Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.369
Filter
1.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3758-3768, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-39099350

ABSTRACT

The function of the Trihelix transcription factor is that it plays an important role in many abiotic stresses, especially in the signaling pathway of low temperature, drought, flood, saline, abscisic acid, methyl jasmonate, and other abiotic stresses. However, there are few studies on the Trihelix gene family of ginseng. In this study, 41 Trihelix gene family members were identified and screened from the ginseng genome database, and their physicochemical properties, cis-acting elements, subcellular localization, chromosomal assignment, and abiotic stress-induced expression patterns were analyzed by bioinformatics methods. The results showed that 85% of Trihelix family members of ginseng were located in the nucleus, and the main secondary structure of Trihelix protein was random coil and α helix. In the promoter region of Trihelix, cis-acting regulatory elements related to various abiotic stresses such as low temperature, hormone response, and growth and development were identified. Through the collinearity analysis of interspecific Trihelix transcription factors of model plants Arabidopsis thaliana and ginseng, 19 collinear gene pairs were found between A. thaliana and ginseng, and no collinear gene pairs existed on chromosomes 3, 6, and 12 only. qRT-PCR analysis showed that the expression of GWHGBEIJ010320.1 was significantly up-regulated under low temperature stress, a significant response to low temperature stress. This study lays a foundation for further research on the role of the Trihelix transcription factor of ginseng in abiotic stress, as well as the growth and development of ginseng.


Subject(s)
Gene Expression Regulation, Plant , Multigene Family , Panax , Phylogeny , Plant Proteins , Stress, Physiological , Transcription Factors , Panax/genetics , Panax/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Transcription Factors/genetics , Transcription Factors/metabolism , Stress, Physiological/genetics , Promoter Regions, Genetic , Gene Expression Profiling
2.
Plant Physiol Biochem ; 215: 109026, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39137685

ABSTRACT

MicroRNA (miRNA) is a class of non-coding endogenous small-molecule, single-stranded RNAs, and it is involved in post-transcriptional gene expression regulation in plants and plays an important role in plant growth and development. Among them, miRNA156 regulates members of target SPL gene family and thus participates in plant growth and development, hormonal response and adversity stress. However, it has not been reported in ginseng. In this study, based on the previous analysis of the SPL gene family, the age-related and stably expressed SPL gene PgSPL24-09 was obtained in roots. The binding site of miRNA156 to this gene was analyzed using target gene prediction tools, and the interactions between miRNA156 and PgSPL24-09 gene were verified by dual luciferase reporter gene assay and RT-qPCR. At the same time, miRNA156 silencing vector and overexpression vector were constructed and transformed into ginseng adventitious roots and Arabidopsis thaliana to analyze the molecular mechanism of miRNA156-SPL module in regulating the growth of ginseng adventitious roots. This study provides a theoretical basis for the in-depth study of the molecular role of miRNAs in ginseng growth, and also lays the foundation for the study of the role of miRNA156-SPL module in regulating the growth and development of ginseng.

3.
J Oral Biosci ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39128823

ABSTRACT

OBJECTIVES: Dental caries, or tooth decay, is an oral health issue worldwide. Oral healthcare researchers are considering how to develop safe and effective preventive measures and treatments for dental caries. This study evaluated the potential applications of Compound K and BTEX-K, a Compound K-rich red ginseng extract, for the prevention and treatment of dental caries. Moreover, this study briefly confirmed its inhibitory effect on inflammation, an important factor in dental health. METHODS: The amount of organic acids produced by bacteria in biofilm was determined using in vitro and in vivo assays. The ability of these extracts to promote tooth remineralization and microhardness was evaluated using an in vivo mouse assay. We evaluated their anti-inflammatory potential by inhibiting proinflammatory cytokine expression and lipopolysaccharide-induced nitrous oxide production in cell lines. RESULTS: Compound K (10-20 µg/mL) and BTEX-K (50-100 µg/mL) effectively inhibited the growth of Streptococcus mutans bacteria, demonstrating significant antibacterial properties. They can potentially prevent biofilm formation by reducing lactic acid production in the teeth. These compounds showed a strong ability to promote tooth remineralization and improve the microhardness of acid-producing bacteria. They also possess potent anti-inflammatory properties that downregulate proinflammatory cytokine (interleukin-6, interleukin-1ß, inducible nitric oxide synthase) expression, suppress nuclear factor-kappa B transcription factor activation (∼1.6 times), and reduce nitrous oxide production in lipopolysaccharide-induced RAW264.7 cells. CONCLUSIONS: Compounds K and BTEX-K may provide a novel approach to dental caries prevention as well as inflammation prevention and treatment.

