor-like kinases. MT had a lower resistance level than PM, although it possessed more upregulated genes during P. palmivora infection. Many photosynthetic and defense genes were upregulated in the infected MT, although their expression levels were lower than those in the infected PM. KD, the least resistant cultivar, showed downregulation of genes involved in cell wall organization or biogenesis during P. palmivora infection. CONCLUSIONS: Our results showed that the three durian cultivars exhibited significantly different gene expression patterns in response to P. palmivora infection. The upregulation of genes encoding HSPs was common in all studied durians. The high expression of genes encoding chitin response proteins likely contributed to P. palmivora resistance in durians. Durian susceptibility was associated with low basal expression of defense genes and downregulation of several cell wall-related genes. These findings enhance our understanding of durian resistance to Phytophthora infection and could be useful for the development of elite durian cultivars.


Subject(s)
Disease Resistance , Phytophthora , Plant Diseases , Transcriptome , Phytophthora/physiology , Plant Diseases/microbiology , Plant Diseases/genetics , Disease Resistance/genetics , Gene Expression Regulation, Plant , Gene Expression Profiling , Persea/genetics , Persea/microbiology
12.
Front Med (Lausanne) ; 11: 1428973, 2024.
Article in English | MEDLINE | ID: mdl-39371335

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19), an infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has caused a global pandemic. Gastric cancer (GC) poses a great threat to people's health, which is a high-risk factor for COVID-19. Previous studies have found some associations between GC and COVID-19, whereas the underlying molecular mechanisms are not well understood. Methods: We employed bioinformatics and systems biology to explore these links between GC and COVID-19. Gene expression profiles of COVID-19 (GSE196822) and GC (GSE179252) were obtained from the Gene Expression Omnibus (GEO) database. After identifying the shared differentially expressed genes (DEGs) for GC and COVID-19, functional annotation, protein-protein interaction (PPI) network, hub genes, transcriptional regulatory networks and candidate drugs were analyzed. Results: We identified 209 shared DEGs between COVID-19 and GC. Functional analyses highlighted immune-related pathways as key players in both diseases. Ten hub genes (CDK1, KIF20A, TPX2, UBE2C, HJURP, CENPA, PLK1, MKI67, IFI6, IFIT2) were identified. The transcription factor/gene and miRNA/gene interaction networks identified 38 transcription factors (TFs) and 234 miRNAs. More importantly, we identified ten potential therapeutic agents, including ciclopirox, resveratrol, etoposide, methotrexate, trifluridine, enterolactone, troglitazone, calcitriol, dasatinib and deferoxamine, some of which have been reported to improve and treat GC and COVID-19. Conclusion: This research offer valuable insights into the molecular interplay between COVID-19 and GC, potentially guiding future therapeutic strategies.

13.
Front Genet ; 15: 1481787, 2024.
Article in English | MEDLINE | ID: mdl-39371416

ABSTRACT

Introduction: Gene regulatory networks (GRNs) reveal the intricate interactions between and among genes, and understanding these interactions is essential for revealing the molecular mechanisms of cancer. However, existing algorithms for constructing GRNs may confuse regulatory relationships and complicate the determination of network directionality. Methods: We propose a new method to construct GRNs based on causal strength and ensemble regression (CSER) to overcome these issues. CSER uses conditional mutual inclusive information to quantify the causal associations between genes, eliminating indirect regulation and marginal genes. It considers linear and nonlinear features and uses ensemble regression to infer the direction and interaction (activation or regression) from regulatory to target genes. Results: Compared to traditional algorithms, CSER can construct directed networks and infer the type of regulation, thus demonstrating higher accuracy on simulated datasets. Here, using real gene expression data, we applied CSER to construct a colorectal cancer GRN and successfully identified several key regulatory genes closely related to colorectal cancer (CRC), including ADAMDEC1, CLDN8, and GNA11. Discussion: Importantly, by integrating immune cell and microbial data, we revealed the complex interactions between the CRC gene regulatory network and the tumor microenvironment, providing additional new biomarkers and therapeutic targets for the early diagnosis and prognosis of CRC.

