Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.271
Filter
1.
Pharm Res ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981901

ABSTRACT

PURPOSE: Serotonin (5-HT3) receptor antagonists are promising agents for treatment of neuropathic pain. However, insufficient drug exposure at the central nervous system (CNS) might result in lack of efficacy. The goal of this study was to evaluate the impact of administration of a Pgp inhibitor (tariquidar) on ondansetron exposure in the brain, spinal cord, and cerebrospinal fluid in a wild-type rat model. METHODS: Ondansetron (10 mg/kg) and tariquidar (7.5 mg/kg) were administered intravenously, plasma and tissue samples were collected and analyzed by HPLC. A mathematical model with brain, spinal cord, cerebrospinal fluid and two systemic disposition compartments was developed to describe the data. RESULTS: The results demonstrate that tariquidar at 7.5 mg/kg resulted in a complete inhibition of Pgp efflux of ondansetron in the brain and spinal cord. The compartmental model successfully captured pharmacokinetics of ondansetron in wild type and Pgp knockout (KO) animals receiving the drug alone or in wild type animals receiving the ondansetron and tariquidar combination. CONCLUSIONS: The study provided important quantitative information on enhancement of CNS exposure to ondansetron using co-administration of Pgp Inhibitor in a rat model, which will be further utilized in conducting a clinical study. Tariquidar co-administration resulted in ondansetron CNS exposure comparable to observed in Pgp KO rats. Results also highlighted the effect of tariquidar on plasma disposition of ondansetron, which may not be dependent on Pgp inhibition, and should be evaluated in future studies.

2.
Respirol Case Rep ; 12(7): e01428, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38983609

ABSTRACT

Nintedanib has been demonstrated to inhibit the rate of forced vital capacity decline in patients with progressive fibrosing interstitial lung diseases (PF-ILD) at a dose of 200 or 300 mg/day in the INBUILD trial. Although concomitant use of nintedanib with P-glycoprotein inhibitors reportedly increases the plasma concentrations of the former, tacrolimus, a P-glycoprotein inhibitor, is often used to treat connective tissue diseases-related interstitial lung diseases. The optimal dose of nintedanib in combination with tacrolimus for the treatment of PF-ILD with connective tissue disease is unknown. We herein present two patients with PF-ILD with anti-aminoacyl-tRNA synthetase antibody-positive dermatomyositis who were successfully treated with low-dose nintedanib (<200 mg/day) in combination with tacrolimus.

3.
bioRxiv ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38948797

ABSTRACT

Glycosylation-deficient Chinese hamster ovary (CHO) cell lines have been instrumental in the discovery of N-glycosylation machinery. Yet, the molecular causes of the glycosylation defects in the Lec5 and Lec9 mutants have been elusive, even though for both cell lines a defect in dolichol formation from polyprenol was previously established. We recently found that dolichol synthesis from polyprenol occurs in three steps consisting of the conversion of polyprenol to polyprenal by DHRSX, the reduction of polyprenal to dolichal by SRD5A3 and the reduction of dolichal to dolichol, again by DHRSX. This led us to investigate defective dolichol synthesis in Lec5 and Lec9 cells. Both cell lines showed increased levels of polyprenol and its derivatives, concomitant with decreased levels of dolichol and derivatives, but no change in polyprenal levels, suggesting DHRSX deficiency. Accordingly, N-glycan synthesis and changes in polyisoprenoid levels were corrected by complementation with human DHRSX but not with SRD5A3. Furthermore, the typical polyprenol dehydrogenase and dolichal reductase activities of DHRSX were absent in membrane preparations derived from Lec5 and Lec9 cells, while the reduction of polyprenal to dolichal, catalyzed by SRD5A3, was unaffected. Long-read whole genome sequencing of Lec5 and Lec9 cells did not reveal mutations in the ORF of SRD5A3, but the genomic region containing DHRSX was absent. Lastly, we established the sequence of Chinese hamster DHRSX and validated that this protein has similar kinetic properties to the human enzyme. Our work therefore identifies the basis of the dolichol synthesis defect in CHO Lec5 and Lec9 cells.

