Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Plant Cell Rep ; 43(6): 147, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771491

ABSTRACT

KEY MESSAGE: Thchit42 constitutive expression for fungal resistance showed synchronisation with leaf augmentation and transcriptome analysis revealed the Longifolia and Zinc finger RICESLEEPER gene is responsible for plant growth and development. Pelargonium graveolens essential oil possesses significant attributes, known for perfumery and aromatherapy. However, optimal yield and propagation are predominantly hindered by biotic stress. All biotechnological approaches have yet to prove effective in addressing fungal resistance. The current study developed transgenic geranium bridging molecular mechanism of fungal resistance and plant growth by introducing cassette 35S::Thchit42. Furthermore, 120 independently putative transformed explants were regenerated on kanamycin fortified medium. Primarily transgenic lines were demonstrated peak pathogenicity and antifungal activity against formidable Colletotrichum gloeosporioides and Fusarium oxysporum. Additionally, phenotypic analysis revealed ~ 2fold increase in leaf size and ~ 2.1fold enhanced oil content. To elucidate the molecular mechanisms for genotypic cause, de novo transcriptional profiles were analyzed to indicate that the auxin-regulated longifolia gene is accountable for augmentation in leaf size, and zinc finger (ZF) RICESLEEPER attributes growth upregulation. Collectively, data provides valuable insights into unravelling the mechanism of Thchit42-mediated crosstalk between morphological and chemical alteration in transgenic plants. This knowledge might create novel opportunities to cultivate fungal-resistant geranium throughout all seasons to fulfil demand.


Subject(s)
Disease Resistance , Fusarium , Gene Expression Regulation, Plant , Pelargonium , Plant Leaves , Plants, Genetically Modified , Pelargonium/genetics , Fusarium/pathogenicity , Fusarium/physiology , Disease Resistance/genetics , Plant Leaves/genetics , Plant Leaves/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Diseases/microbiology , Plant Diseases/genetics , Colletotrichum/pathogenicity , Colletotrichum/physiology , Oils, Volatile/metabolism , Oils, Volatile/pharmacology , Geranium/genetics
2.
J Microbiol Methods ; 220: 106926, 2024 May.
Article in English | MEDLINE | ID: mdl-38555034

ABSTRACT

Genome-walking is a molecular tool used to unveil uncharacterized DNA regions flanking a known DNA, which has been widely used in bioscience and related areas. This study developed a reliable and efficient PCR-based genome-walking approach, named as single primer site-specific nested PCR (SPN-PCR). A SPN-PCR set sequentially consists of three single-primer nested PCR amplifications. The primary relaxed thermal cycle promotes outmost nested site-specific primer (NSSP) to partially combine with numerous places on DNA template, synthesizing many single-stranded DNAs (ssDNA). Among them, the target ssDNA is exponentially amplified in the subsequent stringent cycles, as its 3' part possesses the outmost NSSP complement; but a non-target ssDNA cannot be amplified, because it does not possess such a complement. Stringent secondary and tertiary PCRs also exclusively enrich this target DNA. Finally, the target DNA product becomes predominant. The feasibility of SPN-PCR was validated by genome-walking several selected genes from two divergent species.


Subject(s)
DNA , Genome, Bacterial , Polymerase Chain Reaction , DNA Primers/genetics
3.
Mol Genet Genomics ; 299(1): 27, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38466442

ABSTRACT

Genome walking, a molecular technique for obtaining unknown flanking genomic sequences from a known genomic sequence, has been broadly applied to determine transgenic sites, mine new genetic resources, and fill in chromosomal gaps. This technique has advanced genomics, genetics, and related disciplines. Here, an efficient and reliable genome walking technique, called primer extension refractory PCR (PER-PCR), is presented. PER-PCR uses a set of primary, secondary, and tertiary walking primers. The middle 15 nt of the primary walking primer overlaps with the 3' parts of the secondary and tertiary primers. The 5' parts of the three primers are heterologous to each other. The short overlap allows the walking primer to anneal to its predecessor only in a relaxed-stringency PCR cycle, resulting in a series of single-stranded DNAs; however, the heterologous 5' part prevents the creation of a perfect binding site for the walking primer. In the next stringent cycle, the target single strand can be extended into a double-stranded DNA molecule by the sequence-specific primer and thus can be exponentially amplified by the remaining stringent cycles. The nontarget single strand fails to be enriched due to the lack of a perfect binding site for any primer. PER-PCR was validated by extension into unknown flanking regions of the hyg gene in rice and the gadR gene in Levilactobacillus brevis CD0817. In summary, in this study, a new practical PER-PCR method was constructed as a potential alternative to existing genome walking methods.


