Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.940
Filter
1.
J Environ Sci Health B ; : 1-11, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001801

ABSTRACT

Two years of monthly sampling and hydrological monitoring were performed at the outlet of a Mediterranean watershed in northern Tunisia to determine the contents of 469 pesticide active ingredients and metabolites in water and evaluate their behavior. Wadi Guenniche is a tributary of the Bizerte coastal lagoon, with a watershed area of 86 km2, which exhibits pluvial cereal, legume, and orchid cultivation and irrigated market gardening. Twenty-nine pesticide active ingredients and 2 metabolites were detected in water. Twenty-four pesticide active ingredients were authorized for use in Tunisia. Among them, 14 had never been mentioned in previous farmer surveys. Five herbicides and their metabolites were the most frequently detected: aminomethylphosphonic acid (AMPA) (100%), glyphosate (94%), simazine (94%), 2,4-D (70%), and deisopropylatrazine (DIA) (47%). The detection frequency and concentration range suggested that the phytosanitary pressure and resulting water contamination are close to those on the northern Mediterranean shore. These results, in addition to characterizing the pollution state, emphasized the need for additional studies on the use and fate of pesticides on the southern shore of the Mediterranean Sea, particularly in Tunisia.

2.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000147

ABSTRACT

Glyphosate, the active ingredient of several broad-spectrum herbicides, is widely used throughout the world, although many adverse effects are known. Among these, it has been recognized as an endocrine disruptor. This work aimed to test the effects and potential endocrine disrupting action of glyphosate on PNT1A human prostate cells, an immortalized non-tumor epithelial cell line, possessing both ERα and ERß estrogen receptors. The results showed that glyphosate induces cytotoxicity, mitochondrial dysfunction, and rapid activation of ERα and ERß via nuclear translocation. Molecular analysis indicated a possible involvement of apoptosis in glyphosate-induced cytotoxicology. The apoptotic process could be attributed to alterations in mitochondrial metabolism; therefore, the main parameters of mitochondrial functionality were investigated using the Seahorse analyzer. Impaired mitochondrial function was observed in glyphosate-treated cells, with reductions in ATP production, spare respiratory capacity, and proton leakage, along with increased efficiency of mitochondrial coupling. Finally, the results of immunofluorescence analysis demonstrated that glyphosate acts as an estrogen disruptor determining the nuclear translocation of both ERs. Nuclear translocation occurred independent of dose, faster than the specific hormone, and persisted throughout treatment. In conclusion, the results collected show that in non-tumor prostate cells glyphosate can cause cell death and acts as a xenoestrogen, activating estrogen receptors. The consequent alteration of hormonal functions can have negative effects on the reproductive health of exposed animals, compromising their fertility.


Subject(s)
Apoptosis , Estrogen Receptor alpha , Estrogen Receptor beta , Glycine , Glyphosate , Mitochondria , Prostate , Glycine/analogs & derivatives , Glycine/pharmacology , Glycine/toxicity , Humans , Male , Mitochondria/drug effects , Mitochondria/metabolism , Estrogen Receptor beta/metabolism , Estrogen Receptor alpha/metabolism , Prostate/drug effects , Prostate/metabolism , Prostate/pathology , Apoptosis/drug effects , Cell Line , Herbicides/toxicity , Endocrine Disruptors/toxicity , Endocrine Disruptors/pharmacology , Cell Survival/drug effects
3.
Front Microbiol ; 15: 1405842, 2024.
Article in English | MEDLINE | ID: mdl-38993498

