Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Adv Exp Med Biol ; 1443: 23-32, 2024.
Article in English | MEDLINE | ID: mdl-38409414

ABSTRACT

Protein glycosylation is a post-translational modification involving the addition of carbohydrates to proteins and plays a crucial role in protein folding and various biological processes such as cell recognition, differentiation, and immune response. The vast array of natural sugars available allows the generation of plenty of unique glycan structures in proteins, adding complexity to the regulation and biological functions of glycans. The diversity is further increased by enzymatic site preferences and stereochemical conjugation, leading to an immense amount of different glycan structures. Understanding glycosylation heterogeneity is vital for unraveling the impact of glycans on different biological functions. Evaluating site occupancies and structural heterogeneity aids in comprehending glycan-related alterations in biological processes. Several software tools are available for large-scale glycoproteomics studies; however, integrating identification and quantitative data to assess heterogeneity complexity often requires extensive manual data processing. To address this challenge, we present a python script that automates the integration of Byonic and MaxQuant outputs for glycoproteomic data analysis. The script enables the calculation of site occupancy percentages by glycans and facilitates the comparison of glycan structures and site occupancies between two groups. This automated tool offers researchers a means to organize and interpret their high-throughput quantitative glycoproteomic data effectively.


Subject(s)
Glycopeptides , Tandem Mass Spectrometry , Software , Glycosylation , Polysaccharides/chemistry
2.
Mol Cell Proteomics ; 22(7): 100586, 2023 07.
Article in English | MEDLINE | ID: mdl-37268159

ABSTRACT

While altered protein glycosylation is regarded a trait of oral squamous cell carcinoma (OSCC), the heterogeneous and dynamic glycoproteome of tumor tissues from OSCC patients remain unmapped. To this end, we here employ an integrated multi-omics approach comprising unbiased and quantitative glycomics and glycoproteomics applied to a cohort of resected primary tumor tissues from OSCC patients with (n = 19) and without (n = 12) lymph node metastasis. While all tumor tissues displayed relatively uniform N-glycome profiles suggesting overall stable global N-glycosylation during disease progression, altered expression of six sialylated N-glycans was found to correlate with lymph node metastasis. Notably, glycoproteomics and advanced statistical analyses uncovered altered site-specific N-glycosylation revealing previously unknown associations with several clinicopathological features. Importantly, the glycomics and glycoproteomics data unveiled that comparatively high abundance of two core-fucosylated and sialylated N-glycans (Glycan 40a and Glycan 46a) and one N-glycopeptide from fibronectin were associated with low patient survival, while a relatively low abundance of N-glycopeptides from both afamin and CD59 were also associated with poor survival. This study provides insight into the complex OSCC tissue N-glycoproteome, thereby forming an important resource to further explore the underpinning disease mechanisms and uncover new prognostic glycomarkers for OSCC.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Humans , Glycosylation , Lymphatic Metastasis , Glycopeptides/metabolism , Proteome/metabolism , Polysaccharides/analysis
3.
Biochim Biophys Acta Proteins Proteom ; 1870(7): 140795, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35662639

ABSTRACT

Snake venom proteomes have long been investigated to explore a multitude of biologically active components that are used for prey capture and defense, and are involved in the pathological effects observed upon mammalian envenomation. Glycosylation is a major protein post-translational modification in venoms and contributes to the diversification of proteomes. We have shown that Bothrops venoms are markedly defined by their content of glycoproteins, and that most N-glycan structures of eight Bothrops venoms contain sialic acid, while bisected N-acetylglucosamine was identified in Bothrops cotiara venom. To further investigate the mechanisms involved in the generation of different venoms by related snakes, here the glycoproteomes of nine Bothrops venoms (Bothrops atrox, B. cotiara, Bothrops erythromelas, Bothrops fonsecai, B. insularis, Bothrops jararaca, Bothrops jararacussu, Bothrops moojeni and Bothrops neuwiedi) were comparatively analyzed by enrichment with three lectins of different specificities, recognizing bisecting N-acetylglucosamine- and sialic acid-containing glycoproteins, and mass spectrometry. The lectin capture strategy generated venom fractions enriched with several glycoproteins, including metalloprotease, serine protease, and L- amino acid oxidase, in addition to various types of low abundant enzymes. The different contents of lectin-enriched proteins underscore novel aspects of the variability of the glycoprotein subproteomes of Bothrops venoms and point to the role of distinct types of glycan chains in generating different venoms by closely related snake species.