14.
Toxicol Res (Camb) ; 13(5): tfae161, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39371682

ABSTRACT

Background: Radon, a potent carcinogen, is a significant catalyst for lung cancer development. However, the molecular mechanisms triggering radon-induced lung cancer remain elusive. Methods: Utilizing a radon exposure concentration of 20,000 Bq/m3 for 20 min/session, malignant transformation was induced in human bronchial epithelial cells (BEAS-2B). Results: Radon-exposed cells derived from passage 25 (BEAS-2B-Rn) exhibited enhanced proliferation and increased colony formation. Analysis of differential gene expression (DEG) through transcription factors revealed 663 up-regulated and 894 down-regulated genes in radon-exposed cells. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed significant alterations in the malignant transformation pathway of cells, including those related to cancer and the PI3K/AKT signaling pathway. A PPI network analysis indicated a significant association of oncogenes, such as CCND1, KIT, and GATA3, with lung cancer among differentially expressed genes. In addition, the stability of the housekeeping gene was determined through RT-qPCR analysis, which also confirmed the results of transcriptome analysis. Conclusions: The results suggest that transcription factors may play a pivotal role in conferring a survival advantage to radon-exposed cells. This is achieved by malignant transformation of human bronchial epithelial cells into lung carcinogenesis cell phenotypes.

15.
Cureus ; 16(9): e68611, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39371824

ABSTRACT

Background Type 1 diabetes (T1D) is an autoimmune disorder that results in the destruction of pancreatic beta cells, causing a shortage of insulin secretion. The development of T1D is influenced by both genetic predisposition and environmental factors, such as vitamin D. This vitamin is known for its ability to regulate the immune system and has been associated with a decreased risk of T1D. However, the specific ways in which vitamin D affects immune regulation and the preservation of beta cells in T1D are not yet fully understood. Gaining a better understanding of these interactions is essential for identifying potential targets for preventing and treating T1D. Methods The analysis focused on two Gene Expression Omnibus (GEO) datasets, namely, GSE55098 and GSE50012, to detect differentially expressed genes (DEGs). Enrichr (Ma'ayan Laboratory, New York, NY) was used to perform enrichment analysis for the Gene Ontology (GO) biological process and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The Search Tool for the Retrieval of Interacting Genes 12.0 (STRING) database was used to generate a protein-protein interaction (PPI) network. The Cytoscape 3.10.1 (Cytoscape Team, San Diego, CA) was used to analyze the PPI network and discover the hub genes. Results The DEGs in both datasets were identified using the GEO2R tool, with a particular focus on genes exhibiting contrasting regulations. Enrichment analysis unveiled the participation of these oppositely regulated DEGs in processes relevant to the immune system. Cytoscape analysis of the PPI network revealed five hub genes, MNDA, LILRB2, FPR2, HCK, and FCGR2A, suggesting their potential role in the pathogenesis of T1D and the response to vitamin D. Conclusion The study elucidates the complex interaction between vitamin D metabolism and immune regulation in T1D. The identified hub genes provide important knowledge on the molecular pathways that underlie T1D and have the potential to be targeted for therapeutic intervention. This research underscores the importance of vitamin D in the immune system's modulation and its impact on T1D development.

16.
PeerJ ; 12: e18157, 2024.
Article in English | MEDLINE | ID: mdl-39372720

ABSTRACT

Background: The incidence and mortality of cervical cancer remain high in female malignant tumors worldwide. There is still a lack of diagnostic and prognostic markers for cervical carcinoma. This study aimed to screen differentially expressed genes (DEGs) between normal and cervical cancer tissues to identify candidate genes for further research. Methods: Uterine cervical specimens were resected from our clinical patients after radical hysterectomy. Three patients' transcriptomic datasets were built by the next generation sequencing (NGS) results. DEGs were selected through the edgeR and DESeq2 packages in the R environment. Functional enrichment analysis, including GO/DisGeNET/KEGG/Reactome enrichment analysis, was performed. Normal and cervical cancer tissue data from the public databases TCGA and GTEx were collected to compare the expression levels of 10 selected DEGs in tumor and normal tissues. ROC curve and survival analysis were performed to compare the diagnostic and prognostic values of each gene. The expression levels of candidate genes were verified in 15 paired clinical specimens via quantitative real-time polymerase chain reaction. Results: There were 875 up-regulated and 1,482 down-regulated genes in cervical cancer samples compared with the paired adjacent normal cervical tissues according to the NGS analysis. The top 10 DEGs included APOD, MASP1, ACKR1, C1QTNF7, SFRP4, HSPB6, GSTM5, IGFBP6, F10 and DCN. GO, DisGeNET and Reactome analyses revealed that the DEGs were related to extracellular matrix and angiogenesis which might influence tumorigenesis. KEGG enrichment showed that PI3K-Akt signaling pathway might be involved in cervical cancer tumorigenesis and progression. The expression levels of selected genes were decreased in tumors in both the public database and our experimental clinical specimens. All the candidate genes showed excellent diagnostic value, and the AUC values exceeded 0.90. Additionally, APOD, ACKR1 and SFRP4 expression levels could help predict the prognosis of patients with cervical cancer. Conclusions: In this study, we selected the top 10 DEGs which were down-regulated in cervical cancer tissues. All of them had dramatically diagnostic value. APOD, ACKR1 and SFRP4 were associated with the survivals of cervical cancer. C1QTNF7, HSPB6, GSTM5, IGFBP6 and F10 were first reported to be candidate genes of cervical carcinoma.