Subject(s)
DNA , Genomics , Polymerase Chain Reaction/methods , Genomics/methods , DNA, Single-Stranded
4.
Plant Biotechnol J ; 22(4): 904-914, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38051549

ABSTRACT

Glyphosate-resistant wheat plants were discovered in southern Alberta in 2017, representing an unauthorized GM release in Canada. The Canadian Food Inspection Agency undertook a series of experiments to characterize and identify this unknown GM wheat, as well as to develop and validate construct-specific and event-specific qPCR assays. Results of PCR-based assays and Sanger sequencing indicated the presence of CaMV 35S promoter (p35S), Rice Actin 1 intron (RactInt1), CP4-EPSPS gene and nopaline synthase terminator (tNOS) elements in the unknown GM wheat. Genome walking and bead capture strategies, combined with high-throughput sequencing, were used to identify the 5' and 3' wheat junctions and the subsequent mapping of the insert to chromosome 3B of the wheat genome. A probable transformation vector, pMON25497, was recognized, and further testing identified the unknown GM wheat as MON71200 event, one of two events obtained with the pMON25497 vector. The two construct-specific assays targeted the junctions of the RactInt1 and the CP4-EPSPS elements and the CP4-EPSPS and tNOS elements, while the event-specific assay was located at the 3' junction into the wheat genome. Both construct-specific and event-specific assays had limits of detection of 0.10% of MON71200 in a seed pool. As expected, the two construct-specific assays cross-reacted with other wheat and corn events containing the same elements in the same order. No cross-reactivity was observed for the event-specific assay. The integrated strategy employed in this study can serve as a model for other cases when facing similar challenges involving unknown GM events.


Subject(s)
Glyphosate , Triticum , Plants, Genetically Modified/genetics , Triticum/genetics , Canada , High-Throughput Nucleotide Sequencing
5.
Front Microbiol ; 14: 1265580, 2023.
Article in English | MEDLINE | ID: mdl-37808312

ABSTRACT

The reported genome-walking methods still suffer from some deficiencies, such as cumbersome experimental steps, short target amplicon, or deep background. Here, a simple and practical fork PCR was proposed for genome-walking. The fork PCR employs a fork primer set of three random oligomers to implement walking task. In primary fork PCR, the low-stringency amplification cycle mediates the random binding of primary fork primer to some places on genome, producing a batch of single-stranded DNAs. In the subsequent high-stringency amplification, the target single-strand is processed into double-strand by the site-specific primer, but a non-target single-stranded DNA cannot be processed by any primer. As a result, only the target DNA can be exponentially amplified in the remaining high-stringency cycles. Secondary/tertiary nested fork PCR(s) further magnifies the amplification difference between the both DNAs by selectively enriching target DNA. The applicability of fork PCR was validated by walking several gene loci. The fork PCR could be a perspective substitution for the existing genome-walking schemes.

6.
Curr Issues Mol Biol ; 45(1): 501-511, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36661519

ABSTRACT

The efficacy of the available genome-walking methods is restricted by low specificity, high background, or composite operations. We herein conceived bridging PCR, an efficient genome-walking approach. Three primers with random sequences, inner walker primer (IWP), bridging primer (BP), and outer walker primer (OWP), are involved in bridging PCR. The BP is fabricated by splicing OWP to the 5'-end of IWP's 5'-part. A bridging PCR set is constituted by three rounds of amplification reactions, sequentially performed by IWP, BP plus OWP, and OWP, respectively pairing with three nested sequence-specific primers (SSP). A non-target product arising from IWP alone undergoes end-lengthening mediated by BP. This modified non-target product is a preferentially formed hairpin between the lengthened ends, instead of binding with shorter OWP. Meanwhile, a non-target product, triggered by SSP alone or SSP plus IWP, is removed by nested SSP. As a result, only the target DNA is accumulated. The efficacy of bridging PCR was validated by walking the gadA/R genes of Levilactobacillus brevis CD0817 and the hyg gene of rice.

