Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Genes (Basel) ; 15(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38927730

ABSTRACT

Pre-harvest sprouting (PHS) resistance is a complex trait, and many genes influencing the germination process of winter wheat have already been described. In the light of interannual climate variation, breeding for PHS resistance will remain mandatory for wheat breeders. Several tests and traits are used to assess PHS resistance, i.e., sprouting scores, germination index, and falling number (FN), but the variation of these traits is highly dependent on the weather conditions during field trials. Here, we present a method to assess falling number stability (FNS) employing an after-ripening period and the wetting of the kernels to improve trait variation and thus trait heritability. Different genome-based prediction scenarios within and across two subsequent seasons based on overall 400 breeding lines were applied to assess the predictive abilities of the different traits. Based on FNS, the genome-based prediction of the breeding values of wheat breeding material showed higher correlations across seasons (r=0.505-0.548) compared to those obtained for other traits for PHS assessment (r=0.216-0.501). By weighting PHS-associated quantitative trait loci (QTL) in the prediction model, the average predictive abilities for FNS increased from 0.585 to 0.648 within the season 2014/2015 and from 0.649 to 0.714 within the season 2015/2016. We found that markers in the Phs-A1 region on chromosome 4A had the highest effect on the predictive abilities for FNS, confirming the influence of this QTL in wheat breeding material, whereas the dwarfing genes Rht-B1 and Rht-D1 and the wheat-rye translocated chromosome T1RS.1BL exhibited effects, which are well-known, on FN per se exclusively.


Subject(s)
Germination , Plant Breeding , Quantitative Trait Loci , Triticum , Triticum/genetics , Triticum/growth & development , Quantitative Trait Loci/genetics , Plant Breeding/methods , Germination/genetics , Seasons , Genome, Plant/genetics , Phenotype , Genomics/methods
2.
Waste Manag ; 183: 123-131, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38744164

ABSTRACT

In this study, the reduction in the abundance of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) and the fertilizer potential of liquid products from hydrothermally treated cattle manure were investigated. Hydrothermal treatment (HTT) was conducted under different reaction temperatures (125, 150, 175 and 200 °C) and retention times (60, 90 and 120 min). The total organic carbon (TOC) and total nitrogen (TN) of the liquid product increased with increasing reaction temperature. The germination index (GI), a measure of the percentage of germination, exceeded 90 % at 125, 150, and 175 °C in diluted samples, while it decreased to 18 % at 200 °C. Although a longer retention time contributed to an increase in TOC of liquid products, it did not increase the GI values. The liquid product should be diluted or adjusted before use as fertilizer to prevent phytotoxicity. In our analysis of ARB and ARGs, E. coli and antibiotic-resistant E. coli were completely reduced after HTT, except for the operating conditions of 125 °C and 60 min. Although both a higher reaction temperature and longer retention time tended to be better for the reduction of ARGs and intI1, it was found that the longer retention time is much more effective than the higher reaction temperature. The reduction of target ARGs and intI1 was 2.9-log under175 °C and 120 min. Comprehensively considering the fertilizer potential of liquid product and the reduction of ARB and ARGs, 175 °C of reaction temperature and 120 min of retention time of operating conditions for HTT were recommended.


Subject(s)
Escherichia coli , Fertilizers , Manure , Manure/microbiology , Animals , Cattle , Escherichia coli/drug effects , Escherichia coli/genetics , Anti-Bacterial Agents/pharmacology , Genes, Bacterial , Drug Resistance, Bacterial/genetics , Nitrogen , Hot Temperature , Drug Resistance, Microbial/genetics
3.
Int J Mol Sci ; 25(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38612492