Subject(s)
Bothrops , Crotalid Venoms , Acetylglucosamine/metabolism , Animals , Bothrops/metabolism , Carrier Proteins/metabolism , Crotalid Venoms/chemistry , Glycoproteins/chemistry , Lectins , Mammals/metabolism , N-Acetylneuraminic Acid , Polysaccharides , Proteome/metabolism
4.
Biochim Biophys Acta Proteins Proteom, v. 1870, n. 7, 140795, jul. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4387

ABSTRACT

Snake venom proteomes have long been investigated to explore a multitude of biologically active components that are used for prey capture and defense, and are involved in the pathological effects observed upon mammalian envenomation. Glycosylation is a major protein post-translational modification in venoms and contributes to the diversification of proteomes. We have shown that Bothrops venoms are markedly defined by their content of glycoproteins, and that most N-glycan structures of eight Bothrops venoms contain sialic acid, while bisected N-acetylglucosamine was identified in Bothrops cotiara venom. To further investigate the mechanisms involved in the generation of different venoms by related snakes, here the glycoproteomes of nine Bothrops venoms (Bothrops atrox, B. cotiara, Bothrops erythromelas, Bothrops fonsecai, B. insularis, Bothrops jararaca, Bothrops jararacussu, Bothrops moojeni and Bothrops neuwiedi) were comparatively analyzed by enrichment with three lectins of different specificities, recognizing bisecting N-acetylglucosamine- and sialic acid-containing glycoproteins, and mass spectrometry. The lectin capture strategy generated venom fractions enriched with several glycoproteins, including metalloprotease, serine protease, and L- amino acid oxidase, in addition to various types of low abundant enzymes. The different contents of lectin-enriched proteins underscore novel aspects of the variability of the glycoprotein subproteomes of Bothrops venoms and point to the role of distinct types of glycan chains in generating different venoms by closely related snake species.