4.
J Agric Food Chem ; 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39129180

ABSTRACT

Diabetes mellitus is a typical metabolic disease that has become a major threat to human health worldwide. Ginseng polypeptide (GP), a small molecule active substance isolated from ginseng, has shown positive hypoglycemic effects in preliminary studies. However, its mechanism in ameliorating multiorgan damage in db/db mice is unclear. In this study, we utilized network pharmacology, molecular docking, and animal experiments to explore the targets and biological mechanisms of GP to ameliorate multiorgan damage in T2DM. The results showed that GP improves T2DM by inhibiting inflammation and oxidative damage, thereby alleviating hyperglycemia, insulin resistance, and multiorgan damage in db/db mice. These effects are potentially mediated through the PI3K-Akt signaling pathway and the MAPK signaling pathway. This study establishes GP's efficacy in alleviating T2DM and provides a robust theoretical basis for the development of new drugs or functional foods for treating this disease.

5.
Front Microbiol ; 15: 1447488, 2024.
Article in English | MEDLINE | ID: mdl-39139378

ABSTRACT

The Bacillus velezensis strain NT35, which has strong biocontrol ability, was isolated from the rhizosphere soil of Panax ginseng. The antifungal effects of the NT35 strain against the mycelium and spore growth of Ilyonectria robusta, which causes ginseng rusty root rot, were determined. The inhibitory rate of I. robusta mycelial growth was 94.12% when the concentration of the NT35 strain was 107 CFU·mL-1, and the inhibitory rates of I. robusta sporulation and spore germination reached 100 and 90.31%, respectively, when the concentration of the NT35 strain was 104 and 108 CFU·mL-1, respectively. Strain NT35 had good prevention effects against ginseng rust rot indoors and in the field with the control effect 51.99%, which was similar to that of commercial chemical and biocontrol agents. The labeled strain NT35-Rif160-Stre400 was obtained and colonized ginseng roots, leaves, stems and rhizosphere soil after 90 days. Bacillus velezensis NT35 can induce a significant increase in the expression of five defensive enzyme-encoding genes and ginsenoside biosynthesis-related genes in ginseng. In the rhizosphere soil, the four soil enzymes and the microbial community improved during different periods of ginseng growth in response to the biocontrol strain NT35. The NT35 strain can recruit several beneficial bacteria, such as Luteimonas, Nocardioides, Sphingomonas, and Gemmatimonas, from the rhizosphere soil and reduce the relative abundance of Ilyonectria, Fusarium, Neonectria and Dactylonectria, which cause root rot and rusty root rot in ginseng plants. The disease indices were significantly negatively correlated with the abundances of Sphingomonas and Trichoderma. Additionally, Sphingomonadales, Sphingomonadaceae and actinomycetes were significantly enriched under the NT35 treatment according to LEfSe analysis. These results lay the foundation for the development of a biological agent based on strain NT35.

6.
Food Sci Nutr ; 12(8): 5734-5749, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39139958

ABSTRACT

The study aimed to investigate the antioxidant properties of ginseng and red quinoa extract nanoemulsion and its effect on the shelf life of dairy cream. Nanoemulsion includes dairy cream, Tween 80, chitosan, whey protein powder, chitosan/whey protein powder, red quinoa extract, ginseng extract, and a mixture of extracts (1:1). The highest total phenol content and total flavonoid content were related to ginseng extract (24,009.55 mg of gallic acid equivalent/kg, 883.16 mg quercetin/kg) with ethanol-water solvent (80:20). Most of the phenolic and flavonoid compounds of ginseng and red quinoa extracts were related to p-coumaric acid (211.3 µg/g), catechin (29.6 µg/g), ellagic acid (73.88 µg/g), and rutin (34.12 µg/g), respectively. Considerable antioxidant power in the concentration of 800 ppm of red quinoa and ginseng extracts (ethanol-water solvent (50:50), (80:20)) in 2,2-diphenyl-1-picrylhydrazyl radical scavenging (80%, 82%, 80%, and 78%), bleaching ß-carotene: linoleic acid (81%, 73%, 77%, and 86%), and ferric reducing antioxidant power assays (70%, 73%, 72%, and 76%) was observed. Nanoemulsions of red quinoa extract with chitosan wall had the smallest particle size (250.67 nm), the highest encapsulation efficiency (72.79%), and the polydispersity index (0.34). Nanoemulsions containing ginseng + quinoa (1:1) with chitosan/whey protein powder wall showed the highest viscosity (5.30 mPa/s) and the mostzeta potential (-32.6 mv). Also, nanoemulsions of red quinoa extract showed the lowest amount of peroxide value and the thiobarbituric acid value (12 milliequivalent O2/kg-0.48 µg/mL) in dairy cream oil. In general, the red quinoa extract with chitosan wall was superior to other samples due to the delay in oxidation and positive effect on the shelf life of dairy cream.