ABSTRACT

The excavation and utilization of dormancy loci in breeding are effective endeavors for enhancing the resistance to pre-harvest sprouting (PHS) of wheat varieties. CH1539 is a wheat breeding line with high-level seed dormancy. To clarify the dormant loci carried by CH1539 and obtain linked molecular markers, in this study, a recombinant inbred line (RIL) population derived from the cross of weak dormant SY95-71 and strong dormant CH1539 was genotyped using the Wheat17K single-nucleotide polymorphism (SNP) array, and a high-density genetic map covering 21 chromosomes and consisting of 2437 SNP markers was constructed. Then, the germination percentage (GP) and germination index (GI) of the seeds from each RIL were estimated. Two QTLs for GP on chromosomes 5A and 6B, and four QTLs for GI on chromosomes 5A, 6B, 6D and 7A were identified. Among them, the QTL on chromosomes 6B controlling both GP and GI, temporarily named QGp/Gi.sxau-6B, is a major QTL for seed dormancy with the maximum phenotypic variance explained of 17.66~34.11%. One PCR-based diagnostic marker Ger6B-3 for QGp/Gi.sxau-6B was developed, and the genetic effect of QGp/Gi.sxau-6B on the RIL population and a set of wheat germplasm comprising 97 accessions was successfully confirmed. QGp/Gi.sxau-6B located in the 28.7~30.9 Mbp physical position is different from all the known dormancy loci on chromosomes 6B, and within the interval, there are 30 high-confidence annotated genes. Our results revealed a novel QTL QGp/Gi.sxau-6B whose CH1539 allele had a strong and broad effect on seed dormancy, which will be useful in further PHS-resistant wheat breeding.


Subject(s)
Plant Dormancy , Quantitative Trait Loci , Plant Dormancy/genetics , Triticum/genetics , Plant Breeding , Alleles
4.
Int J Biol Macromol ; 267(Pt 2): 131404, 2024 May.
Article in English | MEDLINE | ID: mdl-38582466

ABSTRACT

Chitosan has received much more attention as a functional biopolymer with applications in pharmaceuticals, agricultural, drug delivery systems and cosmetics. The objectives of present investigation were to carry out modification of chitosan for enhancement of aqueous solubility, which will impart increased solubility and dissolution rate of poorly soluble drug itraconazole (ITZ) and also evaluate the modified chitosan for soyabean seed germination studies. The modification of chitosan was accomplished through the antisolvent precipitation method; employing five carboxylic acids. The resulting products were assessed for changes in molecular weight, degree of deacetylation, solubility and solid state characterization. Subsequently, the modified chitosan was complexed with itraconazole using the co-grinding technique. The prepared formulations were evaluated for solubility, FTIR (Fourier-transform infrared spectroscopy), PXRD (Powder X-ray diffraction), in-vitro dissolution studies. Furthermore the effect of modified chitosan has been evaluated on soybean seed germination. Results demonstrated that, modified chitosan improves self and solubility of itraconazole by six folds. As there was increased degree of deacetylation of chitosan leads to improvement in solubility. The results of FTIR showed the slight shifting of peaks in co-grind formulations of itraconazole. Formulations showed reduction in crystallinity of drug which leads to enhancement in dissolution rate as compared to pure itraconazole. Retention of property of seed germination was observed with modified chitosan at optimum concentration of 3 % w/v, with benefit of enhanced aqueous solubility of chitosan. This positive result paves the way for the advancement of pharmaceutical and agrochemical products employing derivatives of chitosan.


Subject(s)
Agrochemicals , Chitosan , Itraconazole , Solubility , Chitosan/chemistry , Agrochemicals/chemistry , Agrochemicals/pharmacology , Itraconazole/chemistry , Itraconazole/pharmacology , Glycine max/chemistry , Germination/drug effects , Seeds/chemistry , Seeds/drug effects , Chemical Phenomena , Spectroscopy, Fourier Transform Infrared , Molecular Weight , X-Ray Diffraction
5.
Bioresour Technol ; 400: 130663, 2024 May.
Article in English | MEDLINE | ID: mdl-38583671

ABSTRACT

The measurement of germination index (GI) in composting is a time-consuming and laborious process. This study employed four machine learning (ML) models, namely Random Forest (RF), Artificial Neural Network (ANN), Support Vector Regression (SVR), and Decision Tree (DT), to predict GI based on key composting parameters. The prediction results showed that the coefficient of determination (R2) for RF (>0.9) and ANN (>0.9) was higher than SVR (<0.6) and DT (<0.8), suggesting that RF and ANN displayed superior predictive performance for GI. The SHapley additive exPlanations value result indicated that composting time, temperature, and pH were the important features contributing to GI. Composting time was found to have the most significant impact on GI. Overall, RF and ANN were suggested as effective tools for predicting GI in composting. This study offers the reliable approach of accurately predicting GI in composting processes, thereby enabling intelligent composting practices.