4.
Expert Opin Drug Saf ; : 1-9, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38962834

ABSTRACT

BACKGROUND: Limited understanding exists regarding the hemorrhagic risk resulting from potential interactions between P-glycoprotein (P-gp) inhibitors and direct oral anticoagulants (DOACs). Utilizing the Food and Drug Administration Adverse Event Reporting System (FAERS) data, we analyzed hemorrhagic adverse events (AEs) linked with the co-administration of P-gp inhibitors and DOACs, aiming to offer guidance for their safe and rational use. METHODS: Hemorrhagic events associated with P-gp inhibitors in combination with DOACs were scrutinized from the FAERS database. Hemorrhagic signals mining was performed by estimating the reported odds ratios (RORs), corroborated by additive and multiplicative models and a combination risk ratio (PRR) model. RESULTS: Our analysis covered 4,417,195 cases, revealing 11,967 bleeding events associated with P-gp inhibitors. We observed a significantly higher risk of bleeding with the combination of apixaban and felodipine (ROR 118.84, 95% CI 78.12-180.79, additive model 0.545, multiplicative model 1.253, PRR 22.896 (2450.141)). Moreover, consistent associations were found in the co-administration analyzes of rivaroxaban with dronedarone and diltiazem, and apixaban with losartan, telmisartan, and simvastatin. CONCLUSION: Our FAERS data analysis unveils varying degrees of bleeding risk associated with the co-administration of P-gp inhibitors and DOACs, underscoring the importance of vigilance about them in clinical practice.

5.
Comput Biol Chem ; 112: 108139, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38972100

ABSTRACT

COVID-19, caused by the SARS-COV-2 virus, induces numerous immunological reactions linked to the severity of the clinical condition of those infected. The surface Spike protein (S protein) present in Sars-CoV-2 is responsible for the infection of host cells. This protein presents a high rate of mutations, which can increase virus transmissibility, infectivity, and immune evasion. Therefore, we propose to evaluate, using immunoinformatic techniques, the predicted epitopes for the S protein of seven variants of Sars-CoV-2. MHC class I and II epitopes were predicted and further assessed for their immunogenicity, interferon-gamma (IFN-γ) inducing capacity, and antigenicity. For B cells, linear and structural epitopes were predicted. For class I MHC epitopes, 40 epitopes were found for the clades of Wuhan, Clade 2, Clade 3, and 20AEU.1, Gamma, and Delta, in addition to 38 epitopes for Alpha and 44 for Omicron. For MHC II, there were differentially predicted epitopes for all variants and eight equally predicted epitopes. These were evaluated for differences in the MHC II alleles to which they would bind. Regarding B cell epitopes, 16 were found in the Wuhan variant, 14 in 22AEU.1 and in Clade 3, 15 in Clade 2, 11 in Alpha and Delta, 13 in Gamma, and 9 in Omicron. When compared, there was a reduction in the number of predicted epitopes concerning the Spike protein, mainly in the Delta and Omicron variants. These findings corroborate the need for updates seen today in bivalent mRNA vaccines against COVID-19 to promote a targeted immune response to the main circulating variant, Omicron, leading to more robust protection against this virus and avoiding cases of reinfection. When analyzing the specific epitopes for the RBD region of the spike protein, the Omicron variant did not present a B lymphocyte epitope from position 390, whereas the epitope at position 493 for MHC was predicted only for the Alpha, Gamma, and Omicron variants.