5.
São Paulo; s.n; s.n; 2022. 188 p. tab, graf.
Thesis in Portuguese | LILACS | ID: biblio-1396966

ABSTRACT

A variabilidade estrutural é uma característica das proteínas de venenos de serpentes, e a glicosilação é uma das principais modificações pós-traducionais que contribui para a diversificação de seus proteomas. Recentes estudos de nosso grupo demonstraram que venenos do gênero Bothrops são marcadamente definidos pelo seu conteúdo de glicoproteínas, e que a maioria das estruturas de N-glicanos dos tipos híbrido e complexo identificados em oito venenos deste gênero contêm unidades de ácido siálico. Em paralelo, em glicoproteínas do veneno de B. cotiara foi identificada a presença de uma estrutura de N-acetilglicosamina bissecada. Assim, com o objetivo de investigar a variação do conteúdo de glicoproteínas, assim como os mecanismos envolvidos na geração dos diferentes venenos de Bothrops, neste estudo foram analisados comparativamente os glicoproteomas de nove venenos do gênero Bothrops (B. atrox, B. cotiara, B. erythromelas, B. fonsecai, B. insularis, B. jararaca, B. jararacussu, B. moojeni e B. neuwiedi). As abordagens glicoproteômicas envolveram cromatografia de afinidade e ensaio de pull-down utilizando, respectivamente, as lectinas SNA (aglutinina de Sambucus nigra) e MAL I (lectina de Maackia amurensis), que mostram afinidade por unidades de ácido siálico nas posições, respectivamente, α2,6 e α2,3; e cromatografia de afinidade com a lectina PHA-E (eritroaglutinina de Phaseolus vulgaris), que reconhece N-acetilglicosamina bissecada. Ainda, eletroforese de proteínas, blot de lectina, e identificação de proteínas por espectrometria de massas foram empregadas para caracterizar os glicoproteomas. As lectinas geraram frações dos venenos enriquecidas de diferentes componentes, onde as principais classes de glicoproteínas identificadas foram metaloprotease, serinoprotease, e L-amino ácido oxidase, além de outras enzimas pouco abundantes nos venenos. Os diferentes conteúdos de proteínas reconhecidas por essas lectinas, com especificidades distintas, ressaltaram novos aspectos da variabilidade dos subproteomas de glicoproteínas desses venenos, dependendo da espécie. Ainda, considerando que metaloproteases e serinoproteases são componentes abundantes nesses venenos e fundamentais no quadro de envenenamento botrópico, e que estas enzimas contêm diversos sítios de glicosilação, o papel das unidades de ácido siálico na atividade proteolítica das mesmas foi avaliado. Assim, a remoção enzimática de ácido siálico (i) alterou o padrão de gelatinólise em zimografia da maioria dos venenos, (ii) diminuiu a atividade proteolítica de alguns venenos sobre o fibrinogênio e a atividade coagulante do plasma humano de todos os venenos, e (iii) alterou o perfil de hidrólise de proteínas plasmáticas pelo veneno de B. jararaca, indicando que este carboidrato pode desempenhar um papel na interação das proteases com seus substratos proteicos. Em contraste, o perfil da atividade amidolítica dos venenos não se alterou após a remoção de ácido siálico e incubação com o substrato Bz-Arg-pNA, indicando que ácido siálico não é essencial em N-glicanos de serinoproteases atuando sobre substratos não proteicos. Em conjunto, esses resultados expandem o conhecimento sobre a variabilidade de proteomas de venenos do gênero Bothrops e apontam a importância das cadeias de carboidratos contendo ácido siálico nas atividades enzimáticas das proteases desses venenos


Structural variability is a feature of snake venom proteins, and glycosylation is one of the main post-translational modifications that contributes to the diversification of venom proteomes. Recent studies by our group have shown that Bothrops venoms are markedly defined by their glycoprotein content, and that most hybrid and complex N-glycan structures identified in eight venoms of this genus contain sialic acid units. In parallel, the presence of a bisected N-acetylglucosamine structure was identified in B. cotiara venom glycoproteins. Thus, with the aim of investigating the variation in the content of glycoproteins, as well as the mechanisms involved in the generation of different Bothrops venoms, in this study the glycoproteomes of nine Bothrops venoms (B. atrox, B. cotiara, B. erythromelas, B. fonsecai, B. insularis, B. jararaca, B. jararacussu, B. moojeni e B. neuwiedi) were comparatively analyzed. The glycoproteomic approaches involved affinity chromatography and pulldown using, respectively, the lectins SNA (Sambucus nigra agglutinin) and MAL I (Maackia amurensis lectin), which show affinity for sialic acid units at positions, respectively, α2,6 and α2,3, and affinity chromatography with PHA-E (Phaseolus vulgaris erythroagglutinin), which recognizes bisected N-acetylglucosamine. In addition, protein electrophoresis, lectin blot, and protein identification by mass spectrometry were employed for glycoproteome characterization. The lectins generated venom fractions enriched with different components, where the main classes of glycoproteins identified were metalloprotease, serine protease, and L-amino acid oxidase, in addition to other low abundant enzymes. The different contents of proteins recognized by these lectins of distinct specificities highlighted new aspects of the variability of the glycoprotein subproteomes of these venoms, depending on the species. Furthermore, considering that metalloproteases and serine proteases are abundant components of these venoms and essential in Bothrops envenomation, and that these enzymes contain several glycosylation sites, the role of sialic acid units in their proteolytic activities was evaluated. Thus, enzymatic removal of sialic acid (i) altered the pattern of gelatinolysis in zymography of most venoms, (ii) decreased the proteolytic activity of some venoms on fibrinogen and the clotting activity of human plasma of all venoms, and (iii) altered the hydrolysis profile of plasma proteins by B. jararaca venom, indicating that this carbohydrate may play a role in the interaction of proteases with their protein substrates. In contrast, the profile of amidolytic activity of the venoms did not change after removal of sialic acid and incubation with the substrate Bz-Arg-pNA, indicating that sialic acid is not essential in N-glycans of serine proteases acting on small substrates. Together, these results expand the knowledge about the variability of proteomes of Bothrops venoms and point to the importance of carbohydrate chains containing sialic acid in the enzymatic activities of venom proteases