7.
Molecules ; 29(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39124849

ABSTRACT

Medicinal plant-derived vesicle-like nanoparticles can carry chemical components and exert intercellular activity due to the encapsulation of nanostructures. American ginseng is well known as a traditional herb and is commonly used in clinical decoctions. However, the nano-characteristics and chemical composition of American-ginseng-derived vesicle-like nanoparticles (AGVNs) in decoctions are unclear. In this study, the gradient centrifugation method was used to extract and isolate AGVNs. A metabolomic method based on high-resolution mass spectrometry was established to analyze small molecules loaded in AGVNs. Zebrafish and RAW264.7 cells were employed to investigate the anti-inflammatory effects of AGVNs. The results showed that the particle size of AGVNs was generally 243.6 nm, and the zeta potential was -14.5 mV. AGVNs were found to contain 26 ginsenosides (14 protopanaxadiols, 11 protopanaxatriols, and 1 oleanolic acid). Ginsenoside Rb1 and malonyl-ginsenoside Rb1 tended to be enriched in AGVNs. Moreover, AGVNs were found to exert anti-inflammatory effects by reducing macrophage migration in zebrafish and regulating inflammatory factor (NO, TNF-α, IL-6, IL-10) secretion in RAW 264.7 cells. The characterization and analysis of AGVNs provide references and data that support the development of nanoscale anti-inflammatory substances from medicinal plants.


Subject(s)
Anti-Inflammatory Agents , Nanoparticles , Panax , Zebrafish , Animals , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , RAW 264.7 Cells , Nanoparticles/chemistry , Panax/chemistry , Particle Size , Plant Extracts/pharmacology , Plant Extracts/chemistry , Macrophages/drug effects , Macrophages/metabolism , Ginsenosides/pharmacology , Ginsenosides/chemistry
8.
Food Res Int ; 192: 114758, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147491

ABSTRACT

The geographical origin of Panax ginseng significantly influences its nutritional value and chemical composition, which in turn affects its market price. Traditional methods for analyzing these differences are often time-consuming and require substantial quantities of reagents, rendering them inefficient. Therefore, hyperspectral imaging (HSI) in conjunction with X-ray technology were used for the swift and non-destructive traceability of Panax ginseng origin. Initially, outlier samples were effectively rejected by employing a combined isolated forest algorithm and density peak clustering (DPC) algorithm. Subsequently, random forest (RF) and support vector machine (SVM) classification models were constructed using hyperspectral spectral data. These models were further optimized through the application of 72 preprocessing methods and their combinations. Additionally, to enhance the model's performance, four variable screening algorithms were employed: SelectKBest, genetic algorithm (GA), least absolute shrinkage and selection operator (LASSO), and permutation feature importance (PFI). The optimized model, utilizing second derivative, auto scaling, permutation feature importance, and support vector machine (2nd Der-AS-PFI-SVM), achieved a prediction accuracy of 93.4 %, a Kappa value of 0.876, a Brier score of 0.030, an F1 score of 0.932, and an AUC of 0.994 on an independent prediction set. Moreover, the image data (including color information and texture information) extracted from color and X-ray images were used to construct classification models and evaluate their performance. Among them, the SVM model constructed using texture information from X -ray images performed the best, and it achieved a prediction accuracy of 63.0 % on the validation set, with a Brier score of 0.181, an F1 score of 0.518, and an AUC of 0.553. By implementing mid-level fusion and high-level data fusion based on the Stacking strategy, it was found that the model employing a high-level fusion of hyperspectral spectral information and X-ray images texture information significantly outperformed the model using only hyperspectral spectral information. This advanced model attained a prediction accuracy of 95.2 %, a Kappa value of 0.912, a Brier score of 0.027, an F1 score of 0.952, and an AUC of 0.997 on the independent prediction set. In summary, this study not only provides a novel technical path for fast and non-destructive traceability of Panax ginseng origin, but also demonstrates the great potential of the combined application of HSI and X-ray technology in the field of traceability of both medicinal and food products.