ABSTRACT

Sunflower (Helianthus annuus L.), a vital crop for global vegetable oil production, encounters sustainability challenges in its cultivation. This study assesses the effects of incorporating a winter cover crop (CC), Avena sativa (L.), on the subsequent growth of sunflower crops and the vitality of their rhizosphere microbial communities over a two-year period. It examines the impact of two methods for suppressing winter CC-chemical suppression using glyphosate and mechanical suppression via rolling-both with and without the addition of phosphorus (P) starter fertilizer. These approaches are evaluated in comparison to the regional best management practices for sunflower cultivation, which involve a preparatory chemical fallow period and the subsequent application of starter P fertilizer. The methodology utilized Illumina sequencing for the analysis of rhizosphere bacterial 16S rRNA genes and fungal internal transcribed spacer (ITS) amplicons. Findings indicate a significant improvement (9-37%) in sunflower growth parameters (plant height, stem diameter, head diameter, and head dry weight) when cultivated after glyphosate-suppressed winter CC compared to the chemical fallows. Conversely, rolling of winter CC generally negatively affected sunflower growth. Rhizosphere bacterial communities following chemical suppression of winter CC showed greater Pielou's evenness, indicating a uniform distribution of species. In general, this treatment had more detrimental effects on beneficial sunflower rhizosphere bacteria such as Hymenobacter and Pseudarthrobacter than rolling of the winter CC, suggesting that the overall effect on sunflower growth may be mitigated by the redundancy within the bacterial community. As for fungal diversity, measured by the Chao-1 index, it increased in sunflowers planted after winter CC and receiving P fertilization, underscoring nutrient management's role in microbial community structure. Significant positive correlations between fungal diversity and sunflower growth parameters at the reproductive stage were observed (r = 0.41-0.72; p < 0.05), highlighting the role of fungal communities in plant fitness. The study underscores the positive effects of winter CC inclusion and management for enhancing sunflower cultivation while promoting beneficial microbes in the crop's rhizosphere. We advocate for strategic winter CC species selection, optimization of mechanical suppression techniques, and tailored phosphorus fertilization of sunflower to foster sustainable agriculture.

4.
ACS Appl Mater Interfaces ; 16(28): 36784-36795, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38967626

ABSTRACT

Tailoring the defects in graphene and its related carbon allotropes has great potential to exploit their enhanced electrochemical properties for energy applications, environmental remediation, and sensing. Vertical graphene, also known as carbon nanowalls (CNWs), exhibits a large surface area, enhanced charge transfer capability, and high defect density, making it suitable for a wide range of emerging applications. However, precise control and tuning of the defect size, position, and density remain challenging; moreover, due to their characteristic labyrinthine morphology, conventional characterization techniques and widely accepted quality indicators fail or need to be reformulated. This study primarily focuses on examining the impact of boron heterodoping and argon plasma treatment on CNW structures, uncovering complex interplays between specific defect-induced three-dimensional nanostructures and electrochemical performance. Moreover, the study introduces the use of defect-rich CNWs as a label-free electrode for directly oxidizing glyphosate (GLY), a common herbicide, and its metabolites (sarcosine and aminomethylphosphonic acid) for the first time. Crucially, we discovered that the presence of specific boron bonds (BC and BN), coupled with the absence of Lewis-base functional groups such as pyridinic-N, is essential for the oxidation of these analytes. Notably, the D+D* second-order combinational Raman modes at ≈2570 cm-1 emerged as a reliable indicator of the analytes' affinity. Contrary to expectations, the electrochemically active surface area and the presence of oxygen-containing functional groups played a secondary role. Argon-plasma post-treatment was found to adversely affect both the morphology and surface chemistry of CNWs, leading to an increase in sp3-hybridized carbon, the introduction of oxygen, and alterations in the types of nitrogen functional groups. Simulations support that certain defects are functional for GLY rather than AMPA. Sarcosine oxidation is the least affected by defect type.

5.
Environ Pollut ; 359: 124554, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39013514

ABSTRACT

The proceeding study aimed to isolate glyphosate-degrading bacteria from soil and determine optimal degradation conditions through single-factor experiments and response surface methodology. The detoxifying efficacy of the isolate on glyphosate was assessed using earthworm model. The results indicate that Pseudomonas putida HE exhibited the highest glyphosate degradation rate. Optimal conditions for glyphosate degradation were observed at an inoculation percentage of approximately 5%, a pH of 7, and a temperature of 30 °C. Glyphosate induced notable neurotoxicity and reproductive toxicity in earthworms, evidenced by reduced activity of the neurotoxicity-associated enzyme AChE. Additionally, an increase in the activities of catalase, superoxide dismutase, and lactate dehydrogenase was observed. H&E staining revealed structural disruptions in the earthworm clitellum, with notable atrophy in the structure of spermathecae. Furthermore, glyphosate activation of earthworm immune systems led to increased expression of immune-related genes, specifically coelomic cytolytic factor and lysozyme. Notably, the introduction of strain HE mitigated the glyphosate toxicity to the earthworms mentioned above. P. putida HE was able to increase soil enzyme activities that were reduced due to glyphosate. The isolate P. putida HE, emerged as an effective and cost-efficient remedy for glyphosate degradation and toxicity reduction in natural settings, showcasing potential applications in real ecological settings.