Subject(s)
Poisons , Snake Venoms/adverse effects , Glycosylation , Bothrops/classification , Proteome/administration & dosage , Mass Spectrometry/methods , Venoms/adverse effects , Coagulants/adverse effects , Chromatography, Affinity , Sambucus nigra/classification , Proteolysis
6.
J Proteomics ; 248: 104355, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34450331

ABSTRACT

A new method to probe the conformational changes of glycoproteins on a systems-wide scale, termed limited deglycosylation assay (LDA), is described. The method measures the differential rate of deglycosylation of N-glycans on natively folded proteins by the common peptide:N-glycosidase F (PNGase F) enzyme which in turn informs on their spatial presentation and solvent exposure on the protein surface hence ultimately the glycoprotein conformation. LDA involves 1) protein-level N-deglycosylation under native conditions, 2) trypsin digestion, 3) glycopeptide enrichment, 4) peptide-level N-deglycosylation and 5) quantitative MS-based analysis of formerly N-glycosylated peptides (FNGPs). LDA was initially developed and the experimental conditions optimized using bovine RNase B and fetuin. The method was then applied to glycoprotein extracts from LLC-MK2 epithelial cells upon treatment with dithiothreitol to induce endoplasmic reticulum stress and promote protein misfolding. Data from the LDA and 3D structure analysis showed that glycoproteins predominantly undergo structural changes in loops/turns upon ER stress as exemplified with detailed analysis of ephrin-A5, GALNT10, PVR and BCAM. These results show that LDA accurately reports on systems-wide conformational changes of glycoproteins induced under controlled treatment regimes. Thus, LDA opens avenues to study glycoprotein structural changes in a range of other physiological and pathophysiological conditions relevant to acute and chronic diseases. SIGNIFICANCE: We describe a novel method termed limited deglycosylation assay (LDA), to probe conformational changes of glycoproteins on a systems-wide scale. This method improves the current toolbox of structural proteomics by combining site and conformational-specific PNGase F enzymatic activity with large scale quantitative proteomics. X-ray crystallography, nuclear magnetic resonance spectroscopy and cryoEM techniques are the major techniques applied to elucidate macromolecule structures. However, the size and heterogeneity of the oligosaccharide chains poses several challenges to the applications of these techniques to glycoproteins. The LDA method presented here, can be applied to a range of pathophysiological conditions and expanded to investigate PTMs-mediated structural changes in complex proteomes.