Subject(s)
Algorithms , Hyperspectral Imaging , Panax , Support Vector Machine , Panax/classification , Panax/chemistry , Hyperspectral Imaging/methods , Light , X-Rays
9.
Sci Total Environ ; : 175581, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39153613

ABSTRACT

To meet societal needs, a large number of medicinal plants are cultivated artificially. However, issues such as diseases and continuous cropping obstacles (CCO) have severely impacted their quality and yield. Exploring and innovating the cultivation technology for medicinal plants is essential to meet their high demand and ensure sustainable development. The role of titanium dioxide nanoparticles (nano-TiO2) in medicinal plant cultivation remains unclear. To advance the application of nanotechnology in this field, a comprehensive exploration of its potential benefits is necessary. In this study, nano-TiO2 was applied to ginseng (Panax ginseng C.A. Meyer) to acquire a holistic comprehension of its impact on ginseng growth, rhizosphere, and ginseng-used soil. Our findings reveal that nano-TiO2 significantly enhances ginseng root activity and has notable effects on antioxidant enzyme systems. The two concentrations of nano-TiO2 markedly influenced the structure and composition of microbial communities in the rhizosphere and ginseng-used soil, including key microorganisms such as Chloroflexi and Acidobacteriota, which are closely involved in soil function. Furthermore, nano-TiO2 altered the competitive and cooperative relationships within microbial networks. Nano-TiO2 application significantly increased soil organic matter (SOM) content in rhizosphere and ginseng-used soils and affected the activities of several important soil enzymes. Environmental factors, such as EC, pH, and soil nutrients, were found to be the main factors influencing the microbial community. In conclusion, our findings illuminate the complex effects of nano-TiO2 on the "plant-microbial-soil" system in the context of ginseng cultivation. This work offers novel strategies for optimizing medicinal plant growth and development, as well as improving cultivated soil by using nanomaterials.

10.
Heliyon ; 10(14): e34341, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39108907

ABSTRACT

This study was the first to document the fluctuations of nutritional constituents, antioxidant capacities, and physicochemical characteristics during the aging processes of red ginseng sprouts (RGS) and black ginseng sprouts (BGS) from dried ginseng sprouts (DGS). Total ginsenoside levels differed with 54.72 (DGS) → 57.15 (RGS) and 6.98 (BGS) mg/g, specifically, ginsenoside F2 and Rd2 in RGS remarkably increased with 1.97 â†’ 5.88 and 2.41 â†’ 5.49 mg/g, respectively. Phenolics increased dramatically as 297.02 â†’ 1770.01 (6.0-fold); 1834.94 (6.2-fold) µg/g in DGS → RGS; BGS with abundance contents of benzoic acid (>15.3-fold), chlorogenic acid (>9.5-fold), and catechin (>4.2-fold), whereas amino acids markedly decreased (3686.81 â†’ 1505.00; 364.64 mg/100 g), with arginine showing a significant decrease. Moreover, beneficial factors (total phenolic content: TPC; total flavonoid content: TFC; maillard reaction products: MRP) displayed increase tendencies (approximately 2.0-fold) with BGS > RGS > DGS, and antioxidant patterns significantly increased with potential capacities as follows: ABTS (48.3: DGS → 65.8: RGS; 70.2 %: BGS) > DPPH (18.5 â†’ 44.6; 59.2 %) > hydroxyl (23.2 â†’ 35.4; 39.9 %) > FRAP (0.6 â†’ 1.8; 1.8 %) at 500 µg/mL. In particular, DNA protection exhibited excellent rates of 100 %, in the order of BGS (25 µg/mL) > RGS (50 µg/mL) > DGS (500 µg/mL). These findings suggest that processed ginseng sprouts can be excellent agents for natural antioxidants.

11.
Metabolomics ; 20(5): 96, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110263

ABSTRACT

INTRODUCTION: Ginseng berry (GB) has previously been demonstrated to improve systemic insulin resistance and regulate hepatic glucose metabolism and steatosis in mice with diet-induced obesity (DIO). OBJECTIVES: In this study, the role of GB in metabolism was assessed using metabolomics analysis on the total liver metabolites of DIO mice. METHODS: Metabolomic profiling was performed using capillary electrophoresis time-of-flight mass spectrometry (CE-TOF/MS) of liver tissue from mice on a 12-wk normal chow diet (NC), high-fat diet (HFD), and HFD supplemented with 0.1% GB (HFD + GB). The detected metabolites, its pathways, and functions were analyzed through partial least square discriminant analysis (PLS-DA), the small molecular pathway database (SMPDB), and MetaboAnalyst 5.0. RESULTS: The liver metabolite profiles of NC, HFD, and GB-fed mice (HFD + GB) were highly compartmentalized. Metabolites involved in major liver functions, such as mitochondrial function, gluconeogenesis/glycolysis, fatty acid metabolism, and primary bile acid biosynthesis, showed differences after GB intake. The metabolites that showed significant correlations with fasting blood glucose (FBG), insulin, and homeostatic model assessment for insulin resistance (HOMA-IR) were highly associated with mitochondrial membrane function, energy homeostasis, and glucose metabolism. Ginseng berry intake increased the levels of metabolites involved in mitochondrial membrane function, decreased the levels of metabolites related to glucose metabolism, and was highly correlated with metabolic phenotypes. CONCLUSION: This study demonstrated that long-term intake of GB changed the metabolite of hepatosteatotic livers in DIO mice, normalizing global liver metabolites involved in mitochondrial function and glucose metabolism and indicating the potential mechanism of GB in ameliorating hyperglycemia in DIO mice.