Subject(s)
Composting , Machine Learning , Neural Networks, Computer , Composting/methods , Germination/physiology , Temperature , Hydrogen-Ion Concentration , Soil/chemistry , Organic Chemicals
6.
Article in English | MEDLINE | ID: mdl-38361099

ABSTRACT

This study attempted to determine the influence of diverse green wastes on food waste digestate composting and the improvement of operational conditions. Various effects of the green wastes (GW), with different types and sizes, initial substrate mixture C/N ratios, compost pile heights, and turning frequencies on the food waste digestate (FWD) composting were examined in the current work. The findings showed that the use of street sweeping green waste (SSGW) as an additive can maintain the thermophilic stage of the FWD composting for 28 days, while the end-product contained the greatest amounts of total phosphorus (TP, 2.29%) and total potassium (TK, 4.61%) and the lowest moisture content (14.8%). Crushed SSGW (20 mm) enabled the FWD composting to maintain the longest thermophilic period (28 days), achieving the highest temperature (70.2 °C) and seed germination index (GI, 100%). Adjusting the initial substrate mixture C/N ratio to 25, compost pile height to 30 cm, and turning frequency to three times a day could enhance the efficiency and improve the fertilizer quality of the co-composting of the FWD and SSGW. This study suggested that co-composting of FWD and SSGW (FWD/SSGW = 2.3, wet weight) is a promising technique for the treatment of municipal solid waste and provided significant theoretical data for the application of composting.

7.
Bioresour Technol ; 394: 130307, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199442

ABSTRACT

Continuous thermophilic composting (CTC) is potentially helpful in shortening the composting cycle. However, its universal effectiveness and the microbiological mechanisms involved are unclear. Here, the physicochemical properties and bacterial community dynamics during composting of distilled grain waste in conventional and CTC models were compared. CTC accelerated the organic matter degradation rate (0.2 vs. 0.1 d-1) and shortened the composting cycle (24 vs. 65 d), mainly driven by the synergism of bacterial genera. Microbial analysis revealed that the abundance of Firmicutes was remarkably improved compared to that in conventional composting, and Firmicutes became the primary bacterial phylum (relative abundance >70 %) during the entire CTC process. Moreover, correlation analysis demonstrated that bacterial composition had a remarkable effect on the seed germination index. Therefore, controlling the composting process under continuous thermophilic conditions is beneficial for enhancing composting efficiency and strengthening the cooperation between bacterial genera.


Subject(s)
Composting , Soil , Bacteria , Firmicutes , Manure
8.
J Environ Manage ; 353: 120182, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38278112

ABSTRACT

Randomly collected food waste results in inaccurate experimental data with poor reproducibility for composting. This study investigated standard food waste samples as replacements for randomly collected food waste. A response surface methodology was utilised to analyse data from a 28-day compost process optimisation experiment using collected food waste, and the optimal combination of composting parameters was derived. Experiments using different standard food waste samples (high oil and salt, high oil and sugar, balanced diet, and vegetarian) were conducted for 28 days under optimal conditions. The ranking of differences between the standard samples and collected food waste was vegetarian > balanced diet > high oil and sugar > high oil and salt. Statistical analysis indicated t-tests for increased oil and salt samples and collected food waste were not significant, and Cohen's d effect values were minimal. High oil and salt samples can be used as replacements for collected food waste in composting experiments.


Subject(s)
Composting , Refuse Disposal , Refuse Disposal/methods , Food Loss and Waste , Food , Feasibility Studies , Reproducibility of Results , Soil , Sodium Chloride , Sugars
9.
Ecotoxicology ; 33(1): 94-103, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38227083