7.
Curr Issues Mol Biol ; 45(1): 512-523, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36661520

ABSTRACT

Genome-walking has been frequently applied to molecular biology and related areas. Herein, a simple but reliable genome-walking technique, termed semi-site-specific primer PCR (3SP-PCR), is presented. The key to 3SP-PCR is the use of a semi-site-specific primer in secondary PCR that partially overlaps its corresponding primary site-specific primer. A 3SP-PCR set comprises two rounds of nested amplification reactions. In each round of reaction, any primer is allowed to partially anneal to the DNA template once only in the single relaxed-stringency cycle, creating a pool of single-stranded DNAs. The target single-stranded DNA can be converted into a double-stranded molecule directed by the site-specific primer, and thus can be exponentially amplified by the subsequent high-stringency cycles. The non-target one cannot be converted into a double-strand due to the lack of a perfect binding site to any primer, and thus fails to be amplified. We validated the 3SP-PCR method by using it to probe the unknown DNA regions of rice hygromycin genes and Levilactobacillus brevis CD0817 glutamic acid decarboxylase genes.

8.
Front Genet ; 13: 969840, 2022.
Article in English | MEDLINE | ID: mdl-36330444

ABSTRACT

The limitations of the current genome-walking strategies include strong background and cumbersome experimental processes. Herein, we report a genome-walking method, fusion primer-driven racket PCR (FPR-PCR), for the reliable retrieval of unknown flanking DNA sequences. Four sequence-specific primers (SSP1, SSP2, SSP3, and SSP4) were sequentially selected from known DNA (5'→3') to perform FPR-PCR. SSP3 is the fragment that mediates intra-strand annealing (FISA). The FISA fragment is attached to the 5' end of SSP1, generating a fusion primer. FPR-PCR comprises two rounds of amplification reactions. The single-fusion primary FPR-PCR begins with the selective synthesis of the target first strand, then allows the primer to partially anneal to some place(s) on the unknown region of this strand, producing the target second strand. Afterward, a new first strand is synthesized using the second strand as the template. The 3' end of this new first strand undergoes intra-strand annealing to the FISA site, followed by the formation of a racket-like DNA by a loop-back extension. This racket-like DNA is exponentially amplified in the secondary FPR-PCR performed using SSP2 and SSP4. We validated this FPR-PCR method by identifying the unknown flanks of Lactobacillus brevis CD0817 glutamic acid decarboxylase genes and the rice hygromycin gene.

10.
AMB Express ; 12(1): 131, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36224448

ABSTRACT

Various PCR-based genome-walking methods have been developed to acquire unknown flanking DNA sequences. However, the specificity and efficacy levels, and the operational processes, of the available methods are unsatisfactory. This work proposes a novel walking approach, termed differential annealing-mediated racket PCR (DAR-PCR). The key to DAR-PCR is the use of primer-mediated intra-strand annealing (ISA). An ISA primer consists of a 5' root homologous to the known sequence and a heterologous 3' bud. In the single low-stringency cycle, the ISA primer anneals to a site on an unknown region and extends towards the sequence-specific primer (SSP) 1 site, thereby forming a target single-stranded DNA bound by the SSP1 complement and the ISA primer. In the subsequent more stringent cycles, its complementary strand is accumulated, owing to the differential annealing between the moderate-stringency ISA primer and the high-stringency SSP1. The accumulation of this strand provides an opportunity for ISA mediated by the ISA primer root. A loop-back extension subsequent to ISA occurs, creating a racket-like DNA with the known region positioned at both ends of the unknown sequence. This DNA is exponentially amplified during the secondary PCR driven by an SSP pair inner to SSP1. DAR-PCR was validated as an efficient walking method by determining unknown flanking sequences in Lactobacillus brevis and Oryza sativa.

11.
Front Bioeng Biotechnol ; 10: 792848, 2022.
Article in English | MEDLINE | ID: mdl-35497369

ABSTRACT

Genome walking is a method used to retrieve unknown flanking DNA. Here, we reported wristwatch (WW) PCR, an efficient genome walking technique mediated by WW primers (WWPs). WWPs feature 5'- and 3'-overlap and a heterologous interval. Therefore, a wristwatch-like structure can be formed between WWPs under relatively low temperatures. Each WW-PCR set is composed of three nested (primary, secondary, and tertiary) PCRs individually performed by three WWPs. The WWP is arbitrarily annealed somewhere on the genome in the one low-stringency cycle of the primary PCR, or directionally to the previous WWP site in one reduced-stringency cycle of the secondary/tertiary PCR, producing a pool of single-stranded DNAs (ssDNAs). A target ssDNA incorporates a gene-specific primer (GSP) complementary at the 3'-end and the WWP at the 5'-end and thus can be exponentially amplified in the next high-stringency cycles. Nevertheless, a non-target ssDNA cannot be amplified as it lacks a perfect binding site for any primers. The practicability of the WW-PCR was validated by successfully accessing unknown regions flanking Lactobacillus brevis CD0817 glutamate decarboxylase gene and the hygromycin gene of rice. The WW-PCR is an attractive alternative to the existing genome walking techniques.