Subject(s)
Diet, High-Fat , Glucose , Liver , Metabolomics , Obesity , Panax , Animals , Panax/metabolism , Panax/chemistry , Mice , Metabolomics/methods , Liver/metabolism , Glucose/metabolism , Male , Obesity/metabolism , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria/drug effects , Mice, Obese , Insulin Resistance , Fruit/metabolism , Fruit/chemistry , Metabolome/drug effects , Mitochondria, Liver/metabolism , Mitochondria, Liver/drug effects
12.
Front Pharmacol ; 15: 1429214, 2024.
Article in English | MEDLINE | ID: mdl-39092221

ABSTRACT

Introduction: Black ginseng (BG) was processed by "steaming and drying" (generally nine times) repeatedly to produce "rare saponins" and secondary ginsenosides. Both ginseng (GS) and red ginseng (RG) were commonly used in treating heart failure (HF), and the latter was confirmed to be more potent, implying the presence of rare ginsenosides that contribute positively to the treatment of heart failure. Previous research indicated that rare ginsenosides are more abundant in BG than in RG. Consequently, this study aims to investigate the effects of BG and its components on HF to elucidate the active substances and their underlying mechanisms in the treatment of HF. Methods: The effects of BG and its fractions (water-eluted fraction (WEF), total saponin fraction (TSF), and alcohol-eluted fraction (AEF)) on rats with isoproterenol (ISO)-induced HF were explored, and steroids belonging to the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes were determined quantitatively using the ultra-performance liquid chromatography-triple quadrupole tandem mass spectrometry (UPLC-QqQ-MS/MS) method. In addition, 16S rDNA sequencing was performed on the gut microbiota, followed by GC-MS analysis of short-chain fatty acids (SCFAs), and the biochemical indexes related to energy metabolism and the serum cyclic nucleotide system were also analyzed by ELISA. Results: Based on a thorough evaluation of energy metabolism and the endocrine system, it was observed that the effects of BG components on the hypothalamic-pituitary-thyroid (HPT) and HPA axes were more pronounced. Notably, the treatment efficacy of the low dose of the total saponin fraction (TSFL), water decoction (WD), and high dose of the polysaccharide fraction (PSFH) was superior based on pharmacodynamic indicators such as brain natriuretic peptide (BNP), creatine kinase (CK), and estradiol (E2)/T). Furthermore, the WD and BG components exhibited significant effects on androgens (T and androstenedione (A4)). The TSFL group exerts an anti-inflammatory effect by regulating Lactobacillus/Erysipelotrichales. The WD, PSFH, and TSFL may impact inflammatory cytokines through the gut microbiota (Lactobacillus/Erysipelotrichales) and their metabolites (acetate and butyrate), exerting an anti-inflammatory effect. Discussion: The BG and all its split components demonstrated varying levels of efficacy in alleviating HF, and TSF and PSF exhibited a significant protective effect on HF. The main active components in TSF were revealed to be ginsenosides Rk1, Rk3, 20-(S)-Rg3, and 20-(S)-Rh2 by the H9C2 cell experiment. The decoction of BG and its components exhibited a potent impact on androgen hormones, with an elevation trend. This phenomenon may be attributed to the activation of the eNOS-NO pathway through androgen regulation, thereby contributing to its anti-HF activities. The WD, PSFH, and TSFL may exert anti-inflammatory effects through the intestinal flora (Lactobacillaceae/Erysipelotrichaceae) and its metabolites (acetic acid and butyric acid), which affect the inflammatory factors. The different mechanisms of action of each component of HF also reflect the significance and necessity of the overall role of traditional Chinese medicine (TCM). Our research was the first to report that the E2/T is related to HF and can be used as an indicator to evaluate HF.