ABSTRACT

The paper presents the results of studies on the influence of selected concentrations (10-100 mg L-1) of heavy metals (Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Zn) and metalloids (As, Sb, Se) on the germination and root elongation of garden cress (Lepidium sativum L). There are not many studies on phytotoxicity of heavy metals and metalloids with the complex use of single plant species so far. On the basis of the germination index (GI) and inhibition concentration IC50, the following order of phytotoxicity of the tested elements was determined: Se> As> Hg> Sb > Mo > Cd> Co > Zn > Ni. The other metals showed no phytotoxicity or even stimulating effect. In our study the stimulating effect of the majority of Pb concentrations and the lowest concentrations of Cd and Hg has been revealed. These metals do not play any role in living organisms, however some authors confirm their stimulating effect on plants at low concentrations. Toxic concentration of metals and metalloids calculated as IC50 are lower than the concentration calculated as GI (not phytotoxic). It is well known that seeds are more independent and tolerant to toxicants when they contain reserve substances which are used during the germination period. On the basis of conducted research, high tolerance of L. sativum to heavy metals and metalloids was found, which may indicate its usefulness for phytotoxicity assessment of leachate from contaminated soil or waste (e.g. foundry waste) and its application for bioremediation to manage heavy metal pollution of soils or foundry wastes containing heavy metals and metalloids. The understanding of heavy metal and metalloids toxicity will facilitate bioremediation.


Subject(s)
Mercury , Metalloids , Metals, Heavy , Soil Pollutants , Lepidium sativum , Cadmium , Metalloids/toxicity , Metalloids/analysis , Lead , Metals, Heavy/toxicity , Metals, Heavy/analysis , Plants , Soil , Environmental Monitoring/methods , Soil Pollutants/toxicity , Soil Pollutants/analysis
10.
J Environ Manage ; 347: 119185, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37797516

ABSTRACT

The revegetation of highly phytotoxic sulfidic tailings is a challenging task which may often be successfully accomplished only following the addition of soil amendments. This study evaluated the use of green compost at increasing rates (10, 25 and 50% v/v) for the revegetation of extremely acidic sulfidic tailings of the North Mathiatis mine, Cyprus, with the use of alfalfa (Medicago sativa L.) plants, under greenhouse conditions. Alfalfa seeds were successfully germinated in tailings amended either with 25% or 50% (v/v) compost (52 and 85%, respectively). Plants managed to complete their life cycle and produce seeds only in the tailings amended with 50% (v/v) compost, since plants grown in tailings amended with lower rates of compost (i.e., 10 or 25% v/v) showed severe symptoms of phytotoxicity and eventually died. The amendment of tailings with 50% (v/v) green compost resulted in increased pH values, water holding capacity and organic content levels, soil respiration rates, as well as changes in soil elemental composition compared with tailings alone treatment, which in turn facilitated the growth and development of alfalfa plants during the whole experimental period (140 days). Plants managed to reach the late seedpod growth stage, indicating their potential regeneration and continual existence to the amended tailings, simultaneously uncovering the development of favorable conditions in the rhizosphere for the successful revegetation of studied tailings.


Subject(s)
Composting , Soil Pollutants , Medicago sativa , Plants , Soil/chemistry , Seeds/chemistry , Soil Pollutants/analysis
11.
Waste Manag ; 171: 502-511, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37806158

ABSTRACT

The phytotoxicity of the compost aqueous extracts determines the maturity. To improve the accuracy of compost maturity evaluation using the seed germination index (GI) method, different extraction methods (different moisture content and extraction ratio) were designed to obtain samples with various phytotoxic level. This study analyzed the effects of different extraction condition of compost samples on GI, and established the relationship between phytotoxicity and GI. The results showed that the moisture content and extraction ratio of the compost significantly affected the GI. The extraction ratio for the compost with 60-70 % moisture content was 1:10 (ratio of compost mass to extract volume). However, commercial compost, which must have a moisture content of 30-45 %, had an extraction ratio of 1:30 (w:v). More importantly, compost extraction based on dry weight, with a moisture content of 10-15 %, more effectively reflected the phytotoxicity variations during composting. In such cases, the extraction ratio should be at least 1:30 (w:v) but not exceed 1:50 (w:v). The relationship between phytotoxicity and GI showed that dissolved organic carbon and dissolved nitrogen were the most important factors influencing GI, followed by NH4+, electrical conductivity, K, volatile fatty acids, Zn, and Cu. For composts with a GI greater than 70 %, the dissolved organic carbon, dissolved nitrogen, and NH4+ concentrations were below 257, 164, and 73 mg/L, respectively. These findings provide an optimized standard method for compost maturity evaluation using GI and a concentration threshold of key phytotoxicity is proposed to achieve accurate control of compost maturity.