6.
mBio ; : e0003924, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975756

ABSTRACT

Symbiotic interactions between humans and our communities of resident gut microbes (microbiota) play many roles in health and disease. Some gut bacteria utilize mucus as a nutrient source and can under certain conditions damage the protective barrier it forms, increasing disease susceptibility. We investigated how Ruminococcus torques-a known mucin degrader that has been implicated in inflammatory bowel diseases (IBDs)-degrades mucin glycoproteins or their component O-linked glycans to understand its effects on the availability of mucin-derived nutrients for other bacteria. We found that R. torques utilizes both mucin glycoproteins and released oligosaccharides from gastric and colonic mucins, degrading these substrates with a panoply of mostly constitutively expressed, secreted enzymes. Investigation of mucin oligosaccharide degradation by R. torques revealed strong α-L-fucosidase, sialidase and ß1,4-galactosidase activities. There was a lack of detectable sulfatase and weak ß1,3-galactosidase degradation, resulting in accumulation of glycans containing these structures on mucin polypeptides. While the Gram-negative symbiont, Bacteroides thetaiotaomicron grows poorly on mucin glycoproteins, we demonstrate a clear ability of R. torques to liberate products from mucins, making them accessible to B. thetaiotaomicron. This work underscores the diversity of mucin-degrading mechanisms in different bacterial species and the probability that some species are contingent on others for the ability to more fully access mucin-derived nutrients. The ability of R. torques to directly degrade a variety of mucin and mucin glycan structures and unlock released glycans for other species suggests that it is a keystone mucin degrader, which might contribute to its association with IBD.IMPORTANCEAn important facet of maintaining healthy symbiosis between host and intestinal microbes is the mucus layer, the first defense protecting the epithelium from lumenal bacteria. Some gut bacteria degrade the various components of intestinal mucins, but detailed mechanisms used by different species are still emerging. It is imperative to understand these mechanisms as they likely dictate interspecies interactions and may illuminate species associated with bacterial mucus damage and subsequent disease susceptibility. Ruminococcus torques is positively associated with IBD in multiple studies. We identified mucin glycan-degrading enzymes in R. torques and found that it shares mucin degradation products with another species of gut bacteria, Bacteroides thetaiotaomicron. Our findings underscore the importance of understanding mucin degradation mechanisms in different gut bacteria and their consequences on interspecies interactions, which may identify keystone bacteria that disproportionately affect mucus damage and could therefore be key players in effects that result from reductions in mucus integrity.

7.
Cureus ; 16(6): e61767, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38975430

ABSTRACT

Myelin oligodendrocyte glycoprotein antibody disease (MOG-AD) poses a diagnostic challenge, often masquerading as other neurological disorders such as multiple sclerosis and aquaporin-4-positive neuromyelitis optica spectrum disorder. The deceptive clinical similarities demand a nuanced approach to differentiate these conditions effectively. This entails an extensive evaluation encompassing a meticulous medical history, advanced magnetic resonance imaging (MRI), cerebrospinal fluid analysis, and serum studies. In this context, we present a compelling case involving a 28-year-old Hispanic female with a history of migraine headache. She sought medical attention due to acute peripheral vision loss, ultimately diagnosed as MOG-AD through a comprehensive clinical assessment coupled with specific diagnostic tests. This case underscores the critical importance of precision in diagnostic procedures to ensure accurate identification and subsequent tailored treatment for MOG-AD, avoiding potential pitfalls associated with its resemblance to other neurological disorders.

8.
Cureus ; 16(6): e61713, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38975541

ABSTRACT

The antiphospholipid syndrome (APS) manifests through venous or arterial thrombosis, with or without pregnancy complication alongside the continuous presence of antiphospholipid antibodies (aPL). APS classification relies on three aPL subtypes: anticardiolipin (aCL), anti-ß2-glycoprotein I antibodies (anti-ß2GPI), and lupus anticoagulants (LA) antibodies. Given that thrombosis and pregnancy issues are not unique to APS, the precise and reliable identification of aPL forms the basis for diagnosis. Semi-quantitative solid-phase assays identify two antibodies, aCL and anti-ß2GPI, while LA detection occurs through various phospholipid-dependent coagulation assays that are based on antibody behaviour. LA, specifically, is conclusively associated with thrombosis, prompting discussions around the serological criteria for APS. Despite advancements in LA detection, the standardisation of all aPL detection assays remains imperative. The combined presence of aCL and anti-ß2GPI with thrombosis inconsistently triggers concern. Initial presentations by APS patients commonly exhibit a heightened risk of stroke, miscarriages in the later stages of pregnancy, positive results of LA tests, and widespread thrombosis across multiple organs, often leading to adverse outcomes. Correctly diagnosing this condition is pivotal to avoid unnecessary long-term secondary thromboprophylaxis.