13.
Front Pharmacol ; 15: 1368776, 2024.
Article in English | MEDLINE | ID: mdl-39114359

ABSTRACT

Background: The fibrous root of ginseng (GFR) is the dried thin branch root or whisker root of Ginseng (Panax ginseng C. A. Mey). It is known for its properties such as tonifying qi, producing body fluid, and quenching thirst. Clinically, it is used to treat conditions such as cough, hemoptysis, thirst, stomach deficiency, and vomiting. While GFR and Ginseng share similar metabolites, they differ in their metabolites ratios and efficacy. Furthermore, the specific role of GFR in protecting the body remains unclear. Methods: We employed ultra-high performance liquid chromatography-triple quadrupole mass spectrometry to examine alterations in brain neurotransmitters and elucidate the impact of GFR on the central nervous system. Additionally, we analyzed the serum and brain metabolic profiles of rats using ultra-high performance liquid chromatography-quadrupole-orbitrap mass spectrometry to discern the effect and underlying mechanism of GFR in delaying aging in naturally aged rats. Results: The findings of the serum biochemical indicators indicate that the intervention of GFR can enhance cardiovascular, oxidative stress, and energy metabolism related indicators in naturally aging rats. Research on brain neurotransmitters suggests that GFR can augment physiological functions such as learning and memory, while also inhibiting central nervous system excitation to a certain degree by maintaining the equilibrium of central neurotransmitters in aged individuals. Twenty-four abnormal metabolites in serum and seventeen abnormal metabolites in brain could be used as potential biomarkers and were involved in multiple metabolic pathways. Among them, in the brain metabolic pathways, alanine, aspartate and glutamate metabolism, arginine and proline metabolism, histidine metabolism, and tyrosine metabolism were closely related to central neurotransmitters. Butanoate metabolism improves energy supply for life activities in the aging body. Cysteine and methionine metabolism contributes to the production of glutathione and taurine and played an antioxidant role. In serum, the regulation of glycerophospholipid metabolism pathway and proline metabolism demonstrated the antioxidant capacity of GFR decoction. Conclution: In summary, GFR plays a role in delaying aging by regulating central neurotransmitters, cardiovascular function, oxidative stress, energy metabolism, and other aspects of the aging body, which lays a foundation for the application of GFR.

14.
J Ethnopharmacol ; 335: 118681, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39121929

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Panax ginseng (P. ginseng) C.A. Meyer. Has been studied for decades for its various biological activities, especially in terms of immune-regulatory properties. Traditionally, it has been known that root, leaves, and fruits of P. ginseng were eaten for improving body's Qi and homeostasis. Also, these were used to protect body from various types of infectious diseases. However, molecular mechanisms of immunomodulatory activities of ginseng berries have not been systemically studied as often as other parts of the plant. AIM OF THE STUDY: The aim of this research is to discover the regulatory effects of P. ginseng berries, more importantly, their ginsenosides, on innate immune responses and to elucidate the molecular mechanism. MATERIALS AND METHODS: Ginseng berry concentrate (GBC) was orally injected into BALB/c mice for 30 days, and spleens were extracted for evaluation of immune-regulatory effects. Murine macrophage RAW264.7 cells were used for detailed molecular mechanism studies. Splenic natural killer (NK) cells were isolated using the magnetic-activated cell sorting (MACS) system, and the cytotoxic activity of isolated NK cells was measured using a lactate dehydrogenase (LDH) release assay. The splenic immune cell population was determined by flow-cytometry. NF-κB promoter activity was assessed by in vitro luciferase assay. Expression of inflammatory proteins and cytokines of the spleen and RAW264.7 cells were evaluated using western blotting and real-time PCR, respectively. RESULTS: The GBC enhanced cytotoxic activity of NK cells and the immune-regulation-related splenic cell population. Moreover, GBC promoted NF-κB promoter activity and stimulated the NF-κB signaling cascade. In spleen and RAW264.7 cells, expression of pro-inflammatory cytokines was increased upon GBC application, while expression of anti-inflammatory cytokines decreased. CONCLUSIONS: These results suggest that P. ginseng berry can stimulate innate immune responses and help maintain a balanced immune condition, mostly due to the action of its key ginsenoside Re, along with other protopanaxadiol- and protopanaxatriol-type ginsenosides. Such finding will provide a new insight into the field of well-being diet research as well as non-chemical immune modulator, by providing nature-derived and plant-based bioactive materials.