12.
Plant Sci ; 336: 111835, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37611833

ABSTRACT

Soil salinity is a global issue that limits plant growth in agricultural fields and contributes to food crisis. Salt stressors impede plant's ionic, osmotic, and oxidative balance, as well as a variety of physiological functions. Exposure to salinity stress manifest considerable ROS clustering, entailing modification in performance of various organelles. To deal with salinity, plants use a variety of coping strategies, such as osmoregulation, ion-homeostasis, increased antioxidant synthesis, and so on. Nitric oxide (NO) is a pivotal signalling molecule that helps facilitate salt stress-induced physiological plant responses. A variety of evidences point to NO being produced under similar stress conditions and with similar kinetics as hydrogen peroxide (H2O2). The interplay between H2O2 and NO has important functional implications for modulating plant transduction processes. Besides, NO and calcium (Ca2+)-dependent pathways also have some connection in salt stress response mechanisms. Extensive crosstalk between NO and Ca2+ signalling pathways is investigated, and it suggests that almost every type of Ca2+ channel is under the tight control of NO, and NO acts as a Ca2+ mobilising compound and aids in signal reliance. The review provides insights into understanding recent advances regarding NO's, Ca2+ and H2O2 role in salt stress reduction with entwine signaling mechanisms.


Subject(s)
Hydrogen Peroxide , Nitric Oxide , Nitric Oxide/metabolism , Hydrogen Peroxide/metabolism , Calcium/metabolism , Plants/metabolism , Salt Stress , Salinity , Stress, Physiological
13.
Glob Chall ; 7(4): 2200172, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37020623

ABSTRACT

A single-phase Bi2VO5.5 powder is formed effectively through a mechanochemical ball milling approach at 650 °C in 5 h and its photocatalytic performance on methylene blue dye is explored. X-ray diffraction and Raman spectroscopy analytical instruments are utilized to confirm the phase formation. The evident presence of irregular-shaped grains is affirmed using a scanning electron microscope. To ascertain the chemical condition of the components present, the Bi2VO5.5 powdered sample undergo an X-Ray photoelectron spectroscopy investigation. The sample is analyzed using a time-dependent photocurrent to discern its charge carrier transportation behavior. A photocatalytic study using Bi2VO5.5 powder produced through the mechanochemical ball milling method has not been explored till now. The efficacy of the ball-milled Bi2VO5.5 powder to attain enhanced photocatalytic efficiency which hasn't been investigated till now, is explored. The ball-milled Bi2VO5.5 sample achieved 70% degradation efficiency when performing the photocatalysis investigation. The photocatalytic dye degradation discerns pseudo-first-order kinetics and achieves a notable k value of 0.00636 min-1. The scavenger test indicates that h+ radicals are the prominent active species during the photocatalysis experiment. The germination index is determined by conducting a phytotoxicity test with the use of Vigna radiata seeds. Here ball-milled Bi2VO5.5 powder attains enhanced dye degradation efficiency.

14.
Int J Phytoremediation ; 25(12): 1676-1686, 2023.
Article in English | MEDLINE | ID: mdl-36905097

ABSTRACT

This study investigated the phytostabilization and plant-promoting abilities of silver nanoparticles (AgNPs). Twelve Zea mays seeds were planted in water and AgNPs (10, 15 and 20 mg mL-1) irrigated soil for 21 days on soil containing 0.32 ± 0.01, 3.77 ± 0.03, 3.64 ± 0.02, 69.91 ± 9.44 and 13.17 ± 0.11 mg kg-1 of As, Cr, Pb, Mn and Cu, respectively. In soil treated with AgNPs, the metal contents were reduced by 75%, 69%, 62%, 86%, and 76%. The different AgNPs concentrations significantly reduced accumulation of As, Cr, Pb, Mn, and Cu in Z. mays roots by 80%, 40%, 79%, 57%, and 70%, respectively. There were also reductions in shoots by 100%, 76%, 85%, 64%, and 80%. Translocation factor, bio-extraction factor and bioconcentration factor demonstrated a phytoremediation mechanism based on phytostabilization. Shoots, roots, and vigor index improved by 4%, 16%, and 9%, respectively in Z. mays grown with AgNPs. Also, AgNPs increased antioxidant activity, carotenoids, chlorophyll a and chlorophyll b by 9%, 56%, 64%, and 63%, respectively, while decreasing malondialdehyde contents in Z. mays by 35.67%. This study discovered that AgNPs improved the phytostabilization of toxic metals while also contributing to Z. mays' health-promoting properties.