12.
Methods Mol Biol ; 2410: 567-579, 2022.
Article in English | MEDLINE | ID: mdl-34914068

ABSTRACT

The main objectives of developing vaccines to prevent malaria transmission are malaria control and preventing the reemergence of the disease in endemic regions. Molecular and in silico characterization of a candidate molecule is the first step in the vaccine design process. Determining the sequence and amplification of full-length cDNA copies from the mRNA transcripts is often challenging. The methods in this chapter provide a protocol for the rapid amplification of cDNA ends (RACE) and genome walking. Carboxypeptidase B2 enzyme from A. stephensi (CPBAs-2) was selected as the target molecule and the steps in its characterization and in silico analysis are explained in this chapter.


Subject(s)
Malaria Vaccines , Malaria , Animals , DNA, Complementary , Disease Vectors , Genome , Humans , Malaria/transmission
13.
Front Plant Sci ; 12: 691940, 2021.
Article in English | MEDLINE | ID: mdl-34239528

ABSTRACT

Genome walking (GW), a strategy for capturing previously unsequenced DNA fragments that are in proximity to a known sequence tag, is currently predominantly based on PCR. Recently developed PCR-based methods allow for combining of sequence-specific primers with designed capturing primers capable of annealing to unknown DNA targets, thereby offering the rapidity and effectiveness of PCR. This study presents a methodological improvement to the previously described GW technique known as palindromic sequence-targeted PCR (PST-PCR). Like PST-PCR, this new method (called PST-PCR v.2) relies on targeting of capturing primers to palindromic sequences arbitrarily present in natural DNA templates. PST-PCR v.2 consists of two rounds of PCR. The first round uses a combination of one sequence-specific primer with one capturing (PST) primer. The second round uses a combination of a single (preferred) or two universal primers; one anneals to a 5' tail attached to the sequence-specific primer and the other anneals to a different 5' tail attached to the PST primer. The key advantage of PST-PCR v.2 is the convenience of using a single universal primer with invariable sequences in GW processes involving various templates. The entire procedure takes approximately 2-3 h to produce the amplified PCR fragment, which contains a portion of a template flanked by the sequence-specific and capturing primers. PST-PCR v.2 is highly suitable for simultaneous work with multiple samples. For this reason, PST-PCR v.2 can be applied beyond the classical task of GW for studies in population genetics, in which PST-PCR v.2 is a preferred alternative to amplified fragment length polymorphism (AFLP) or next-generation sequencing. Furthermore, the conditions for PST-PCR v.2 are easier to optimize, as only one sequence-specific primer is used. This reduces non-specific random amplified polymorphic DNA (RAPD)-like amplification and formation of non-templated amplification. Importantly, akin to the previous version, PST-PCR v.2 is not sensitive to template DNA sequence complexity or quality. This study illustrates the utility of PST-PCR v.2 for transposon display (TD), which is a method to characterize inter- or intra-specific variability related to transposon integration sites. The Ac transposon sequence in the maize (Zea mays) genome was used as a sequence tag during the TD procedure to characterize the Ac integration sites.

14.
Food Chem ; 344: 128599, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33223297

ABSTRACT

Maltogenic amylase suppressed starch retrogradation in baked products. Here, a maltogenic amylase-producing strain of bacteria was screened and identified as Bacillus licheniformis R-53. Its coding gene was cloned and over-expressed in Bacillus subtilis WB600. Recombinant maltogenic amylase BLMA exhibited activity of 3235 U/mg under optimal conditions (60 °C and pH 6.5), with a good thermostability and pH stability. Mixolab experiment showed that a concentration of 60 ppm BLMA significantly improved the operating characteristics of dough. Baking test indicated the recombinant BLMA reduced bread hardness by 2.12 times compared with the control. Compared with maltogenic amylase from Novozymes (Novamyl 3D BG) and Angel Yeast Co. Ltd. (MAM100), BLMA has better effect on improving the bread volume, and almost the same effect on reducing hardness, improving elasticity and maintaining sensory as Novamyl 3D BG. Adding BLMA improved bread quality, increased bread volume and decreased hardness during storage, thus extending its shelf life.