6.
Article in English | MEDLINE | ID: mdl-38980489

ABSTRACT

Uncontrolled use of pesticides has caused a dramatic reduction in the number of pollinators, including bees. Studies on the effects of pesticides on bees have reported effects on both metabolic and neurological levels under chronic exposure. In this study, variations in the differential expression of head and thorax-abdomen proteins in Africanized A. mellifera bees treated acutely with sublethal doses of glyphosate and imidacloprid were studied using a proteomic approach. A total of 92 proteins were detected, 49 of which were differentially expressed compared to those in the control group (47 downregulated and 2 upregulated). Protein interaction networks with differential protein expression ratios suggested that acute exposure of A. mellifera to sublethal doses of glyphosate could cause head damage, which is mainly associated with behavior and metabolism. Simultaneously, imidacloprid can cause damage associated with metabolism as well as, neuronal damage, cellular stress, and impairment of the detoxification system. Regarding the thorax-abdomen fractions, glyphosate could lead to cytoskeleton reorganization and a reduction in defense mechanisms, whereas imidacloprid could affect the coordination and impairment of the oxidative stress response.

7.
Plant J ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39024389

ABSTRACT

Weeds in agricultural settings continually adapt to stresses from ecological and anthropogenic sources, in some cases leading to resistant populations. However, consequences of repeated sub-lethal exposure of these stressors on fitness and stress "memory" over generations remain poorly understood. We measured plant performance over a transgenerational experiment with Arabidopsis thaliana where plants were exposed to sub-lethal stress induced by the herbicides glyphosate or trifloxysulfuron, stresses from clipping or shading in either one (G1) or four successive generations (G1-G4), and control plants that never received stress. We found that fourth-generation (G4) plants that had been subjected to three generations of glyphosate or trifloxysulfuron stress produced higher post-stress biomass, seed weight, and rosette area as compared to that produced by plants that experienced stress only in the first generation (G1). By the same measure, clipping and shade were more influential on floral development time (shade) and seed weight (clipping) but did not show responsive phenotypes for vegetative metrics after multiple generations. Overall, we found that plants exhibited more rapid transgenerational vegetative "stress memory" to herbicides while reproductive plasticity was stressor dependent and similar between clipping/shade and anthropogenic stressors. Our study suggests that maternal plant stress memory aids next-generation plants to respond and survive better under the same stressors.

8.
Chemosphere ; 362: 142700, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936485

ABSTRACT

Pesticides are significant environmental pollutants, and many of them possess mutagenic potential, which is closely linked to carcinogenesis. Here we tested the mutagenicity of all six pesticides classified probably carcinogenic (Group 2A) by the International Agency of Research on Cancer: 4,4'-DDT, captafol, dieldrin, diazinon, glyphosate and malathion. Whole genome sequencing of TK6 human lymphoblastoid cell clones following 30-day exposure at subtoxic concentrations revealed a clear mutagenic effect of treatment with captafol or malathion when added at 200 nM or 100 µM initial concentrations, respectively. Each pesticide induced a specific base substitution mutational signature: captafol increased C to A mutations primarily, while malathion induced mostly C to T mutations. 4,4'-DDT, dieldrin, diazinon and glyphosate were not mutagenic. Whereas captafol induced chromosomal instability, H2A.X phosphorylation and cell cycle arrest in G2/M phase, all indicating DNA damage, malathion did not induce DNA damage markers or cell cycle alterations despite its mutagenic effect. Hypersensitivity of REV1 and XPA mutant DT40 chicken cell lines suggests that captafol induces DNA adducts that are bypassed by translesion DNA synthesis and are targets for nucleotide excision repair. The experimentally identified mutational signatures of captafol and malathion could shed light on the mechanism of action of these compounds. The signatures are potentially suitable for detecting past exposure in tumour samples, but the reanalysis of large cancer genome databases did not reveal any evidence of captafol or malathion exposure.