Enhanced phytoremediation strategies, which use nanoparticles to boost and facilitate the phytoremediation capacity of plants, are being recommended due to the limitations of traditional phytoremediation employing hyperaccumulating plants alone. Nanoparticles enhance phytoremediation potentials by directly reducing phytoavailable pollutants and promoting plant growth. Silver nanoparticles (AgNPs) are recognized as possessing the ability to enhance the phytoremediation of heavy metals HMs by converting them to a less toxic form and immobilizing the remaining phytoavailable HMs. This is in addition to their potential to modify plant biochemical and physiological properties to counteract HM toxicity.


Subject(s)
Metal Nanoparticles , Metals, Heavy , Soil Pollutants , Antioxidants , Silver/toxicity , Zea mays , Chlorophyll A , Metal Nanoparticles/toxicity , Lead , Biodegradation, Environmental , Soil Pollutants/toxicity , Soil Pollutants/analysis , Soil , Plant Roots/chemistry , Plants , Metals, Heavy/analysis
15.
Sci Total Environ ; 873: 162288, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36801343

ABSTRACT

The abuse of chemical fertilizers in recent decades has led the promotion of less harmful alternatives, such as compost or aqueous extracts obtained from it. Therefore, it is essential to develop liquid biofertilizers, which in addition of being stable and useful for fertigation and foliar application in intensive agriculture had a remarkable phytostimulant extracts. For this purpose, a collection of aqueous extracts was obtained by applying four different Compost Extraction Protocols (CEP1, CEP2, CEP3, CEP4) in terms of incubation time, temperature and agitation of compost samples from agri-food waste, olive mill waste, sewage sludge and vegetable waste. Subsequently, a physicochemical characterization of the obtained set was performed in which pH, electrical conductivity and Total Organic Carbon (TOC) were measured. In addition, a biological characterization was also carried out by calculating the Germination Index (GI) and determining the Biological Oxygen Demand (BOD5). Furthermore, functional diversity was studied using the Biolog EcoPlates technique. The results obtained confirmed the great heterogeneity of the selected raw materials. However, it was observed that the less aggressive treatments in terms of temperature and incubation time, such as CEP1 (48 h, room temperature (RT)) or CEP4 (14 days, RT), provided aqueous compost extracts with better phytostimulant characteristics than the starting composts. It was even possible to find a compost extraction protocol that maximize the beneficial effects of compost. This was the case of CEP1, which improved the GI and reduced the phytotoxicity in most of the raw materials analyzed. Therefore, the use of this type of liquid organic amendment could mitigate the phytotoxic effect of several composts being a good alternative to the use of chemical fertilizers.

16.
Environ Res ; 218: 115019, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36495957

ABSTRACT

Bioconversion of fruit waste (FW) and sewage sludge (SS) sludge mixtures into valuable products was investigated using black soldier fly (Hermetia illucens) larvae (BSFL) under a lab-scale trial. For that, five different setups of FW and SS mixtures (100FW; 100SS; 70SS+30FW; 50SS+50FW; 70FW+30SS) were prepared and changes in larval biomass, feed loss, and residual waste physicochemical properties were estimated until the emergence of fly in all waste mixtures. BSFL caused a significant decrease in total organic carbon (11.71-34.79%) and carbon-to-nitrogen ratio (C/N ratio) while the increase in total nitrogen (8.35-123.30%), total phosphorus (17.02-143.36%), and total potassium (19.40-48.87%) contents in the feedstock. The germination index and C/N ratio of frass were below the standards decided for manure quality in a few setups suggesting the non-stability of frass for agronomic applications due to the short duration (20 d) of composting. Larval biomass yield, feed conversion ratio and nutrient mineralization were found to be higher in 50SS+50FW and 70FW+30SS feedstock combinations suggesting their suitability as ideal feedstock for optimal BSFL cultivation. The impact of toxic substances in sewage on BSFL survival, growth and waste stabilization processes, and frass metal enrichment could be investigated in future studies.