9.
J Proteome Res ; 23(7): 2431-2440, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965920

ABSTRACT

Alpha-1-acid glycoprotein (AGP) is a heterogeneous glycoprotein fulfilling key roles in many biological processes, including transport of drugs and hormones and modulation of inflammatory and immune responses. The glycoform profile of AGP is known to change depending on (patho)physiological states such as inflammatory diseases or pregnancy. Besides complexity originating from five N-glycosylation sites, the heterogeneity of the AGP further expands to genetic variants. To allow in-depth characterization of this intriguing protein, we developed a method using anion exchange chromatography (AEX) coupled to mass spectrometry (MS) revealing the presence of over 400 proteoforms differing in their glycosylation or genetic variants. More precisely, we could determine that AGP mainly consists of highly sialylated higher antennary structures with on average 16 sialic acids and 0 or 1 fucose per protein. Interestingly, a slightly higher level of fucosylation was observed for AGP1 variants compared to that of AGP2. Proteoform assignment was supported by integrating data from complementary MS-based approaches, including AEX-MS of an exoglycosidase-treated sample and glycopeptide analysis after tryptic digestion. The developed analytical method was applied to characterize AGP from plasma of women during and after pregnancy, revealing differences in glycosylation profiles, specifically in the number of antennae, HexHexNAc units, and sialic acids.


Subject(s)
Orosomucoid , Humans , Orosomucoid/metabolism , Orosomucoid/chemistry , Female , Pregnancy , Chromatography, Ion Exchange/methods , Glycosylation , Mass Spectrometry/methods , Fucose/chemistry , Fucose/metabolism , Glycopeptides/analysis , Glycopeptides/chemistry , Glycopeptides/blood
10.
J Virol ; : e0049924, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953631

ABSTRACT

Tibroviruses are novel rhabdoviruses detected in humans, cattle, and arthropods. Four tibroviruses are known to infect humans: Bas-Congo virus (BASV), Ekpoma virus 1 (EKV-1), Ekpoma virus 2, and Mundri virus. However, since none of them has been isolated, their biological properties are largely unknown. We aimed to characterize the human tibrovirus glycoprotein (G), which likely plays a pivotal role in viral tropism and pathogenicity. Human tibrovirus Gs were found to share some primary structures and display 14 conserved cysteine residues, although their overall amino acid homology was low (29%-48%). Multiple potential glycosylation sites were found on the G molecules, and endoglycosidase H- and peptide-N-glycosidase F-sensitive glycosylation was confirmed. AlphaFold-predicted three-dimensional (3D) structures of human tibrovirus Gs were overall similar. Membrane fusion mediated by these tibrovirus Gs was induced by acidic pH. The low pH-induced conformational change that triggers fusion was reversible. Virus-like particles (VLPs) were produced by transient expression of Gs in cultured cells and used to produce mouse antisera. Using vesicular stomatitis Indiana virus pseudotyped with Gs, we found that the antisera to the respective tibrovirus VLPs showed limited cross-neutralizing activity. It was also found that human C-type lectins and T-cell immunoglobulin mucin 1 acted as attachment factors for G-mediated entry into cells. Interestingly, BASV-G showed the highest ability to utilize these molecules. The viruses infected a wide range of cell lines with preferential tropism for human-derived cells whereas the preference of EKV-1 was unique compared with the other human tibroviruses. These findings provide fundamental information to understand the biological properties of the human tibroviruses. IMPORTANCE: Human tibroviruses are poorly characterized emerging rhabdoviruses associated with either asymptomatic infection or severe disease with a case fatality rate as high as 60% in humans. However, the extent and burden of human infection as well as factors behind differences in infection outcomes are largely unknown. In this study, we characterized human tibrovirus glycoproteins, which play a key role in virus-host interactions, mainly focusing on their structural and antigenic differences and cellular tropism. Our results provide critical information for understanding the biological properties of these novel viruses and for developing appropriate preparedness interventions such as diagnostic tools, vaccines, and effective therapies.

11.
Mol Carcinog ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953715

ABSTRACT

Somatic mutations and polymorphisms may play a role in multiple myeloma (MM) susceptibility and survival. One of the immune checkpoint inhibitors is P-selectin glycoprotein ligand-1 (PSGL-1); the majority of tumor-infiltrating leukocytes express PSGL-1, causing T cell and immune inhibition via PSGL-1 mediator molecules. We aimed to investigate the effect of variable number of tandem repeat (VNTR) polymorphism in the second exon of the PSGL-1 gene on MM susceptibility, response to treatment and survival in our patient group. A total of 238 patients diagnosed with MM between January 2010 and January 2021 and 162 healthy individuals as a control group were included in this cross-sectional study. The genotypes of the VNTR polymorphism in the second exon of the PSGL-1 gene were statistically compared between patients and healthy controls; the statistically significant effects of the genotypes on response to first-line treatment and survival were examined. The AC genotype was significantly higher in healthy controls compared to patients diagnosed with MM (p < 0.001). The median PFS in patients with AA/AB/AC was 56 months, while it was 100 months in patients with BB/CC. The hazard ratio of 1.34 for PFS was found to be clinically significant and having the BB/CC genotype could provide a longer PFS compared to others, but it was not statistically significant due to the sample size. Our study results will shed light on new study plans in terms of immune checkpoint target therapies among conventional treatment preferences in MM.

