Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Water Environ Res ; 96(8): e11105, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39148173

ABSTRACT

Few studies apply geochemical concepts governing fluoride fate and transport in natural waters to geochemical conditions at contaminated industrial sites. This has negative implications for designing sampling and compliance monitoring programs and informing remediation decision-making. We compiled geochemical data for 566 groundwater samples from industrial waste streams associated with elevated fluoride and that span a range of geochemical conditions, including alkaline spent potliner, near-neutral pH coal combustion, and acidic gypsum stack impoundments. Like natural systems, elevated fluoride (hundreds to thousands of ppm) exists at the pH extremes and is generally tens of ppm at near-neutral pH conditions. Geochemical models identify pH-dependent fluoride complexation at low pH and carbonate stability at high pH as dominant processes controlling fluoride mobility. Limitations in available thermochemical, kinetic rate, and adsorption/desorption data and lack of complete analyses present uncertainties in quantitative models used to assess fluoride mobility at industrial sites. PRACTITIONER POINTS: Geochemical fundamentals of fluoride fate and transport in groundwater are communicated for environmental practitioners. Fluoride is a reactive constituent in groundwater, and factors that govern attenuation are identified. Geochemical models are useful for identifying fluoride attenuation processes, but quantitative use is limited by thermodynamic data uncertainties.


Subject(s)
Fluorides , Groundwater , Water Pollutants, Chemical , Groundwater/chemistry , Fluorides/chemistry , Fluorides/analysis , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Industrial Waste/analysis , Environmental Monitoring , Hydrogen-Ion Concentration
2.
Heliyon ; 10(12): e32992, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39022055

ABSTRACT

The current study integrates remote sensing, machine learning, and physicochemical parameters to detect hydrodynamic conditions and groundwater quality deterioration in non-rechargeable aquifer systems. Fifty-two water samples were collected from all water resources in Siwa Oasis and analyzed for physical (pH, T°C, EC, and TDS) chemical (SO4 2-, HCO3 -, NO3 -, Cl-, CO3 2-, SiO2, Mg2+, Na+, Ca2+, and K+), and trace metals (AL, Fe, Sr, Ba, B, and Mn). A digital elevation model supported by machine learning was used to predict the change in the land cover (surface lake area, soil salinity, and water logging) and its effect on water quality deterioration. The groundwater circulation and interaction between the deep aquifer (NSSA) and shallow aquifer (TCA) were detected from the pressure-depth profile of 27 production wells penetrating NSSA. The chemical facies evolution in the aquifer systems were (Ca-Mg-HCO3) in the first stage (freshwater of NSSA) and changed to (Na-Cl) type in the last stage (brackish water of TCA and springs). Support vector machine successfully predicted the rapid increase of the hypersaline lake area from 22.6 km2 to 60.6 km2 within 30 years, which deteriorated a large part of the cultivated land, reflecting the environmental risk of over-extraction of water for irrigation of agricultural land by flooding technique and lack of suitable drainage network. The waterlogging in the study was due to a reduction in the infiltration rate (low permeability) of the soil and quaternary aquifer. The cause of this issue could be a complete saturation of agricultural water with chrysotile, calcite, talc, dolomite, gibbsite, chlorite, Ca-montmorillonite, illite, hematite, kaolinite and K-mica (saturation index >1), giving the chance of these minerals to precipitate in the pore spaces of the soil and decrease the infiltration rate. The NSSA is appropriate for irrigation, whereas TCA is inappropriate due to potential salinity and magnesium risks. The best way to manage water resources in Siwa Oasis could be to use underground drip irrigation and combine water with TCA and NSSA.

3.
ACS ES T Water ; 4(7): 2944-2956, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39005241

ABSTRACT

A multitude of geochemical processes control the aqueous concentration and transport properties of trace metal contaminants such as arsenic (As) in groundwater environments. Effective As remediation, especially under reducing conditions, has remained a significant challenge. Fe(II) nitrate treatments are a promising option for As immobilization but require optimization to be most effective. Here, we develop a process-based numerical modeling framework to provide an in-depth understanding of the geochemical mechanisms controlling the response of As-contaminated sediments to Fe(II) nitrate treatment. The analyzed data sets included time series from two batch experiments (control vs treatment) and effluent concentrations from a flow-through column experiment. The reaction network incorporates a mixture of homogeneous and heterogeneous reactions affecting Fe redox chemistry. Modeling revealed that the precipitation of the Fe treatment caused a rapid pH decline, which then triggered multiple heterogeneous buffering processes. The model quantifies key processes for effective remediation, including the transfer of aqueous As to adsorbed As and the transformation of Fe minerals, which act as sorption hosts, from amorphous to more stable phases. The developed model provides the basis for predictions of the remedial benefits of Fe(II) nitrate treatments under varying geochemical and hydrogeological conditions, particularly in high-As coastal environments.