Subject(s)
Glycopeptides , Glycoproteins , Animals , Cattle , Glycoproteins/metabolism , Glycosylation , Oligosaccharides , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/metabolism , Polysaccharides
7.
Mol Immunol ; 135: 226-246, 2021 07.
Article in English | MEDLINE | ID: mdl-33933815

ABSTRACT

Extracellular vesicles (EVs) are lipid bilayer-enclosed particles involved in intercellular communication, delivery of biomolecules from donor to recipient cells, cellular disposal and homeostasis, potential biomarkers and drug carriers. The content of EVs includes DNA, lipids, metabolites, proteins, and microRNA, which have been studied in various diseases, such as cancer, diabetes, pregnancy, neurodegenerative, and cardiovascular disorders. EVs are enriched in glycoconjugates and exhibit specific glycosignatures. Protein glycosylation is a co- and post-translational modification (PTM) that plays an important role in the expression and function of exosomal proteins. N- and O-linked protein glycosylation has been mapped in exosomal proteins. The purpose of this review is to highlight the importance of glycosylation in EVs proteins. Initially, we describe the main PTMs in EVs with a focus on glycosylation. Then, we explore glycan-binding proteins describing the main findings of studies that investigated the glycosylation of EVs in cancer, pregnancy, infectious diseases, diabetes, mental disorders, and animal fluids. We have highlighted studies that have developed innovative methods for studying the content of EVs. In addition, we present works related to lipid glycosylation. We explored the content of studies deposited in public databases, such as Exocarta and Vesiclepedia. Finally, we discuss analytical methods for structural characterization of glycoconjugates and present an overview of the critical points of the study of glycosylation EVs, as well as perspectives in this field.


Subject(s)
Carrier Proteins/metabolism , Cell Communication/physiology , Exosomes/metabolism , Polysaccharides/metabolism , Protein Processing, Post-Translational/physiology , Animals , Extracellular Vesicles/metabolism , Glycosylation , Humans , Neoplasms/pathology , Protein Binding/physiology
8.
Oncotarget ; 9(69): 33077-33097, 2018 Sep 04.
Article in English | MEDLINE | ID: mdl-30237853

ABSTRACT

Novel biomarkers are needed to complement prostate specific antigen (PSA) in prostate cancer (PCa) diagnostic screening programs. Glycoproteins represent a hitherto largely untapped resource with a great potential as specific and sensitive tumor biomarkers due to their abundance in bodily fluids and their dynamic and cancer-associated glycosylation. However, quantitative glycoproteomics strategies to detect potential glycoprotein cancer markers from complex biospecimen are only just emerging. Here, we describe a glycoproteomics strategy for deep quantitative mapping of N- and O-glycoproteins in urine with a view to investigate the diagnostic value of the glycoproteome to discriminate PCa from benign prostatic hyperplasia (BPH), two conditions that remain difficult to clinically stratify. Total protein extracts were obtained, concentrated and digested from urine of six PCa patients (Gleason score 7) and six BPH patients. The resulting peptide mixtures were TMT-labeled and mixed prior to a multi-faceted sample processing including hydrophilic interaction liquid chromatography (HILIC) and titanium dioxide SPE based enrichment, endo-/exoglycosidase treatment and HILIC-HPLC pre-fractionation. The isolated N- and O-glycopeptides were detected and quantified using high resolution mass spectrometry. We accurately quantified 729 N-glycoproteins spanning 1,310 unique N-glycosylation sites and observed 954 and 965 unique intact N- and O-glycopeptides, respectively, across the two disease conditions. Importantly, a panel of 56 intact N-glycopeptides perfectly discriminated PCa and BPH (ROC: AUC = 1). This study has generated a panel of intact glycopeptides that has a potential for PCa detection.