Subject(s)
Diptera , Animals , Larva , Sewage , Fruit , Carbon , Nitrogen
17.
Environ Sci Pollut Res Int ; 30(11): 29699-29710, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36417067

ABSTRACT

The study examines the recycling potential of fine fraction obtained from dumpsites for potential application as a soil conditioner. Legacy waste was excavated from Mulund dumpsite located in Mumbai, India, and < 4 mm fraction (fine fraction) was collected and tested for essential compost parameters like pH, electrical conductivity, total organic carbon (TOC), primary nutrients, and heavy metals. Further, the impact of fine fraction on plant growth was studied using phytotoxicity and vegetation test. The results show that except for TOC, fine fraction meets most of the physicochemical characteristics standard prescribed for Indian MSW-based compost. The fine fraction had significant nutrient content, i.e., 0.81% (N), 0.27% (P as P2O5), and 0.55% (K as K2O), compared to local soil and meets the Indian MSW-based compost standards, except for phosphorous. However, the total heavy metals in fine fraction exceeded the standard limits for chromium, copper, nickel, lead, and zinc. The germination index of tomato seeds (Lycopersicon esculentum) for the fine fraction extract was more than that of the control for aged fine fraction (> 5 years old), whereas inhibition was observed for fine fraction less than 3 years old. The vegetation test on Napier grass (Pennisetum purpureum) showed that the fine fraction amended soil had a 53-56% increase in biomass yield compared to soil. Based on the characteristics of fine fraction, different potential applications, such as fertilizer, soil enricher, or substrate for remediation activity, are identified; however, caution will be desired on a case-to-case basis.


Subject(s)
Metals, Heavy , Soil Pollutants , Soil/chemistry , Metals, Heavy/analysis , Nickel/analysis , Zinc , Copper , Soil Pollutants/analysis
18.
Ecotoxicol Environ Saf ; 247: 114251, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36327785

ABSTRACT

Static facultative heap composting of animal manure is widely used in China, but there is almost no systematic research on the phytotoxicity of the produced compost. Here, we evaluated the phytotoxic variation in compost produced by facultative heap composting of four types of animal manure (chicken manure, pig manure, sheep manure, and cattle manure) using different plant seeds (cucumber, radish, Chinese cabbage, and oilseed rape) to determine germination index (GI). The key factors that affected GI values were identified, including the dynamics of the phytotoxicity and microbial community during heap composting. Sensitivity to toxicity differed depending on the type of plant seed used. Phytotoxicity during facultative heap composting, evaluated by the GI, was in the order: chicken manure (0-6.6 %) < pig manure (14.4-90.5 %) < sheep manure (46.0-93.0 %) < cattle manure (50.2-105.8 %). Network analysis showed that the volatile fatty acid (VFA) concentration was positively correlated with Firmicutes abundance, and NH4+-N was correlated with Actinobacteria, Proteobacteria, and Bacteroidetes. More bacteria were stimulated to participate in conversions of dissolved organic carbon, dissolved nitrogen, VFA, and ammonia-nitrogen (NH4+-N) in sheep manure heap composting than that in other manure. The GI was most affected by VFA in chicken manure and cattle manure heap composting, while NH4+-N was the main factor affecting the GI in pig manure and sheep manure compost. The dissolved carbon and nitrogen content and composition, as well as the core and proprietary microbial communities, were the primary factors that affected the succession of phytotoxic substances in facultative heap composting, which in turn affected GI values. In this study, the key pathways of livestock manure composting that affected GI and phytotoxicity were found and evaluated, which provided new insights and theoretical support for the safe use of organic fertilizer.