Subject(s)
Bacillus licheniformis/enzymology , Bread/analysis , Glycoside Hydrolases/metabolism , Bacillus licheniformis/classification , Bacillus licheniformis/genetics , Elasticity , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Hardness , Hydrogen-Ion Concentration , Protein Stability , RNA, Ribosomal, 16S/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Rheology , Temperature
15.
J Genet Eng Biotechnol ; 18(1): 64, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33083895

ABSTRACT

BACKGROUND: Various polymerase chain reaction (PCR)-based methods have been applied for the development of genome walking (GW) technique. These methods which could be based on the application of restriction enzymes or primers have various efficiencies to identify the unknown nucleotide sequences. The present study was conducted to design a new innovative double-strand adaptor using MAP30 gene sequence of Momordica charantia plant as a model to improve genome walking with convenient PCR. RESULTS: The adaptor was designed using multiple restriction sites of Hind III, BamH I, EcoR I, and Bgl II enzymes with no restriction site in a known sequence of the MAP30 gene. In addition, no modification was required to add phosphate, amine, or other groups to the adaptor, since restriction enzyme digestion of double-strand adaptor provided the 5' phosphate group. Here, preparation of the phosphate group in the genomic DNA of the plant digestion with restriction enzymes was performed followed by ligation with digested adaptor containing 5' phosphate group. CONCLUSION: PCR was done to amplify the unknown sequence using MAP30 gene-specific primer and adaptor primer. Results confirmed the ability of the technique for successful identification of the sequence. Consequently, a newly designed adaptor in the developed technique reduced the time and cost of the method compared to the conventional genome walking; also, cloning and culturing of bacterial steps could be eliminated.

16.
Extremophiles ; 23(5): 507-520, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31154531

ABSTRACT

The aim of this study was to isolate a novel esterase from a hypersaline lake by sequence-based metagenomics. The metagenomic DNA was isolated from the enriched hypersaline lake sediment. Degenerate primers targeting the conserved regions of lipolytic enzymes of halophilic microorganisms were used for polymerase chain reaction (PCR) and a whole gene was identified by genome walking. The gene was composed of 783 bp, which corresponds to 260 amino acids with a molecular weight of 28.2 kDa. The deduced amino acid sequence best matched with the esterase from Halomonas gudaonensis with an identity of 91%. Recombinantly expressed enzyme exhibited maximum activity towards pNP-hexanoate with a kcat value of 12.30 s-1. The optimum pH and temperature of the enzyme were found as 9 and 30 °C, respectively. The effects of NaCl, solvents, metal ions, detergents and enzyme inhibitors were also studied. In conclusion, a novel enzyme, named as hypersaline lake "Acigöl" esterase (hAGEst), was identified by sequence-based metagenomics. The high expression level, the ability to maintain activity at cold temperatures and tolerance to DMSO and metal ions are the most outstanding properties of the hAGEst.


Subject(s)
Bacterial Proteins/genetics , Esterases/genetics , Metagenome , Salt Tolerance , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Enzyme Stability , Esterases/chemistry , Esterases/metabolism , Halomonas/enzymology , Halomonas/genetics , Lakes/microbiology , Microbiota , Salinity , Substrate Specificity
17.
Genes (Basel) ; 10(4)2019 04 15.
Article in English | MEDLINE | ID: mdl-30991756

ABSTRACT

The sex of an animal influences its economic traits, especially in species displaying sexual dimorphism. The Chinese soft-shelled turtle, Pelodiscus sinensis, is an economically important aquatic species that shows significant male sexual dimorphism, with a large body size, faster growth, a thick and wide calipash, and lower body fat. In this study, ten male and ten female turtles were subjected to restriction site-associated DNA sequencing (RAD-seq) using the Hi-Seq 4000 sequencing platform to isolate female-specific DNA fragments. We identified 5967 bp and 6532 bp fragments using genome walking. Three female-specific markers designed from these two fragments were confirmed to separate the sexes of Pelodiscus sinensis perfectly. One of the female-specific markers showed dosage association in female and male individuals. Individuals from different populations (n = 296) were used to validate that the female-specific markers could identify the genetic sex of Pelodiscus sinensis with 100% accuracy. The results of the present study demonstrated that RAD-seq was useful to develop sex-related markers in animals, and verified that the sex determination system of Pelodiscus sinensis belonged to the ZZ/ZW heterogametic system. Importantly, the developed markers could lead to a method for sex-controlled breeding in the Chinese soft-shelled turtle.