4.
Sci Total Environ ; 947: 174676, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39009157

ABSTRACT

This research employs a GIS-assisted approach of multivariate statistics and inverse geochemical modeling to unravel the processes driving groundwater salinization in a complex aquifer system. Multivariate statistical methods define the end-member water groups, identifying dominant processes explaining hydrogeochemical variance in wet and dry season water chemistry datasets. Mineral saturation indices (SIs) and inverse geochemical modeling (IGM) investigate potential geochemical reactions and mixing processes responsible for the observed groundwater compositions and their spatiotemporal evolution along reversed flow paths caused by overexploitation in the Rhodope aquifer system. Results reveal that a concise set of reactant and product phases, including CO2(g), H2O, calcite, gypsum, halite, celestite, plagioclase, K-feldspar, illite, and Ca-montmorillonite, along with ion exchange processes (CaX2, MgX2, and NaX), explains the hydrogeochemical evolution of groundwater along reversed flow paths between genetically and compositionally different surface and groundwater bodies. Systematic changes in water chemistry along the flow paths are attributed to mixing of surface waters and/or different groundwater end-members, dilution by a freshwater component, water-rock interaction (WRI) processes, and ion exchange involving Ca/Mg- and/or Na-clays. The chemical evolution represented by IGMs initiates with the mixing of Aegean seawater and Aspropotamos River, incorporating WRI and ion exchange processes (Mg- and Na-clays) to produce the water chemistry of Vistonida Lake, the only surface water body with hydraulic interaction with the groundwater system in the study area. Statistically-defined end-member water groups effectively explain the groundwater flow system and evolutionary processes between hydraulically connected surface and groundwater bodies. Overall, the fusion of multivariate statistical analysis (MVSA), inverse geochemical modeling (IGM), and GIS techniques proves potent and comprehensive, enhancing understanding of groundwater dynamics, improving prediction accuracy, aiding proficient management, and facilitating data-driven decision-making within the realm of groundwater assessment and management.

5.
Sci Total Environ ; 943: 173776, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38862046

ABSTRACT

High­arsenic groundwater is influenced by a combination of processes: reductive dissolution of iron minerals and formation of secondary minerals, metal complexation and redox reactions of organic matter (OM), and formation of more migratory thioarsenate, which together can lead to significant increases in arsenic concentration in groundwater. This study was conducted in a typical sulfur- and arsenic-rich groundwater site within the Datong Basin to explore the conditions of thioarsenate formation and its influence on arsenic enrichment in groundwater using HPLC-ICPMS, hydrogeochemical modeling, and fluorescence spectroscopy. The shallow aquifer exhibited a highly reducing environment, marked by elevated sulfide levels, low concentrations of Fe(II), and the highest proportion of thioarsenate. In the middle aquifer, an optimal ∑S/∑As led to the presence of significant quantities of thioarsenate. In contrast, the deep aquifer exhibited low sulfide and high Fe(II) concentration, with arsenic primarily originating from dissolved iron minerals. Redox fluctuations in the sediment driven by sulfur­iron minerals generated reduced sulfur, thereby facilitating thioarsenate formation. OM played a crucial role as an electron donor for microbial activities, promoting iron and sulfate reduction processes and creating conditions conducive to thioarsenate formation in reduced and high­sulfur environments. Understanding the process of thioarsenate formation and the influencing factors is of paramount importance for comprehending the migration and redistribution of arsenic in groundwater systems.

6.
Environ Sci Technol ; 58(16): 7217-7227, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38588505

ABSTRACT

The energy transition will have significant mineral demands and there is growing interest in recovering critical metals, including rare earth elements (REE), from secondary sources in aqueous and sedimentary environments. However, the role of clays in REE transport and deposition in these settings remains understudied. This work investigated REE adsorption to the clay minerals illite and kaolinite through pH adsorption experiments and extended X-ray absorption fine structure (EXAFS). Clay type, pH, and ionic strength (IS) affected adsorption, with decreased adsorption under acidic pH and elevated IS. Illite had a higher adsorption capacity than kaolinite; however, >95% adsorption was achieved at pH ∼7.5 regardless of IS or clay. These results were used to develop a surface complexation model with the derived binding constants used to predict REE speciation in the presence of competing sorbents. This demonstrated that clays become increasingly important as pH increases, and EXAFS modeling showed that REE can exist as both inner- and outer-sphere complexes. Together, this indicated that clays can be an important control on the transport and enrichment of REE in sedimentary systems. These findings can be applied to identify settings to target for resource extraction or to predict REE transport and fate as a contaminant.