9.
Sci Total Environ ; 945: 174163, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38906309

ABSTRACT

A novel dual-signal fluorometric and colorimetric probe FMDH (5-FAM-Met-Asp-His-NH2), incorporating a tripeptide (Met-Asp-His-NH2) linked to 5-carboxyfluorescein (5-FAM), was firstly synthesised. FMDH demonstrated exceptional selectivity and sensitivity, rapid response, wide pH response range and robust anti-interference capabilities for monitoring Cu2+. This was achieved through a distinctive naked-eye colorimetric and fluorescent quenching behaviour. A good linearity within the range of 0-3 µM (R2 = 0.9914) was attained, and the limit of detection (LOD) for Cu2+ was 47.4 nM. Furthermore, the FMDH-Cu2+ ensemble responded to glyphosate with notable selectivity and sensitivity. A good linear correlation (R2 = 0.9926) was observed at the lower concentration range (2.4-7.8 µM) and achieving a detection limit as low as 29.9 nM. The response time of FMDH with Cu2+ and glyphosate were less than 20 s, and the pH range of 7-11 that was suitable for practical application under physiological pH conditions. MTT assays confirmed that FMDH offers good permeability and low toxicity, facilitating successful application in imaging analysis of Cu2+ and glyphosate in living cells and zebrafish. In addition, FMDH was employed in the detection of these analytes in real water samples. Cost-effective, highly sensitive and easily prepared FMDH-impregnated test strips were developed for the efficient visual detection of Cu2+ and glyphosate under 365 nm UV light. Increasing concentrations of Cu2+ and glyphosate resulted in notable colour changes under 365 nm UV light, enabling visual semi-quantitative analysis via a smartphone colour-analysis App.


Subject(s)
Colorimetry , Copper , Fluorometry , Glycine , Glyphosate , Water Pollutants, Chemical , Copper/analysis , Glycine/analogs & derivatives , Glycine/analysis , Colorimetry/methods , Water Pollutants, Chemical/analysis , Fluorometry/methods , Fluorescent Dyes/chemistry , Herbicides/analysis , Limit of Detection , Peptides , Environmental Monitoring/methods , Animals
10.
Biosens Bioelectron ; 261: 116487, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38870829

ABSTRACT

A new di-recognition nitrogen-doped carbon dot nanosurface aptamer molecularly imprinted polymer (CDNAg@MIPApt) nanocatalytic di-functional probe was prepared by microwave irradiation. The probe was utilized nitrogen-doped silver carbon dots (CDNAg) as the matrix, glyphosate (Gly) as the template molecule, α-methyl acrylate as the monomer, ethylene glycol dimethacrylate as the cross-linker, and aptamer as the biorecognition element. It could not only recognize Gly but also exhibits catalytic amplification function. It was found that CDNAg@MIPApt catalyzed the redox reaction of polyethylene glycol 400 (PEG400)-AgNO3 to generate silver nanoparticles (AgNPs). The AgNPs indicator component exhibit the effects of surface-enhanced Raman scattering (SERS), resonance Rayleigh scattering (RRS) and surface plasmon resonance absorption (Abs). In the presence of Gly, it binds to the surface imprinted site of CDNAg@MIPApt, to reduce AgNPs generation due to the catalytic activity of CDNAg@MIPApt decreasing. Thus, the SERS/RRS/Abs signal values decreased linearly. The linear ranges of SERS/RRS/Abs assay were 0.1-2.5 nM, 0.25-2.75 nM and 0.5-5 nM respectively. The detection limits were 0.034 nM, 0.071 nM and 0.18 nM Gly.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Glycine , Glyphosate , Limit of Detection , Metal Nanoparticles , Molecularly Imprinted Polymers , Silver , Spectrum Analysis, Raman , Glycine/chemistry , Glycine/analogs & derivatives , Silver/chemistry , Molecularly Imprinted Polymers/chemistry , Aptamers, Nucleotide/chemistry , Metal Nanoparticles/chemistry , Biosensing Techniques/methods , Surface Plasmon Resonance/methods , Herbicides/analysis , Herbicides/chemistry , Carbon/chemistry
11.
Environ Health ; 23(1): 58, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38926689

ABSTRACT

BACKGROUND: The prevalence of metabolic syndrome (MetS) in American adults increased from 37.6% in the 2011-12 period to 41.8% in 2017-2018. Environmental exposure, particularly to common compounds such as glyphosate, has drawn increasing attention as a potential risk factor. METHODS: We employed three cycles of data (2013-2018) from the National Health and Nutrition Examination Survey (NHANES) in a cross-sectional study to examine potential associations between urine glyphosate measurements and MetS incidence. We first created a MetS score using exploratory factor analysis (EFA) of the International Diabetes Federation (IDF) criteria for MetS, with data drawn from the 2013-2018 NHANES cycles, and validated this score independently on an additional associated metric, the albumin-to-creatinine (ACR) ratio. The score was validated via a machine learning approach in predicting the ACR score via binary classification and then used in multivariable regression to test the association between quartile-categorized glyphosate exposure and the MetS score. RESULTS: In adjusted multivariable regressions, regressions between quartile-categorized glyphosate exposure and MetS score showed a significant inverted U-shaped or saturating dose‒response profile, often with the largest effect for exposures in quartile 3. Exploration of potential effect modification by sex, race, and age category revealed significant differences by race and age, with older people (aged > 65 years) and non-Hispanic African American participants showing larger effect sizes for all exposure quartiles. CONCLUSIONS: We found that urinary glyphosate concentration is significantly associated with a statistical score designed to predict MetS status and that dose-response coefficient is nonlinear, with advanced age and non-Hispanic African American, Mexican American and other Hispanic participants exhibiting greater effect sizes.