Subject(s)
Genetic Markers , Restriction Mapping/veterinary , Sequence Analysis, DNA/veterinary , Turtles/genetics , Animals , Body Size , Female , Gene Dosage , Genome-Wide Association Study , Male , Sex Characteristics
18.
Methods Mol Biol ; 1822: 83-105, 2018.
Article in English | MEDLINE | ID: mdl-30043298

ABSTRACT

The development of plant genetic transformation techniques has greatly enhanced our capacity to investigate and understand gene function. Since T-DNA constructs insert randomly in genomes, in principle, it is possible to construct a population of individuals harboring one or more T-DNA inserted in any region of the genome. Such populations can be screened following two approaches: (1) given a mutant phenotype, one could find the gene subtending the phenotypic alteration (forward approach), or (2) given a gene of interest, one could identify the phenotypic effect of its expression perturbation (reverse approach).Activation tagging is an application of T-DNA mutagenesis aimed at obtaining gain-of-function mutations. This can be achieved by introducing enhancer sequences randomly in the target genome via a T-DNA shuttle and then analyzing the genomic regions flanking the insertion sites in individuals showing phenotypic alterations. In this chapter, we describe the detailed procedure to obtain and screen an activation-tagged population in Medicago truncatula.


Subject(s)
DNA, Bacterial , Medicago truncatula/genetics , Mutagenesis, Insertional , Gene Expression Regulation, Plant , Genes, Plant , Genetic Vectors/genetics , Genome, Plant , Genomics/methods , Genotype , Phenotype , Transformation, Genetic
19.
AMB Express ; 8(1): 77, 2018 May 09.
Article in English | MEDLINE | ID: mdl-29744607

ABSTRACT

A stepwise partially overlapping primer-based PCR (SWPOP-PCR) method for isolating flanking unknown DNA regions was developed, which comprises three rounds of nested PCRs sequentially driven by SWPOP primer-nested specific primer pairs. SWPOP primer set is characterized by a partial overlap of 10 bp with 3'-part of the latter primer is identical to 5'-part of the former one, which makes the SWPOP primer in use anneal to SWPOP site of the prior PCR product only at relatively low temperature. For each PCR, target single-stranded DNA primed by the SWPOP primer in the exclusive one low-stringency cycle is converted into double-stranded form in the following high-stringency cycle due to the presence of a perfect annealing site for the specific primer. This double-stranded DNA bounded by the specific primer and the SWPOP primer is exponentially amplified in the remaining high-stringency cycles. Non-target single-stranded DNA, however, cannot be amplified given the lack of perfect complementary sequences for any primers. Therefore, the partial overlap of a SWPOP primer set preferentially synthesizes target products but inhibits nonspecific amplification. We successfully exploited SWPOP-PCR to obtain the DNA sequences flanking glutamate decarboxylase gene (gadA) locus in Lactobacillus brevis NCL912 and hygromycin gene (hyg) integrated in rice.

20.
AMB Express ; 7(1): 195, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29098449

ABSTRACT

Current genome walking methods are very time consuming, and many produce non-specific amplification products. To amplify the flanking sequences that are adjacent to Tn5 transposon insertion sites in Serratia marcescens FZSF02, we developed a genome walking method based on TAIL-PCR. This PCR method added a 20-cycle linear amplification step before the exponential amplification step to increase the concentration of the target sequences. Products of the linear amplification and the exponential amplification were diluted 100-fold to decrease the concentration of the templates that cause non-specific amplification. Fast DNA polymerase with a high extension speed was used in this method, and an amplification program was used to rapidly amplify long specific sequences. With this linear and exponential TAIL-PCR (LETAIL-PCR), we successfully obtained products larger than 2 kb from Tn5 transposon insertion mutant strains within 3 h. This method can be widely used in genome walking studies to amplify unknown sequences that are adjacent to known sequences.

SELECTION OF CITATIONS
SEARCH DETAIL
...