Subject(s)
Clay , Metals, Rare Earth , Minerals , Adsorption , Metals, Rare Earth/chemistry , Clay/chemistry , Minerals/chemistry , Hydrogen-Ion Concentration , Aluminum Silicates/chemistry
7.
J Environ Manage ; 359: 120929, 2024 May.
Article in English | MEDLINE | ID: mdl-38669878

ABSTRACT

Understanding the variations in the geochemical composition of phosphogypsum (PG) destined for storage or valorization is crucial for assessing the safety and operational efficacy of waste management. The present study aimed to investigate the environmental behavior of PG using different leaching tests and to evaluate its geochemical behavior using geochemical modeling. Regarding the chemical characterization, the PG samples were predominantly composed of Ca (23.03-23.35 wt%), S (17.65-17.71 wt%), and Si (0.75-0.82 wt%). Mineralogically, the PG samples were primarily composed of gypsum (94.2-95.9 wt%) and quartz (1.67-1.76 wt%). Moreover, the automated mineralogy revealed the presence of apatite, fluorine and malladrite phases. The overall findings of the leaching tests showed that PG could be considered as non-hazardous material according to US Environmental Protection Agency limitations. However, a high leachability of elements at a L/S of 2 under acidic conditions ([Ca] = 166.52-199.87 mg/L, [S] = 207.9-233.59 mg/L, [F] = 248.62-286.65 mg/L) is observed. The weathering cell test revealed a considerable cumulative concentration over 90 days indicating potential adverse effects on the nearby environment (S: 8000 mg/kg, F: 3000 mg/kg, P: 700 mg/kg). Based on these results, it could be estimated that the surface storage of PG could have a serious impact on the environment. In this context, a simulation model was developed based on weathering cell results showed encouraging results for treating PG leachate using CaO before its disposal. Additionally, PHREEQC was used to analyze the speciation of major elements and calculate mineral phase saturation indices in PG leaching solutions. The findings revealed pH-dependent speciation for Ca, S, P, and F. The study identified gypsum, anhydrite, and bassanite as the key phases governing the dissolution of these elements.


Subject(s)
Calcium Sulfate , Phosphorus , Calcium Sulfate/chemistry , Calcium Sulfate/analysis , Phosphorus/analysis , Phosphorus/chemistry , Waste Management/methods
8.
Environ Sci Pollut Res Int ; 31(11): 16583-16600, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38321279

ABSTRACT

The exploitation of coal resources has disturbed the equilibrium of the original groundwater system, resulting in a perturbation of the deep groundwater dynamic conditions and hydrochemical properties. Exploring the formation of mine water chemistry under the conditions of deep coal seam mining in the Ordos Basin provides a theoretical basis for the identification of sources of mine water intrusion and the development and utilization of water resources. This paper takes Longwanggou Coal Mine as the research area, collects a total of 106 groups of water samples from the main water-filled aquifers, comprehensively uses Piper trilinear diagram, Gibbs diagram, ion correlation, ion ratio coefficient and mineral saturation index analysis, and carries out inverse geochemical modeling with PHREEQC software, so as to analyze the hydrochemical characteristics and causes of the main water-filled aquifers in deep-buried coal seams in the research area. The results show that the main hydrochemical processes in the study area are leaching and cation exchange, and the groundwater is affected by carbonate (calcite, dolomite), silicate (gypsum) and evaporite. Calculations of mineral saturation indices and PHREEQC simulations have led to the conclusion that the dissolution of rock salt and gypsum in groundwater accounts for most of the ionic action. Na+, Cl- and SO42- are mainly derived from the dissolution of rock salt and gypsum minerals, while Ca2+ and Mg2+ are mostly derived from the dissolution of dolomite and calcite. The results of the inverse geochemical modeling are consistent with the theoretical analysis.


Subject(s)
Groundwater , Magnesium , Water Pollutants, Chemical , Environmental Monitoring/methods , Calcium Sulfate/analysis , Water Pollutants, Chemical/analysis , Groundwater/chemistry , Calcium Carbonate/analysis , Water/analysis , Coal/analysis
SELECTION OF CITATIONS
SEARCH DETAIL