15.
Int J Biol Macromol ; 276(Pt 2): 133925, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39032904

ABSTRACT

Phytopolysaccharides are a class of natural macromolecules with a range of biological activities. Ginseng, red ginseng, American ginseng, and Panax notoginseng are all members of the Araliaceae family. They are known to contain a variety of medicinal properties and are typically rich in a wide range of medicinal values. Polysaccharides represent is one of the principal active ingredients in the aforementioned plants. However, there is a paucity of detailed reports on the separation methods, structural characteristics and comparison of various pharmacological effects of these polysaccharides. This paper presents a review of the latest research reports on ginseng, red ginseng, American ginseng and ginseng polysaccharides. The differences in extraction, separation, purification, structural characterization, and pharmacological activities of the four polysaccharides are compared and clarified. Upon examination of the current research literature, it becomes evident that the extraction and separation processes of the four polysaccharides are highly similar. Modern pharmacological studies have corroborated the multiple biological activities of these polysaccharides. These activities encompass a range of beneficial effects, including antioxidant stress injury, fatigue reduction, tumor inhibition, depression alleviation, regulation of intestinal flora, immunomodulation, diabetes management, central nervous system protection, anti-aging, and improvement of skin health. This paper presents a review of studies on the extraction, purification, characterization, and bioactivities of four natural plant ginseng polysaccharides. Furthermore, the review presents the most recent research findings on their pharmacological activities. The information provides a theoretical basis for the future application of natural plant polysaccharides and offers a new perspective for the in-depth development of the medicinal value of ginseng in the clinical practice of traditional Chinese medicine.

16.
J Ginseng Res ; 48(4): 428-434, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39036730

ABSTRACT

Background: Platelet-leukocyte aggregates (PLAs) play important roles in cardiovascular disease and sepsis. Red ginseng extract (RGE) has been well-studied for its antiplatelet and anti-inflammatory activities. However, the potential inhibitory effects of RGE on PLA have not been investigated. Methods: Six-week-old ICR mice were given oral gavage of RGE for 7 days, followed by an intraperitoneal injection of 15 mg/kg of lipopolysaccharide. Mice were euthanized 24 h later, and blood samples were collected for further analysis. Flow cytometry was utilized to sort populations of PLAs and platelet-neutrophil aggregates (PNAs). By using confocal microscopy, PNAs were validated. Morphological changes in platelets and leukocytes were visualized with scanning electron microscopy. Expressions of tissue factor (TF) and platelet factor 4 (PF4) were investigated using enzyme-linked immunosorbent assay. Results: Populations of activated platelets, PLAs and PNAs, were significantly increased with LPS-induction. Treatment with 200 and 400 mg/kg of RGE decreased platelet activation. Moreover, the populations of PLAs and PNAs were reduced. PNAs were visible in the blood of septic mice, and this was attenuated by treatment with 400 mg/kg of RGE. Morphologically, sepsisinduced platelet activation and fibrin formation in the blood. This was reduced with RGE treatment. Sepsis-induced increase in the plasma levels of TF and PF4 was also reduced with RGE treatment. Conclusion: This study shows that RGE is a potential therapeutic that reduces the activation of platelets and targets PLA and PNA formation. Detailed inhibitory mechanisms of RGE should be studied.

17.
J Ginseng Res ; 48(4): 354-365, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39036733

ABSTRACT

Panax species include Panax ginseng Meyer, Panax quinquefolium L., Panax notoginseng, Panax japonicum, Panax trifolium, and Panax pseudoginseng, which contain bioactive components (BCs) such as ginsenosides and polysaccharides. Recently, growing evidence has revealed the pharmacological effects of Panax species and their BCs on allergic airway diseases (AADs), including allergic asthma (AA) and allergic rhinitis (AR). AADs are characterized by damaged epithelium, sustained acquired immune responses with enforced Th2 responses, allergen-specific IgE production, and enhanced production of histamine and leukotrienes by activated mast cells and basophils. In this review, we summarize how Panax species and their BCs modulate acquired immune responses involving interactions between dendritic cells and T cells, reduce the pro-inflammatory responses of epithelial cells, and reduce allergenic responses from basophils and mast cells in vitro. In addition, we highlight the current understanding of the alleviative effects of Panax species and their BCs against AA and AR in vivo. Moreover, we discuss the unmet needs of research and considerations for the treatment of patients to provide basic scientific knowledge for the treatment of AADs using Panax species and their BCs.

18.
J Ginseng Res ; 48(4): 373-383, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39036729

ABSTRACT

Background: Network pharmacology has emerged as a powerful tool to understand the therapeutic effects and mechanisms of natural products. However, there is a lack of comprehensive evaluations of network-based approaches for natural products on identifying therapeutic effects and key mechanisms. Purpose: We systematically explore the capabilities of network-based approaches on natural products, using Panax ginseng as a case study. P. ginseng is a widely used herb with a variety of therapeutic benefits, but its active ingredients and mechanisms of action on chronic diseases are not yet fully understood. Methods: Our study compiled and constructed a network focusing on P. ginseng by collecting and integrating data on ingredients, protein targets, and known indications. We then evaluated the performance of different network-based methods for summarizing known and unknown disease associations. The predicted results were validated in the hepatic stellate cell model. Results: We find that our multiscale interaction-based approach achieved an AUROC of 0.697 and an AUPR of 0.026, which outperforms other network-based approaches. As a case study, we further tested the ability of multiscale interactome-based approaches to identify active ingredients and their plausible mechanisms for breast cancer and liver cirrhosis. We also validated the beneficial effects of unreported and top-predicted ingredients, in cases of liver cirrhosis and gastrointestinal neoplasms. Conclusion: our study provides a promising framework to systematically explore the therapeutic effects and key mechanisms of natural products, and highlights the potential of network-based approaches in natural product research.

19.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3252-3257, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041086

ABSTRACT

The aim of this paper is to study the malonyl ginsenosides in the fresh roots of Panax ginseng. D101 macroporous adsorption resin, ODS, and preparative HPLC were employed to separate the chemical components from the 70% ethanol extract of the fresh roots of P. ginseng, and the structures of the separated compounds were identified based on the data of high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy. Two malonyl ginsenosides were isolated from the fresh roots of P. ginseng and identified as 3-O-\[6-O-malonyl-ß-D-glucopyranosyl-(1→2)-ß-D-glucopyranosyl\]-20-O-\[ ß-D-xylopyranosyl-(1→4)-α-L-arabinopyranosyl-(1→6)-ß-D-glucopyranosyl\]-dammar-24-ene-3ß,12ß,20S-triol(1) and 3-O-\[6-O-malonyl-ß-D-glucopyranosyl-(1→2)-ß-D-glucopyranosyl\]-20-O-\[ ß-D-xylopyranosyl-(1→2)-α-L-arabinofuranosyl-(1→6)-ß-D-glucopyranosyl\]-dammar-24-ene-3ß,12ß,20S-triol(2), respectively. Compounds 1 and 2 are new compounds isolated from fresh roots of P. ginseng for the first time and named as malonyl ginsenoside-Ra_1 and malonyl ginsenoside-Ra_2, respectively.


Subject(s)
Ginsenosides , Panax , Plant Roots , Panax/chemistry , Ginsenosides/chemistry , Ginsenosides/isolation & purification , Plant Roots/chemistry , Molecular Structure , Magnetic Resonance Spectroscopy , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/isolation & purification
20.
Zhongguo Zhong Yao Za Zhi ; 49(11): 2965-2972, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041156

ABSTRACT

This study developed a UPLC-PDA wavelength switching method to simultaneously determine the content of maltol and seventeen saponins in red and black ginseng and compared the quality differences of two different processed products of red and black ginseng. A Waters HSS T3 column(2. 1 mm×100 mm, 1. 8 µm) at 30 ℃ was adopted, with the mobile phase of acetonitrile(A) and water containing 0. 1% phosphoric acid(B) under gradient elution, the flow rate of 0. 3 m L·min~(-1), and the injection volume of 2 µL.The wavelength switching was set at 273 nm within 0-11 min and 203 nm within 11-60 min. The content results of multiple batches of red and black ginseng samples were analyzed by the hierarchical cluster analysis(HCA) and principal component analysis(PCA) to evaluate the quality difference. The results showed that the 18 constituents exhibited good linear relationships within certain concentration ranges, with the correlation coefficients(r) greater than 0. 999 1. The relative standard deviations(RSDs) of precision,repeatability, and stability were all less than 5. 0%. The average recoveries ranged from 95. 93% to 104. 2%, with an RSD of 1. 8%-4. 2%. The content determination results showed that the quality of red and black ginseng samples was different, and the two types of processed products were intuitively distinguished by HCA and PCA. The method is accurate, reliable, and reproducible. It can be used to determine the content of maltol and seventeen saponins in red and black ginseng and provide basic information for the quality evaluation and comprehensive utilization of red and black ginseng.


Subject(s)
Panax , Pyrones , Saponins , Panax/chemistry , Saponins/analysis , Saponins/chemistry , Chromatography, High Pressure Liquid/methods , Pyrones/analysis , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis
SELECTION OF CITATIONS
SEARCH DETAIL