9.
Mol Cell Proteomics, v. 17, n. 7, p. 1261-1284, jul. 2018
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2504

ABSTRACT

The complexity of snake venoms has long been investigated to explore a myriad of biologically active proteins and peptides that are used for immobilizing or killing prey, and are responsible for the pathological effects observed on envenomation. Glycosylation is the main post-translational modification (PTM) of viperid venoms but currently there is little understanding of how protein glycosylation impacts the variation of venom proteomes. We have previously reported that Bothrops venom glycoproteomes contain a core of components that markedly define their composition and parallel their phylogenetic classification. Here we extend those observations to eight Bothrops species evaluating the N-glycomes by LC-MS as assigned cartoon structures and detailing those structures separately as methylated analogs using ion-trap mass spectrometry (MSn). Following ion disassembly through multiple steps provided sequence and linkage isomeric details that characterized 52 unique compositions in Bothrops venoms. These occurred as 60 structures, of which 26 were identified in the venoms of the Jararaca Complex (B. alcatraz, B. insularis, and B. jararaca), 20 in B. erythromelas, B. jararacussu, B. moojeni and B. neuwiedi venoms, and 22 in B. cotiara venom. Further, quantitative analysis of these N-glycans showed variable relative abundances in the venoms. For the first time a comprehensive set of N-glycan structures present in snake venoms are defined. Despite the fact that glycosylation is not template-defined, the N-glycomes of these venoms mirror the phylogeny cladograms of South American bothropoid snakes reported in studies on morphological, molecular data and feeding habits, exhibiting distinct molecular signatures for each venom. Considering the complexity of N-glycan moieties generally found in glycoproteins, characterized by different degrees of branching, isomer structures, and variable abundances, our findings point to these factors as another level of complexity in Bothrops venoms, features that could dramatically contribute to their distinct biological activities.

10.
J Proteomics ; 151: 182-192, 2017 01 16.
Article in English | MEDLINE | ID: mdl-27318177

ABSTRACT

Trypanosoma cruzi, the protozoan that causes Chagas disease, has a complex life cycle involving insect and mammalian hosts and distinct developmental stages. During T. cruzi developmental stages, glycoproteins play important role in the host-parasite interaction, such as cellular recognition, host cell invasion and adhesion, and immune evasion. In this study, comprehensive glycoprofiling analysis was performed in the epimastigote and trypomastigote stages of T. cruzi using two glycopeptide enrichment strategies, lectin-based and hydrophilic interaction liquid chromatography, followed by high resolution LC-MS/MS. Following deglycosylation, a total of 1306 N-glycosylation sites in NxS/T/C motifs were identified from 690 T. cruzi glycoproteins. Among them, 170 and 334 glycoproteins were exclusively identified in epimastigotes and trypomastigotes, respectively. Besides, global site-specific characterization of the N- and O-linked glycan heterogeneity in the two life stages of T. cruzi was achieved by intact glycopeptide analysis, revealing 144/466 unique N-linked and 10/97 unique O-linked intact glycopeptides in epimastigotes/trypomastigotes, respectively. Conclusively, this study documents the significant T. cruzi stage-specific expression of glycoproteins that can help to better understand the T. cruzi phenotype and response caused by the interaction with different hosts during its complex life cycle. BIOLOGICAL SIGNIFICANCE: Chagas disease caused by the protozoan Trypanosoma cruzi is a neglected disease which affects millions of people especially in Latin America. The absence of efficient drugs and vaccines against Chagas disease stimulates the search for novel targets. Glycoproteins are very attractive therapeutic candidate targets since they mediate key processes in the host-parasite interaction, such as cellular recognition, host cell invasion and adhesion, and immune evasion. This study aimed to provide an in depth characterization of the N-linked and O-linked glycoproteome of two T. cruzi life stages: epimastigotes and trypomastigotes. Mass spectrometry-based proteomics showed interesting stage-specific glycoproteome signatures that are valuable to better understand the importance of protein glycosylation in epimastigotes and trypomastigotes and to expand the repertoire of potential therapeutic targets against Chagas disease.


Subject(s)
Glycoproteins/analysis , Host-Parasite Interactions , Life Cycle Stages , Trypanosoma cruzi/chemistry , Chagas Disease/parasitology , Chromatography, Liquid , Glycoproteins/physiology , Proteomics/methods , Tandem Mass Spectrometry , Trypanosoma cruzi/growth & development , Trypanosoma cruzi/physiology
SELECTION OF CITATIONS
SEARCH DETAIL