Subject(s)
Glycine , Glyphosate , Herbicides , Nutrition Surveys , Humans , Glycine/analogs & derivatives , Glycine/urine , Cross-Sectional Studies , Male , Female , Middle Aged , Adult , Herbicides/urine , Aged , Metabolic Syndrome/urine , Metabolic Syndrome/epidemiology , Metabolic Syndrome/chemically induced , United States/epidemiology , Environmental Exposure/analysis , Young Adult , Risk Factors , Environmental Pollutants/urine
12.
Mikrochim Acta ; 191(7): 423, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38922503

ABSTRACT

A ratiometric fluorescence sensing strategy has been developed for the determination of Cu2+ and glyphosate with high sensitivity and specificity based on OPD (o-phenylenediamine) and glutathione-stabilized gold nanoclusters (GSH-AuNCs). Water-soluble 1.75-nm size GSH-AuNCs with strong red fluorescence and maximum emission wavelength at 682 nm were synthesized using GSH as the template. OPD was oxidized by Cu2+, which produced the bright yellow fluorescence oxidation product 2,3-diaminophenazine (DAP) with a maximum fluorescence emission peak at 570 nm. When glyphosate existed in the system, the chelation between glyphosate and Cu2+ hindered the formation of DAP and reduced the fluorescence intensity of the system at the wavelength of 570 nm. Meanwhile, the fluorescence intensity at the wavelength of 682 nm remained basically stable. It exhibited a good linear relationship towards Cu2+ and glyphosate in water in the range 1.0-10 µM and 0.050-3.0 µg/mL with a detection limit of 0.547 µM and 0.0028 µg/mL, respectively. The method was also used for the semi-quantitative determination of Cu2+ and glyphosate in water by fluorescence color changes visually detected by the naked eyes in the range 1.0-10 µM and 0.30-3.0 µg/mL, respectively. The sensing strategy showed higher sensitivity, more obvious color changes, and better disturbance performance, satisfying with the detection demands of Cu2+ and glyphosate in environmental water samples. The study provides a reliable detection strategy in the environment safety fields.


Subject(s)
Colorimetry , Copper , Glycine , Glyphosate , Gold , Limit of Detection , Metal Nanoparticles , Phenylenediamines , Spectrometry, Fluorescence , Water Pollutants, Chemical , Glycine/analogs & derivatives , Glycine/analysis , Glycine/chemistry , Copper/chemistry , Metal Nanoparticles/chemistry , Phenylenediamines/chemistry , Gold/chemistry , Spectrometry, Fluorescence/methods , Water Pollutants, Chemical/analysis , Colorimetry/methods , Glutathione/chemistry , Glutathione/analysis , Herbicides/analysis , Fluorescent Dyes/chemistry
13.
Int J Mol Sci ; 25(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38928116

ABSTRACT

Achromobacter insolitus and Achromobacter aegrifaciens, bacterial degraders of the herbicide glyphosate, were found to induce phosphonatase (phosphonoacetaldehyde hydrolase, EC 3.11.1.1) when grown on minimal media with glyphosate as the sole source of phosphorus. The phosphonatases of the strains were purified to an electrophoretically homogeneous state and characterized. The enzymes differed in their kinetic characteristics and some other parameters from the previously described phosphonatases. The phosphonatase of A. insolitus was first revealed to separate into two stable forms, which had similar kinetic characteristics but interacted differently with affinity and ion-exchange resins. The genomes of the investigated bacteria were sequenced. The phosphonatase genes were identified, and their context was determined: the bacteria were shown to have gene clusters, which, besides the phosphonatase operon, included genes for LysR-type transcription activator (substrate sensor) and putative iron-containing oxygenase PhnHD homologous to monooxygenases PhnY and TmpB of marine organophosphonate degraders. Genes of 2-aminoethylphosphonate aminotransferase (PhnW, EC 2.6.1.37) were absent in the achromobacterial phosphonatase operons; instead, we revealed the presence of genes encoding the putative flavin oxidase HpnW. In silico simulation showed 1-hydroxy-2-aminoethylphosphonate to be the most likely substrate of the new monooxygenase, and a number of glycine derivatives structurally similar to glyphosate to be substrates of flavin oxidase.