Subject(s)
Alkaloids , Composting , Toxins, Biological , Swine , Cattle , Sheep , Animals , Manure , Livestock , Farms , Germination , Seeds , Nitrogen , Chickens
19.
BMC Plant Biol ; 22(1): 326, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35790923

ABSTRACT

BACKGROUND: Pre-harvest sprouting (PHS) is a serious limiting factor for wheat (Triticum aestivum L.) grain yield and end-use quality. Identification of reliable molecular markers and PHS-resistant germplasms is vital to improve PHS resistance by molecular marker-assisted selection (MAS), but the effects of allelic variation and haplotypes in genes conferring PHS resistance in winter wheat cultivars are less understood. RESULTS: Resistance to PHS was tested in 326 commercial winter wheat cultivars for three consecutive growing seasons from 2018-2020. The effects of alleles and haplotypes of 10 genes associated with PHS resistance were determined for all cultivars and were validated by introgressing the PHS-resistance allele and haplotype into a susceptible wheat cultivar. High level of phenotypic variation in PHS resistance was observed in this set of cultivars and 8 of them were highly resistant to PHS with stable germination index (GI) of less than 25% in each individual year. Allelic effects of nine genes and TaMFT haplotype analysis demonstrated that the haplotype Hap1 with low-GI alleles at five positions had the best PHS resistance. This haplotype has the priority to use in improving PHS resistance because of its high effectiveness and rare present in the current commercial cultivars. Among 14 main allelic combinations (ACs) identified, the AC1 carrying the haplotype Hap1 and the TaSdr-B1a allele had better PHS resistance than the other classes. The introgression of Hap1 and TaSdr-B1a is able to significantly improve the PHS resistance in the susceptible cultivar Lunxuan 13. CONCLUSIONS: The effectiveness of alleles conferring PHS resistance in winter wheat cultivars was determined and the useful alleles and haplotypes were identified, providing valuable information for parental selection and MAS aiming at improving PHS-resistance in winter wheat. The identification of the PHS-resistant cultivars without known resistance alleles offers an opportunity to explore new PHS-resistant genes.


Subject(s)
Germination , Triticum , Alleles , Germination/genetics , Haplotypes , Seasons , Triticum/genetics
20.
Environ Res ; 214(Pt 1): 113766, 2022 11.
Article in English | MEDLINE | ID: mdl-35780853

ABSTRACT

The present study aims to vermiremediate allopathic pharmaceutical industry sludge (AS) amended with cattle dung (CD), in different feed mixtures (AS:CD) i.e (AS0) 0:100 [Positive control], (AS25) 25:75, (AS50) 50:50, (AS75) 75:25 and (AS100) 100:0 [Negative Control] for 180 days using earthworm Eisenia fetida. The earthworms could thrive and grow well up to the AS75 feed mixture. In the final vermicompost, there were significant decreases in electrical conductivity (29.18-18.70%), total organic carbon (47.48-22.39%), total organic matter (47.47-22.36%), and C: N ratio (78.15-54.59%). While, significant increases in pH (9.06-16.47%), total Kjeldahl nitrogen (69.57-139.58%), total available phosphorus (30.30-81.56%), total potassium (8.92-22.22%), and total sodium (50.56-62.12%). The heavy metals like Cr (50-18.60%), Cd (100-75%), Pb (57.14-40%), and Ni (100-50%) were decreased, whereas Zn (8.37-53.77%), Fe (199.03-254.27%), and Cu (12.90-100%) increased significantly. The toxicity of the final vermicompost was shown to be lower in the Genotoxicity analysis, with values ranging between (76-42.33%). The germination index (GI) of Mung bean (Vigna radiata) showed a value ranging between 155.02 and 175.90%. Scanning electron microscopy (SEM) analysis showed irregularities with high porosity of texture in the final vermicompost than in initial mixtures. Fourier Transform-Infrared Spectroscopy (FT-IR) spectra of final vermicompost had low peak intensities than the initial samples. The AS50 feed mixture was the most favorable for the growth and fecundity of Eisenia fetida, emphasizing the role of cattle dung in the vermicomposting process. Thus, it can be inferred that a cost-effective and eco-friendly method (vermicomposting) with the proper amendment of cattle dung and employing Eisenia fetida could transform allopathic sludge into a nutrient-rich, detoxified, stable, and mature vermicompost for agricultural purposes and further could serve as a stepping stone in the allopathic pharmaceutical industry sludge management strategies in the future.


Subject(s)
Oligochaeta , Animals , Cattle , Drug Industry , Manure , Sewage , Soil , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL