Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters











Publication year range
1.
Bioengineering (Basel) ; 11(3)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38534475

ABSTRACT

Augmentation of glycoprotein synthesis requirements induces endoplasmic reticulum (ER) stress, activating the unfolded protein response (UPR) and triggering unconventional XBP1 splicing. As a result, XBP1s orchestrates the expression of essential genes to reduce stress and restore homeostasis. When this mechanism fails, chronic stress may lead to apoptosis, which is thought to be associated with exceeding a threshold in XBP1s levels. Glycoprotein assembly is also affected by glutamine (Gln) availability, limiting nucleotide sugars (NS), and preventing compliance with the increased demands. In contrast, increased Gln intake synthesizes ammonia as a by-product, potentially reaching toxic levels. IgA2m(1)-producer mouse myeloma cells (SP2/0) were used as the cellular mammalian model. We explored how IgA2m(1)-specific productivity (qIgA2m(1)) is affected by (i) overexpression of human XBP1s (h-XBP1s) levels and (ii) Gln availability, evaluating the kinetic behavior in batch cultures. The study revealed a two and a five-fold increase in qIgA2m(1) when lower and higher levels of XBP1s were expressed, respectively. High h-XBP1s overexpression mitigated not only ammonia but also lactate accumulation. Moreover, XBP1s overexpressor showed resilience to hydrodynamic stress in serum-free environments. These findings suggest a potential application of h-XBP1s overexpression as a feasible and cost-effective strategy for bioprocess scalability.

2.
Methods Mol Biol ; 2785: 115-142, 2024.
Article in English | MEDLINE | ID: mdl-38427192

ABSTRACT

MRS is a noninvasive technique to measure different metabolites in the brain. Changes in the levels of certain metabolites can be used as surrogate markers for Alzheimer's disease. They can potentially be used for diagnosis, prediction of prognosis, or even assessing response to treatment.There are different techniques for MRS acquisitions including STimulated Echo Acquisition Mode (STEAM) and Point Resolved Spectroscopy (PRESS). In terms of localization, single or multi-voxel methods can be used. Based on current data: 1. NAA, marker of neuronal integrity and viability, reduces in AD with longitudinal changes over the time as the disease progresses. There are data claiming that reduction of NAA is associated with tau accumulation, early neurodegenerative processes, and cognitive decline. Therefore, it can be used as a stage biomarker for AD to assess the severity of the disease. With advancement of disease modifying therapies, there is a potential role for NAA in the future to be used as a marker of response to treatment. 2. mI, marker of glial cell proliferation and activation, is associated with AB pathology and has early changes in the course of the disease. The NAA/mI ratio can be predictive of AD development with high specificity and can be utilized in the clinical setting to stratify cases for further evaluation with PET for potential treatments. 3. The changes in the level of other metabolites such as Chol, Glu, Gln, and GABA are controversial because of the lack of standardization of MRS techniques, current technical limitations, and possible region specific changes. 4. Ultrahigh field MRS and more advanced techniques can overcome many of these limitations and enable us to measure more metabolites with higher accuracy. 5. Standardization of MRS techniques, validation of metabolites' changes against PET using PET-guided technique, and longitudinal follow-ups to investigate the temporal changes of the metabolites in relation to other biomarkers and cognition will be crucial to confirm the utility of MRS as a potential noninvasive biomarker for AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Magnetic Resonance Spectroscopy , Brain/metabolism , Cognition , Biomarkers/metabolism
3.
Front Med (Lausanne) ; 10: 1296196, 2023.
Article in English | MEDLINE | ID: mdl-37886362
4.
Clin Nutr ESPEN ; 57: 730-734, 2023 10.
Article in English | MEDLINE | ID: mdl-37739730

ABSTRACT

BACKGROUND & AIMS: The current standard treatment modality for advanced head and neck squamous cell carcinoma (HNSCC), namely platinum-based (PB) concurrent chemoradiotherapy (CRT), is associated with frequent severe mucositis which is responsible for the multiple acute and late adverse events. So far, effective preventive methods for this CRT-induced mucositis are not identified. In the current study, we examined the prophylactic effects of beta-hydroxy-beta-methylbutyrate (HMB), arginine (Arg), and glutamine (Gln) (HMB/Arg/Gln) mixture. METHODS: Patients with HNSCC who were subject to PBCRT were randomly assigned to HMB/Arg/Gln intervention (Group I) and non-intervention (Group NI) cohort. The incidences of ≧ grade 3 mucositis (primary endpoint), ≧ grade 2 mucositis, and opioid usage and the degree of body weight loss (secondary endpoints) were compared between Group I and Group NI. RESULTS: A total of 75 patients were enrolled to this study and 38 patients were assigned to Group I, while 37 patients were to Group NI. After excluding patients who failed to complete CRT (3 in Group I and 2 in Group NI) or withdrew consents (11 in Group I and 1 in Group NI), 24 patients in Group I and 34 patients in Group NI were evaluated. HMB/Arg/Gln failed to reduce the incidences of ≧ grade 2 mucositis, but significantly (p = 0.0003) inhibited grade 3 mucositis in the late phase CRT, reducing the incidence from 64.6% (Group NI) to 25% (Group I) at 70Gy. The degree of body weight loss was significantly (p = 0.0038) lower in Group I (5.6%) compared to Group NI (8.9%), preventing the progression of PBCRT-induced cachexia. CONCLUSIONS: HMB/Arg/Gln administration demonstrated inhibitory effects on the progression of grade 3 mucositis and cancer cachexia in HNSCC patients treated with PBCRT. A larger scale phase III study is encouraged. CLINICAL TRIAL REGISTRATION: This study is registered to the UMIN Clinical Trial Registry: UMIN000050011.


Subject(s)
Head and Neck Neoplasms , Mucositis , Humans , Squamous Cell Carcinoma of Head and Neck/therapy , Glutamine/therapeutic use , Mucositis/etiology , Mucositis/prevention & control , Cachexia , Head and Neck Neoplasms/radiotherapy , Arginine , Chemoradiotherapy/adverse effects
5.
Front Oncol ; 13: 1161254, 2023.
Article in English | MEDLINE | ID: mdl-37228498

ABSTRACT

Introduction: Chronic lymphocytic leukemia (CLL) cells are metabolically flexible and adapt to modern anticancer treatments. Bruton tyrosine kinase (BTK) and B-cell lymphoma-2 (BCL-2) inhibitors have been widely used to treat CLL, but CLL cells become resistant to these treatments over time. CB-839 is a small-molecule glutaminase-1 (GLS-1) inhibitor that impairs glutamine use, disrupts downstream energy metabolism, and impedes the elimination of reactive oxygen species. Methods: To investigate the in vitro effects of CB-839 on CLL cells, we tested CB-839 alone and in combination with ibrutinib, venetoclax, or AZD-5991 on the HG-3 and MEC-1 CLL cell lines and on primary CLL lymphocytes. Results: We found that CB-839 caused dose-dependent decreases in GLS-1 activity and glutathione synthesis. CB-839-treated cells also showed increased mitochondrial superoxide metabolism and impaired energy metabolism, which were reflected in decreases in the oxygen consumption rate and depletion of the adenosine triphosphate pool and led to the inhibition of cell proliferation. In the cell lines, CB-839 combined with venetoclax or AZD-5991, but not with ibrutinib, demonstrated synergism with an increased apoptosis rate and cell proliferation inhibition. In the primary lymphocytes, no significant effects of CB-839 alone or in combination with venetoclax, ibrutinib, or AZD-5991 were observed. Discussion: Our findings suggest that CB-839 has limited efficacy in CLL treatment and shows limited synergy in combination with widely used CLL drugs.

6.
JPRAS Open ; 35: 6-17, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36578449

ABSTRACT

Glutamine (GLN) has been proven to improve the prognosis of severely burned patients. GLN supplementation in critical illness has gained extreme popularity among researchers over the years, and its safety and efficacy are still under question. Therefore, we aim to study the role of GLN supplements in decreasing mortality, length of hospitalization (LOH), and infection in severely burned patients. PRISMA guidelines were used to design and conduct this systematic review. MEDLINE, Cochrane, and EMBASE databases were used to search for randomized controlled trials (RCTs) in January 2022. In order to assist in the search, MeSH terms such as burn injury, GLN, and RCT were used. As a result of reviewing the literature, 1112 publications were found. We included only 7 RCTs after implanting our inclusion criteria. There were 328 patients enrolled in the study, with 166 patients (50.61%) were allocated to GLN supplementation and 162 patients in the control groups (49.39%). The risk of infection was significantly lower among patients who received GLN supplementation than those in the control groups (RR = 0.41, 95% CI, 0.18 to 0.92, p = 0.030). The risk of death was significantly lower among GLN-receiving patients compared to non-GLN-receiving patients (RR = 0.09, 95% CI, 0.01 to 0.63, p = 0.016). GLN supplementation has been linked to lower hospital mortality and infection-related morbidity in burn patients. Furthermore, larger-scale and higher-quality studies are needed to assess whether there are any statistically and clinically significant changes.

7.
Magn Reson Med ; 89(5): 1728-1740, 2023 05.
Article in English | MEDLINE | ID: mdl-36572961

ABSTRACT

PURPOSE: The signals of glutamate (Glu) and glutamine (Gln) are often significantly overlapped in routine 1 H-MR spectra of human brain in vivo. Selectively probing the signals of Glu and Gln in vivo is very important for the study of the metabolisms in which Glu and Gln are involved. METHODS: The Glu-/Gln- targeted pulse sequences are developed to selectively probe the signals of Glu and Gln. The core part of the Glu-/Gln- targeted pulse sequences lies on the preparation of the nuclear spin singlet orders (SSOs) of the five-spin systems of Glu and Gln. The optimal control method is used to prepare the SSOs of Glu and Gln with high efficiency. RESULTS: The Glu-/Gln- targeted pulse sequences have been applied on phantoms to selectively probe the signals of Glu and Gln. Moreover, in the in vivo experiments, the signals of Glu and Gln in human brains of healthy subjects have been successfully probed separately. CONCLUSION: The developed Glu-/Gln- targeted pulse sequences can be used to distinguish the 1 H-MR signals of Glu and Gln in human brains in vivo. The optimal control method provides an effective way to prepare the SSO of a specific spin system with high efficiency and in turn selectively probe the signals of a targeted molecule.


Subject(s)
Glutamic Acid , Glutamine , Humans , Glutamine/metabolism , Glutamic Acid/metabolism , Magnetic Resonance Spectroscopy/methods , Brain/diagnostic imaging , Brain/metabolism , Phantoms, Imaging
8.
Front Oncol ; 12: 1070514, 2022.
Article in English | MEDLINE | ID: mdl-36465373

ABSTRACT

Mounting data suggest that cancer cell metabolism can be utilized therapeutically to halt cell proliferation, metastasis and disease progression. Radiation therapy is a critical component of cancer treatment in curative and palliative settings. The use of metabolism-based therapeutics has become increasingly popular in combination with radiotherapy to overcome radioresistance. Over the past year, a focus on glutamine metabolism in the setting of cancer therapy has emerged. In this mini-review, we discuss several important ways (DNA damage repair, oxidative stress, epigenetic modification and immune modulation) glutamine metabolism drives cancer growth and progression, and present data that inhibition of glutamine utilization can lead to radiosensitization in preclinical models. Future research is needed in the clinical realm to determine whether glutamine antagonism is a feasible synergistic therapy that can be combined with radiotherapy.

9.
Front Oncol ; 12: 1018642, 2022.
Article in English | MEDLINE | ID: mdl-36523985

ABSTRACT

Glutamine is a non-essential amino acid that can be synthesized by cells. It plays a vital role in the growth and proliferation of mammalian cells cultured in vitro. In the process of tumor cell proliferation, glutamine not only contributes to protein synthesis but also serves as the primary nitrogen donor for purine and pyrimidine synthesis. Studies have shown that glutamine-addicted tumor cells depend on glutamine for survival and reprogram glutamine utilization through the Krebs cycle. Potential therapeutic approaches for ovarian cancer including blocking the entry of glutamine into the tricarboxylic acid cycle in highly aggressive ovarian cancer cells or inhibiting glutamine synthesis in less aggressive ovarian cancer cells. Glutamine metabolism is associated with poor prognosis of ovarian cancer. Combining platinum-based chemotherapy with inhibition of glutamine metabolic pathways may be a new strategy for treating ovarian cancer, especially drug-resistant ovarian cancer. This article reviews the role of glutamine metabolism in the biological behaviors of ovarian cancer cells, such as proliferation, invasion, and drug resistance. Its potential use as a new target or biomarker for ovarian cancer diagnosis, treatment, and the prognosis is investigated.

10.
Front Vet Sci ; 9: 885044, 2022.
Article in English | MEDLINE | ID: mdl-35873693

ABSTRACT

The role of magnetic resonance spectroscopy (MRS) in the investigation of brain metabolites in epileptic syndromes in dogs has not been explored systematically to date. The aim of this study was to investigate metabolites in the thalamus in dogs affected by idiopathic epilepsy (IE) with and without antiepileptic drug treatment (AEDT) and to compare them to unaffected controls. Our hypothesis is that similar to humans with generalized epilepsy and loss of consciousness, N-acetyl aspartate (NAA) would be reduced, and glutamate-glutamine (Glx) would be increased in treated and untreated IE in comparison with the control group. In this prospective case-control study, Border Collie (BC) and Greater Swiss Mountain dog (GSMD) were divided into three groups: (1) healthy controls, IE with generalized tonic-clonic seizures with (2) and without (3) AEDT. A total of 41 BC and GSMD were included using 3 Tesla single-voxel proton MRS of the thalamus (PRESS localization, shortest TE, TR = 2000 ms, NSA = 240). After exclusion of 11 dogs, 30 dogs (18 IE and 12 healthy controls) remained available for analysis. Metabolite concentrations were estimated with LCModel using creatine as reference and compared using Kruskal-Wallis and Wilcoxon rank-sum tests. The Kruskal-Wallis test revealed significant differences in the NAA-to-creatine (p = 0.04) and Glx-to-creatine (p = 0.03) ratios between the three groups. The Wilcoxon rank-sum test further showed significant reduction in the NAA/creatine ratio in idiopathic epileptic dogs under AEDT compared to epileptic dogs without AEDT (p = 0.03) and compared to healthy controls (p = 0.03). In opposite to humans, Glx/creatine ratio was significantly reduced in dogs with IE under AEDT compared to epileptic dogs without AEDT (p = 0.03) and controls (p = 0.02). IE without AEDT and healthy controls did not show significant difference, neither in NAA/creatine (p = 0.60), nor in Glx-to-creatine (p = 0.55) ratio. In conclusion, MRS showed changes in dogs with IE and generalized seizures under AEDT, but not in those without AEDT. Based upon these results, MRS can be considered a useful advanced imaging technique for the evaluation of dogs with IE in the clinical and research settings.

11.
Front Oncol ; 12: 841054, 2022.
Article in English | MEDLINE | ID: mdl-35223522

ABSTRACT

Kidney cancer is one of the top ten cancer diagnosed worldwide and its incidence has increased the last 20 years. Clear Cell Renal Cell Carcinoma (ccRCC) are characterized by mutations that inactivate the von Hippel-Lindau (VHL) tumor suppressor gene and evidence indicated alterations in metabolic pathways, particularly in glutamine metabolism. We previously identified a small molecule, STF-62247, which target VHL-deficient renal tumors by affecting late-stages of autophagy and lysosomal signaling. In this study, we investigated ccRCC metabolism in VHL-deficient and proficient cells exposed to the small molecule. Metabolomics profiling using 1H NMR demonstrated that STF-62247 increases levels of glucose, pyruvate, glycerol 3-phosphate while glutamate, asparagine, and glutathione significantly decreased. Diminution of glutamate and glutamine was further investigated using mass spectrometry, western blot analyses, enzymatic activities, and viability assays. We found that expression of SLC1A5 increases in VHL-deficient cells treated with STF-62247, possibly to stimulate glutamine uptake intracellularly to counteract the diminution of this amino acid. However, exogenous addition of glutamine was not able to rescue cell viability induced by the small molecule. Instead, our results showed that VHL-deficient cells utilize glutamine to produce fatty acid in response to STF-62247. Surprisingly, this occurs through oxidative phosphorylation in STF-treated cells while control cells use reductive carboxylation to sustain lipogenesis. We also demonstrated that STF-62247 stimulated expression of stearoyl-CoA desaturase (SCD1) and peripilin2 (PLIN2) to generate accumulation of lipid droplets in VHL-deficient cells. Moreover, the carnitine palmitoyltransferase 1A (CPT1A), which control the entry of fatty acid into mitochondria for ß-oxidation, also increased in response to STF-62247. CPT1A overexpression in ccRCC is known to limit tumor growth. Together, our results demonstrated that STF-62247 modulates cellular metabolism of glutamine, an amino acid involved in the autophagy-lysosome process, to support lipogenesis, which could be implicated in the signaling driving to cell death.

12.
Mol Genet Metab Rep ; 23: 100600, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32426234

ABSTRACT

Objective: Previous studies have shown that patients with hereditary fructose intolerance (HFI) are characterized by a greater intrahepatic triglyceride content, despite a fructose-restricted diet. The present study aimed to examine the long-term consequences of HFI on other aldolase-B-expressing organs, i.e. the kidney and vascular endothelium. Methods: Fifteen adult HFI patients were compared to healthy control individuals matched for age, sex and body mass index. Aortic stiffness was assessed by carotid-femoral pulse wave velocity (cf-PWV) and endothelial function by peripheral arterial tonometry, skin laser doppler flowmetry and the endothelial function biomarkers soluble E-selectin [sE-selectin] and von Willebrand factor. Serum creatinine and cystatin C were measured to estimate the glomerular filtration rate (eGFR). Urinary glucose and amino acid excretion and the ratio of tubular maximum reabsorption of phosphate to GFR (TmP/GFR) were determined as measures of proximal tubular function. Results: Median systolic blood pressure was significantly higher in HFI patients (127 versus 122 mmHg, p = .045). Pulse pressure and cf-PWV did not differ between the groups (p = .37 and p = .49, respectively). Of all endothelial function markers, only sE-selectin was significantly higher in HFI patients (p = .004). eGFR was significantly higher in HFI patients than healthy controls (119 versus 104 ml/min/1.73m2, p = .001, respectively). All measurements of proximal tubular function did not differ significantly between the groups. Conclusions: Adult HFI patients treated with a fructose-restricted diet are characterized by a higher sE-selectin level and slightly higher systolic blood pressure, which in time could contribute to a greater cardiovascular risk. The exact cause and, hence, clinical consequences of the higher eGFR in HFI patients, deserves further study.

13.
Article in English | MEDLINE | ID: mdl-31216744

ABSTRACT

Excessive manganese (Mn) exposure may adversely affect the central nervous system, and cause an extrapyramidal disorder known as manganism. The glutamine (Gln)/glutamate (Glu)-γ-aminobutyric acid (GABA) cycle and thyroid hormone system may be involved in Mn-induced neurotoxicity. However, the effect of Mn on the Gln/Glu-GABA cycle in the serum has not been reported. Herein, the present study aimed to investigate the effects of sub-acute Mn exposure on the Gln/Glu-GABA cycle and thyroid hormones levels in the serum of rats, as well as their relationship. The results showed that sub-acute Mn exposure increased serum Mn levels with a correlation coefficient of 0.733. Furthermore, interruption of the Glu/Gln-GABA cycle in serum was found in Mn-exposed rats, as well as thyroid hormone disorder in the serum via increasing serum Glu levels, and decreasing serum Gln, GABA, triiodothyronine (T3) and thyroxine (T4) levels. Additionally, results of partial correlation showed that there was a close relationship between serum Mn levels and the detected indicators accompanied with a positive association between GABA and T3 levels, as well as Gln and T4 levels in the serum of Mn-exposed rats. Unexpectedly, there was no significant correlation between serum Glu and the serum T3 and T4 levels. In conclusion, the results demonstrated that both the Glu/Gln-GABA cycle and thyroid hormone system in the serum may play a potential role in Mn-induced neurotoxicity in rats. Thyroid hormone levels, T3 and T4, have a closer relationship with GABA and Gln levels, respectively, in the serum of rats.


Subject(s)
Glutamine/blood , Manganese/toxicity , Thyroid Hormones/blood , Thyroxine/blood , Triiodothyronine/blood , gamma-Aminobutyric Acid/blood , Animals , Male , Manganese/blood , Rats, Sprague-Dawley
14.
BMC Cancer ; 17(1): 162, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28245795

ABSTRACT

BACKGROUND: Amino acid (AA) pathways may contain druggable targets for glioblastoma (GBM). Literature reviews and GBM database ( http://r2.amc.nl ) analyses were carried out to screen for such targets among 95 AA related enzymes. METHODS: First, we identified the genes that were differentially expressed in GBMs (3 datasets) compared to non-GBM brain tissues (5 datasets), or were associated with survival differences. Further, protein expression for these enzymes was also analyzed in high grade gliomas (HGGs) (proteinatlas.org). Finally, AA enzyme and gene expression were compared among the 4 TCGA (The Cancer Genome Atlas) subtypes of GBMs. RESULTS: We detected differences in enzymes involved in glutamate and urea cycle metabolism in GBM. For example, expression levels of BCAT1 (branched chain amino acid transferase 1) and ASL (argininosuccinate lyase) were high, but ASS1 (argininosuccinate synthase 1) was low in GBM. Proneural and neural TCGA subtypes had low expression of all three. High expression of all three correlated with worse outcome. ASL and ASS1 protein levels were mostly undetected in high grade gliomas, whereas BCAT1 was high. GSS (glutathione synthetase) was not differentially expressed, but higher levels were linked to poor progression free survival. ASPA (aspartoacylase) and GOT1 (glutamic-oxaloacetic transaminase 1) had lower expression in GBM (associated with poor outcomes). All three GABA related genes -- glutamate decarboxylase 1 (GAD1) and 2 (GAD2) and 4-aminobutyrate aminotransferase (ABAT) -- were lower in mesenchymal tumors, which in contrast showed higher IDO1 (indoleamine 2, 3-dioxygenase 1) and TDO2 (tryptophan 2, 3-diaxygenase). Expression of PRODH (proline dehydrogenase), a putative tumor suppressor, was lower in GBM. Higher levels predicted poor survival. CONCLUSIONS: Several AA-metabolizing enzymes that are higher in GBM, are also linked to poor outcome (such as BCAT1), which makes them potential targets for therapeutic inhibition. Moreover, existing drugs that deplete asparagine and arginine may be effective against brain tumors, and should be studied in conjunction with chemotherapy. Last, AA metabolism is heterogeneous in TCGA subtypes of GBM (as well as medulloblastomas and other pediatric tumors), which may translate to variable responses to AA targeted therapies.


Subject(s)
Amino Acids/metabolism , Brain Neoplasms/genetics , Gene Expression Profiling/methods , Glioblastoma/genetics , Brain Neoplasms/metabolism , Databases, Genetic , Gene Expression Regulation, Neoplastic , Glioblastoma/metabolism , Glutamic Acid/metabolism , Humans , Metabolic Networks and Pathways , Prognosis , Survival Analysis , Urea/metabolism
15.
Nutr J ; 15(1): 65, 2016 07 11.
Article in English | MEDLINE | ID: mdl-27401338

ABSTRACT

BACKGROUND: We investigated the effects of glutamine (Gln)-enriched nutritional therapy during chemotherapy on the nutritional status and immune function of children with acute lymphoblastic leukemia (ALL). METHODS: We enrolled 48 children who were newly diagnosed with ALL in our department during the period of 2013.1-2014.12. The patients (follow random number table) were randomly divided into the control group (peptamen) and the treatment group (peptamen + glutamine), 24 cases in each group. The remission induction regimens were all based on VDLP (D) chemotherapy (VCR (Vincrisstine), DNR (Daunomycin), L-ASP (L-Asparagiase), Prednisolone and Dexamethasone). The treatment group received Gln-enriched nutritional therapy every day during the full course of chemotherapy,and the control group is as same as the treatment group except without glutamine. The indicators of general nutritional status, such as weight, height, and triceps skinfold thickness, and the indicators of biochemical tests, such as serum albumin, prealbumin, creatinine-height index, retinol binding protein, and urinary hydroxyproline index, were compared between the two groups at the end of the first, second, third and the fourth week when the chemotherapy was completed. And in the fourth week, flow cytometry was applied to detect the levels of T cell subsets and the activities of natural killer (NK) cells in peripheral blood of the two groups. RESULTS: 1. after 4 weeks nutritional therapy, there is no significant difference (p > 0.05) between the two groups of children in weight, height and other indicators. 2. At the end of 2 weeks treatment, the level of prealbumin (PA) and retinol-binding protein (RBP) is higher in treatment group than that in the control group (P <0.05), at the end of 3 weeks treatment, the thickness of triceps skinfold is higher (P <0.05) than that in the control group; 3. At the end of 3 and 4 weeks, the concentrations serum ALB, PA, RBP and UHI were higher than in the control group (P <0.05); 4. There is statistically significant (p < 0.05) between the two groups in edema incidence; 5. At the end of treatment (4 weeks), the percentages of CD3 +, CD4 +, CD4 +/CD8 +, NK cell are significantly decreased in the two groups (P <0.05). CONCLUSION: Gln-enriched nutritional therapy can effectively improve the systemic nutritional status of children with leukemia, improve immune function.