12.
J Sep Sci ; 47(13): e2400154, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38948935

ABSTRACT

Glycosylation and phosphorylation rank as paramount post-translational modifications, and their analysis heavily relies on enrichment techniques. In this work, a facile approach was developed for the one-step simultaneous enrichment and stepwise elution of glycoproteins and phosphoproteins. The core of this approach was the application of the novel titanium (IV) ion immobilized poly(glycidyl methacrylate) microparticles functionalized with dendrimer polyethylenimine and phytic acid. The microparticles possessed dual enrichment capabilities due to their abundant titanium ions and hydroxyl groups on the surface. They demonstrate rapid adsorption equilibrium (within 30 min) and exceptional adsorption capacity for ß-casein (1107.7 mg/g) and horseradish peroxidase (438.6 mg/g), surpassing that of bovine serum albumin (91.7 mg/g). Furthermore, sodium dodecyl sulfate-polyacrylamide gel electrophoresis was conducted to validate the enrichment capability. Experimental results across various biological samples, including standard protein mixtures, non-fat milk, and human serum, demonstrated the remarkable ability of these microparticles to enrich low-abundance glycoproteins and phosphoproteins from biological samples.


Subject(s)
Dendrimers , Glycoproteins , Phosphoproteins , Polyethyleneimine , Polymethacrylic Acids , Titanium , Glycoproteins/chemistry , Phosphoproteins/chemistry , Polyethyleneimine/chemistry , Dendrimers/chemistry , Humans , Titanium/chemistry , Polymethacrylic Acids/chemistry , Hydrophobic and Hydrophilic Interactions , Surface Properties , Animals , Particle Size , Adsorption , Cattle
13.
Pharmacotherapy ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949433

ABSTRACT

Platelet glycoprotein (GP) IIb/IIIa antagonists have been employed in selective patients after endovascular therapy (EVT) for acute ischemic stroke (AIS), yet application in patients without EVT is debated. This meta-analysis of randomized controlled studies on AIS patients without EVT assessed the effectiveness and safety of platelet GP IIb/IIIa antagonists compared with traditional antiplatelet or thrombolysis therapy. Articles were retrieved from databases, including PubMed, Web of Science, EMBASE, and Cochrane. The risk of bias and certainty level of evidence were assessed. Fifteen studies were included. GP IIb/IIIa antagonists increased the proportion of patients with modified Rankin Scale (mRS) 0-1 (odd ratio [OR] 1.37, 95% confidence interval [CI] 1.04-1.81, p = 0.03), mRS 0-2 (OR 1.27, 95% CI 1.12-1.46, p = 0.0004), and Barthel Index (BI) 95-100 (OR 1.25, p = 0.005); decreased the proportion of stroke progression within 5 days (OR 0.66, p = 0.006); and lowered the mean mRS score at 90 days (mean difference [MD] -0.43, p = 0.002) and the National Institute of Health stroke scale score at 7 days (MD -1.64, p < 0.00001) compared with conventional treatment. Proportions of stroke recurrence within 90 days (OR 1.20, p = 0.60), any intracranial hemorrhage (aICH) (OR 1.20, p = 0.12), symptomatic intracranial hemorrhage (sICH) (OR 0.91, p = 0.88), and death (OR 0.87, p = 0.25) had no statistical difference between both groups. This meta-analysis finds that compared with traditional antiplatelet or thrombolysis therapy, GP IIb/IIIa antagonists administered within 24-96 h of ischemic stroke onset significantly improve functional prognosis of patients with AIS not receiving EVT, as indicated by mRS and BI at 90 days, and do not increase the incidence of aICH, sICH, and death.