Subject(s)
Carcinogenesis , Gene Expression Regulation, Neoplastic , High-Throughput Nucleotide Sequencing , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Gene Expression Regulation, Neoplastic/genetics , Carcinogenesis/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Profiling/methods , Prognosis , Middle Aged , Transcriptome/genetics
17.
Genome Biol Evol ; 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39373182

ABSTRACT

The olfactory sense is crucial for organisms, facilitating environmental recognition and inter-individual communication. Ithomiini butterflies exemplify this importance not only because they rely strongly on olfactory cues for both inter- and intra-sexual behaviours, but also because they show convergent evolution of specialized structures within the antennal lobe, called macro-glomerular complexes (MGCs). These structures, widely absent in butterflies, are present in moths where they enable heightened sensitivity to, and integration of information from various types of pheromones. In this study we investigate chemosensory evolution across six ithomiini species and identify possible links between expression profiles and neuroanatomical. To enable this, we sequenced four new high-quality genome assemblies and six sex-specific antennal transcriptomes for three of these species with different MGC morphologies. With extensive genomic analyses we found that the expression of antennal transcriptomes across species exhibit profound divergence, and identified highly expressed ORs, which we hypothesise may be associated to MGCs, as highly expressed ORs are absent in Methona, an Ithomiini lineage which also lacks MGCs. More broadly, we show how antennal sexual dimorphism is prevalent in both chemosensory genes and non-chemosensory genes, with possible relevance for behaviour. As an example, we show how lipid-related genes exhibit consistent sexual dimorphism, potentially linked to lipid transport or host selection. This study broadens the understanding of antennal chemosensory adaptations, suggesting a link between genetic diversity, ecological specialization, and sensory perception with the convergent evolution of MCGs. Insights into chemosensory gene evolution, expression patterns, and potential functional implications enhance our knowledge of sensory adaptations and sexual dimorphisms in butterflies, laying the foundation for future investigations into the genetic drivers of insect behaviour, adaptation, and speciation.

18.
Toxicon ; : 108118, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39374740

ABSTRACT

Coumarins are a specific type of secondary metabolite that can be found in many plants. These compounds are predominantly produced through the phenylpropanoid pathway. Coumarins have been proven to possess a range of biological activities, including antimicrobial properties and antioxidant functions that aid in plant disease resistance response. The antimicrobial effect of coumarins is achieved through various mechanisms. They disrupt the cell membranes of pathogens, inhibit enzymatic activity, and hinder nucleic acid synthesis. Additionally, coumarins stimulate plant defense responses by triggering the production of reactive oxygen species (ROS) and activating the expression of immunity-related genes and signaling pathways such as the salicylic acid-dependent pathway. Due to their crucial role in defense mechanisms, coumarins can be effectively used in sustainable agriculture practices that emphasize environmentally friendly integrated pest management strategies. By providing a comprehensive overview of the biosynthetic pathways, mode of action, and application of coumarins in plant defense, this review aims to highlight the potential importance of coumarins in developing safe and sustainable crop protection strategies.