Subject(s)
Glutamine/administration & dosage , Nutritional Support , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Body Weight , Child , Child, Preschool , Creatinine/blood , Female , Humans , Hydroxyproline/blood , Infant , Killer Cells, Natural/drug effects , Male , Nutritional Status , Prealbumin/metabolism , Retinol-Binding Proteins/metabolism , Serum Albumin/metabolism
16.
Neuroimage ; 137: 45-51, 2016 Aug 15.
Article in English | MEDLINE | ID: mdl-27164326

ABSTRACT

Knowledge of physiological aging in healthy human brain is increasingly important for neuroscientific research and clinical diagnosis. To investigate neuronal decline in normal aging brain eighty-one healthy subjects aged between 20 and 70years were studied with MRI and whole-brain (1)H MR spectroscopic imaging. Concentrations of brain metabolites N-acetyl-aspartate (NAA), choline (Cho), total creatine (tCr), myo-inositol (mI), and glutamine+glutamate (Glx) in ratios to internal water, and the fractional volumes of brain tissue were estimated simultaneously in eight cerebral lobes and in cerebellum. Results demonstrated that an age-related decrease in gray matter volume was the largest contribution to changes in brain volume. Both lobar NAA and the fractional volume of gray matter (FVGM) decreased with age in all cerebral lobes, indicating that the decreased NAA was predominantly associated with decreased gray matter volume and neuronal density or metabolic activity. In cerebral white matter Cho, tCr, and mI increased with age in association with increased fractional volume, showing altered cellular membrane turn-over, energy metabolism, and glial activity in human aging white matter. In cerebellum tCr increased while brain tissue volume decreased with age, showing difference to cerebral aging. The observed age-related metabolic and microstructural variations suggest that physiological neuronal decline in aging human brain is associated with a reduction of gray matter volume and neuronal density, in combination with cellular aging in white matter indicated by microstructural alterations and altered energy metabolism in the cerebellum.


Subject(s)
Aging/metabolism , Aging/pathology , Brain/anatomy & histology , Brain/metabolism , Magnetic Resonance Imaging/methods , Proton Magnetic Resonance Spectroscopy/methods , Adult , Aged , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Biomarkers/metabolism , Brain/diagnostic imaging , Female , Humans , Male , Middle Aged , Molecular Imaging/methods , Reference Values , Reproducibility of Results , Sensitivity and Specificity , White Matter/anatomy & histology , White Matter/metabolism , Young Adult
17.
J Thorac Dis ; 6(12): 1704-13, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25589963

ABSTRACT

BACKGROUND: The mortality rate of patients with acute respiratory distress syndrome (ARDS) is still high despite the use of protective ventilatory strategies. We sought to examine the pharmacological effects of glutamine (GLN) in a two-hit model of endotoxin-induced inflammation followed by ventilator-induced lung injury (VILI). We hypothesized that the administration of GLN ameliorates the VILI. METHODS: Sprague-Dawley rats were anesthetized and given lipopolysaccharide (LPS) intratracheally as a first hit to induce lung inflammation, followed 24 h later by a second hit of mechanical ventilation (MV) with either low tidal volume (6 mL/kg) with 5 cmH2O of positive end-expiratory pressure (PEEP) or high tidal volume (22 mL/kg) with zero PEEP for 4 h. GLN or lactated Ringer's solution as the placebo was administered intravenously 15 min prior to MV. RESULTS: In the LPS-challenged rats ventilated with high tidal volume, the treatment with GLN improved lung injury indices, lung mechanics and cytokine responses compared with the placebo group. CONCLUSIONS: The administration of GLN given immediately prior to MV may be beneficial in the context of reducing VILI.

SELECTION OF CITATIONS
SEARCH DETAIL