14.
Mol Pharm ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949624

ABSTRACT

The plasma protein α1-acid glycoprotein (AGP) primarily affects the pharmacokinetics of basic drugs. There are two AGP variants in humans, A and F1*S, exhibiting distinct drug-binding selectivity. Elucidation of the drug-binding selectivity of human AGP variants is essential for drug development and personalized drug therapy. Herein, we aimed to establish the contribution of amino acids 112 and 114 of human AGP to drug-binding selectively. Both amino acids are located in the drug-binding region and differ between the variants. Phe112/Ser114 of the A variant and its equivalent residues in the F1*S variant (Leu112/Phe114) were swapped with each other. Binding experiments were then conducted using the antiarrhythmic drug disopyramide, which selectively binds to the A variant. A significant decrease in the bound fraction was observed in each singly mutated A protein (Phe112Leu or Ser114Phe). Moreover, the bound fraction of the double A mutant (Phe112Leu/Ser114Phe) was decreased to that of wild-type F1*S. Intriguingly, the double F1*S mutant (Leu112Phe/Phe114Ser), in which residues were swapped with those of the A variant, showed only partial restoration in binding. The triple F1*S mutant (Leu112Phe/Phe114Ser/Asp115Tyr), where position 115 is thought to contribute to the difference in pocket size between variants, showed a further recovery in binding to 70% of that of wild-type A. These results were supported by thermodynamic analysis and acridine orange binding, which selectively binds the A variant. Together, these data indicate that, in addition to direct interaction with Phe112 and Ser114, the binding pocket size contributed by Tyr115 is important for the drug-binding selectivity of the A variant.

15.
Vet Anim Sci ; 25: 100361, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38947185

ABSTRACT

Previously, we demonstrated unique insertion/deletion polymorphisms of equine histidine-rich glycoprotein (eHRG) with five genotypes composed of 45-bp or 90-bp deletions in the histidine-rich region of eHRG in Thoroughbred horses. Although leukocytes are typically used to collect DNA for genotyping, blood sampling from animals is sometimes difficult and invasive. Moreover, the method for extracting DNA from blood leukocytes involves complicated steps and must be performed soon after blood sampling for sensitive gene analysis. In the present study, we performed eHRG genotyping using DNA, isolated from oral mucosa swabs collected by rubbing the mucosa on the underside of the upper lip of horses and 100 mg of freshly excreted feces obtained by scraping their surface. In the present study, we performed eHRG genotyping using DNA isolated from oral mucosa swabs and feces of horses (18 Thoroughbreds, 17 mixed breeds, 2 warm bloods), and compared the accuracy of this method with that of the method using DNA from leukocytes. The DNA derived from oral mucosa swabs was sufficient in quantity and quality for eHRG genotyping. However, DNA derived from fecal samples requires a more sensitive detection system because of contamination with non-horse DNA, and the test quality is low. Collection of oral mucosa swabs is less invasive than blood sampling; further, oral swabs can be stored for a longer period in a specified high-quality solution. Therefore, collecting DNA samples from oral mucosa swabs is recommended for the genetic analysis of not only horses but also other animals that are not accustomed to humans.

16.
Cureus ; 16(5): e61371, 2024 May.
Article in English | MEDLINE | ID: mdl-38947608

ABSTRACT

Optic neuritis (ON) is a rare condition in the pediatric age group. Patients with optic neuritis can manifest with a wide range of drops in vision, ranging from mild loss to complete loss of vision. Knowing the cause of optic neuritis is an important point that will affect management and prognosis. Anti-myelin oligodendrocyte glycoprotein (anti-MOG) antibody is an autoantibody that causes demyelination of the central nervous system (CNS). Treatment with a high dose of IV steroids followed by oral steroids is the best regimen that shows a favorable vision outcome. We aim to report this case of isolated optic neuritis with a positive anti-myelin oligodendrocyte glycoprotein antibody to highlight the prognosis of myelin oligodendrocyte glycoprotein disease with isolated optic neuritis and how early diagnosis and treatment can affect the visual outcome.