19.
Environ Res ; : 120090, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39374754

ABSTRACT

Antibiotic resistance genes (ARGs) have been identified as emerging contaminants, raising concerns around the world. As environmentally friendly bioagents (BA), plant growth-promoting rhizobacteria (PGPR) have been used in agricultural systems. The introduction of BA will lead to the turnover of the microbial communities structure. Nevertheless, it is still unclear how the colonization of the invaded microorganisms could affects the rhizosphere resistome. Consequently, 190 ARGs and 25 integrative and conjugative elements (ICEs) were annotated using the metagenomic approach in 18 samples from the Solanaceae crop rhizosphere soil under BA and conventional treatment (CK) groups. Our study found that, after 90 days of treatment, ARG abundance was lower in the CK group than in the BA group. The results showed that aminoglycoside antibiotic resistance (OprZ), phenicol antibiotic resistance (OprN), aminoglycoside antibiotic resistance (ceoA/B), aminocoumarin antibiotic resistance (mdtB) and phenicol antibiotic resistance (MexW) syntenic with ICEs. Moreover, in 11 sequences, OprN (phenicol antibiotic resistance) was observed to have synteny with ICEPaeLESB58-1, indicating that the ICEs could contribute to the spread of ARGs. Additionally, the binning result showed that the potential bacterial hosts of the ARGs were beneficial bacteria which could promote the nutrition cycle, such as Haliangium, Nitrospira, Sideroxydans, Burkholderia, etc, suggesting that bacterial hosts have a great influence on ARG profiles. According to the findings, considering the dissemination of ARGs, BA should be applied with caution, especially the use of beneficial bacteria in BA. In a nutshell, this study offers valuable insights into ARGs pollution control from the perspective of the development and application of BA, to make effective strategies for blocking pollution risk migration in the ecological environment.

20.
Endocr Regul ; 58(1): 195-205, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-39352780

ABSTRACT

Objective. The aim of this study was to evaluate the association of the α-adducin-1 gene (ADD1) (Gly460Trp [rs4961]) polymorphism and its expression in association with renal dysfunction and sodium sensitivity in hypertensive patients in western Ukrainian population. Methods. One-hundred patients with essential arterial hypertension (EAH) and hypertensive-mediated target organ damage (stage 2), moderate, high, and very high cardiovascular risk were enrolled in case-control study. Sixty healthy individuals were assigned as controls. Sodium sensitivity and sodium resistance were determined by salt load reaction. The ADD1 (rs4961) genotyping was performed in RT-PCR. Results. The expression of the quantitative trait loci (eQTL) of ADD1 gene (rs4961) (chr4:2906707 [hg19]) was confirmed in 37 tissues and organs with 23 phenotypic traits. Two hundred eQTL associations revealed - all cis-variants (cis-QTL); 73 methylation QTL (mQTL), 34 splicing QTL (sQTL), 14 histone modification QTL (hQTL), 2 protein QTL (pQTL), 23 transcript utilization QTL (tuQTL), and 4 loci of incorporated long noncoding areas of RNA (lncRNA). GG-genotype unreliably enhances EAH risk (OR=1.92; 95%CI: 0.90-4.10; p=0.066). Sodium sensitivity was observed in 54.0% of patients and in 20.0% of controls (c2=17.89; p<0.001). Sodium sensitivity in T-allele carriers of the ADD1 gene (1378G>T; rs4961) dominated 12-fold in general (OR 95%CI: 2.24-64.29; p=0.001), in women - 4.71 times (OR 95%CI: 1.92-11.56; p<0.001), and in men - 4.09 times (OR 95%CI: 1.03-16.28; p=0.041). Sodium sensitivity elevated the likelihood of severe EAH twice (OR=2.19; OR 95%CI: 1.00-5.05; p=0.049). Conclusion. T-allele associates with sodium sensitivity in essential arterial hypertension patients and increases the risk of hypertension regardless the gender. Sodium sensitivity enhances the probability of severe essential arterial hypertension in observed population.


Subject(s)
Calmodulin-Binding Proteins , Quantitative Trait Loci , Humans , Male , Female , Middle Aged , Ukraine/epidemiology , Calmodulin-Binding Proteins/genetics , Case-Control Studies , Adult , Hypertension/genetics , Hypertension/epidemiology , Polymorphism, Single Nucleotide , Cohort Studies , Sodium/metabolism , Aged , Essential Hypertension/genetics , Genetic Predisposition to Disease
SELECTION OF CITATIONS
SEARCH DETAIL