17.
Methods Mol Biol ; 2829: 277-286, 2024.
Article in English | MEDLINE | ID: mdl-38951344

ABSTRACT

Quantitative immunoassays, such as the traditional enzyme-linked immunosorbent assay (ELISA), are used to determine concentrations of an antigen in a matrix of unknown antigen concentration. Magnetic immunoassays, such as the Luminex xMAP technology, allow for the simultaneous detection of multiple analytes and offer heightened sensitivity, specificity, low sample volume requirements, and high-throughput capabilities. Here, we describe a quantitative immunoassay using the Luminex MAGPIX® System to determine the antigen concentration from liquid samples with unknown concentrations. In detail, we describe a newly developed assay for determining production yields of Drosophila S2-produced Marburg virus (MARV) glycoprotein in insect-cell-culture-derived supernatant. The potential applications of this assay could extend to the quantification of viral antigens in fluids derived from both in vitro and in vivo models infected with live MARV, thereby providing additional applications for virological research.


Subject(s)
Antigens, Viral , Microspheres , Animals , Immunoassay/methods , Antigens, Viral/immunology , Antigens, Viral/analysis , Marburgvirus/immunology , Marburgvirus/isolation & purification , Drosophila , Cell Culture Techniques/methods , Cell Line , Enzyme-Linked Immunosorbent Assay/methods
18.
Ceska Gynekol ; 89(3): 237-244, 2024.
Article in English | MEDLINE | ID: mdl-38969520

ABSTRACT

AIM AND METHODOLOGY: To provide a comprehensive review on new findings and current recommendations regarding antiphospholipid antibodies with particular emphasis on clinical impact on gestation. CONCLUSION: Antiphospholipid antibodies are an important risk factor for the development of a series of pregnancy-related complications. Early diagnosis and appropriate therapy can reduce the incidence of pregnancy loss and pregnancy-related complications.


Subject(s)
Antibodies, Antiphospholipid , Antiphospholipid Syndrome , Pregnancy Complications , Humans , Pregnancy , Female , Antibodies, Antiphospholipid/blood , Antibodies, Antiphospholipid/immunology , Antiphospholipid Syndrome/immunology , Antiphospholipid Syndrome/diagnosis , Antiphospholipid Syndrome/complications , Pregnancy Complications/immunology
19.
Chem Biol Drug Des ; 104(1): e14576, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38969623

ABSTRACT

Intestinal absorption of compounds is significant in drug research and development. To evaluate this efficiently, a method combining mathematical modeling and molecular simulation was proposed, from the perspective of molecular structure. Based on the quantitative structure-property relationship study, the model between molecular structure and their apparent permeability coefficients was successfully constructed and verified, predicting intestinal absorption of drugs and interpreting decisive structural factors, such as AlogP98, Hydrogen bond donor and Ellipsoidal volume. The molecules with strong lipophilicity, less hydrogen bond donors and receptors, and small molecular volume are more easily absorbed. Then, the molecular dynamics simulation and molecular docking were utilized to study the mechanism of differences in intestinal absorption of drugs and investigate the role of molecular structure. Results indicated that molecules with strong lipophilicity and small volume interacted with the membrane at a lower energy and were easier to penetrate the membrane. Likewise, they had weaker interaction with P-glycoprotein and were easier to escape from it and harder to export from the body. More in, less out, is the main reason these molecules absorb well.


Subject(s)
Hydrogen Bonding , Intestinal Absorption , Molecular Docking Simulation , Molecular Dynamics Simulation , Quantitative Structure-Activity Relationship , Humans , Molecular Structure , Pharmaceutical Preparations/metabolism , Pharmaceutical Preparations/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry , Hydrophobic and Hydrophilic Interactions , Permeability
20.
Cell ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38964328

ABSTRACT

The human coronavirus HKU1 spike (S) glycoprotein engages host cell surface sialoglycans and transmembrane protease serine 2 (TMPRSS2) to initiate infection. The molecular basis of HKU1 binding to TMPRSS2 and determinants of host receptor tropism remain elusive. We designed an active human TMPRSS2 construct enabling high-yield recombinant production in human cells of this key therapeutic target. We determined a cryo-electron microscopy structure of the HKU1 RBD bound to human TMPRSS2, providing a blueprint of the interactions supporting viral entry and explaining the specificity for TMPRSS2 among orthologous proteases. We identified TMPRSS2 orthologs from five mammalian orders promoting HKU1 S-mediated entry into cells along with key residues governing host receptor usage. Our data show that the TMPRSS2 binding motif is a site of vulnerability to neutralizing antibodies and suggest that HKU1 uses S conformational masking and glycan shielding to balance immune evasion and receptor engagement.

SELECTION OF CITATIONS
SEARCH DETAIL
...