Subject(s)
Achromobacter , Glycine , Glyphosate , Operon , Soil Microbiology , Glycine/analogs & derivatives , Achromobacter/genetics , Operon/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Herbicides , Multigene Family , Kinetics , Gene Expression Regulation, Bacterial/drug effects
14.
BMC Public Health ; 24(1): 1644, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902690

ABSTRACT

BACKGROUND: Glyphosate is a commonly used herbicide worldwide and is purportedly associated with multiple health effects. Research assessing the association of glyphosate concentrations with glycosylated hemoglobin (HbA1c) levels and the prevalence of diabetes is scarce. We sought to evaluate the association between urinary glyphosate levels and HbA1c levels and the prevalence of diabetes. METHODS: A total of 2,745 adults in the National Health and Nutrition Examination Survey from 2013 to 2016 were included in this study. Generalized linear models (GLM) were applied to evaluate the associations of glyphosate concentrations with HbA1c levels and the prevalence of diabetes. The dose-response relationship was examined using restricted cubic splines (RCS). RESULTS: Significantly positive correlations of urinary glyphosate concentrations with HbA1c levels (percentage change: 1.45; 95% CI: 0.95, 1.96; P < 0.001) and the prevalence of diabetes (OR: 1.45; 95% CI: 1.24, 1.68; P < 0.001) were found after adjustment. Compared with the lowest quartile of glyphosate levels, the highest quartile was positively associated with HbA1c levels (percentage change: 4.19; 95% CI: 2.54, 5.85; P < 0.001) and the prevalence of diabetes (OR: 1.89; 95% CI: 1.37, 2.63; P < 0.001). The RCS curves demonstrated a monotonically increasing dose-response relationship between urinary glyphosate levels and the prevalence of diabetes and HbA1c levels. CONCLUSIONS: Urinary glyphosate concentrations are positively associated with HBA1c levels and the prevalence of diabetes. To verify our findings, additional large-scale prospective investigations are required.


Subject(s)
Diabetes Mellitus , Glycated Hemoglobin , Glycine , Glyphosate , Herbicides , Nutrition Surveys , Humans , Glycine/analogs & derivatives , Glycine/urine , Male , Glycated Hemoglobin/analysis , Cross-Sectional Studies , Female , Middle Aged , Adult , United States/epidemiology , Diabetes Mellitus/epidemiology , Herbicides/urine , Prevalence , Aged , Young Adult , Dose-Response Relationship, Drug
15.
Ann Work Expo Health ; 68(6): 657-664, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38832717

ABSTRACT

BACKGROUND: Several measures of occupational exposure to pesticides have been used to study associations between exposure to pesticides and neurobehavioral outcomes. This study assessed the impact of different exposure measures for glyphosate and mancozeb on the association with neurobehavioral outcomes based on original and recalled self-reported data with 246 smallholder farmers in Uganda. METHODS: The association between the 6 exposure measures and 6 selected neurobehavioral test scores was investigated using linear multivariable regression models. Exposure measures included original exposure measures for the previous year in 2017: (i) application status (yes/no), (ii) number of application days, (iii) average exposure-intensity scores (EIS) of an application and (iv) number of EIS-weighted application days. Two additional measures were collected in 2019: (v) recalled application status and (vi) recalled EIS for the respective periods in 2017. RESULTS: Recalled applicator status and EIS were between 1.2 and 1.4 times more frequent and higher for both pesticides than the original application status and EIS. Adverse associations between the different original measures of exposure to glyphosate and 4 neurobehavioral tests were observed. Glyphosate exposure based on recalled information and all mancozeb exposure measures were not associated with the neurobehavioral outcomes. CONCLUSIONS: The relation between the different original self-reported glyphosate exposure measures and neurobehavioral test scores appeared to be robust. When based on recalled exposure measures, associations observed with the original exposure measures were no longer present. Therefore, future epidemiological studies on self-reported exposure should critically evaluate the potential bias towards the null in observed exposure-response associations.


Subject(s)
Glycine , Glyphosate , Occupational Exposure , Pesticides , Zineb , Humans , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Pesticides/adverse effects , Male , Adult , Female , Glycine/analogs & derivatives , Glycine/adverse effects , Uganda , Farmers , Maneb , Middle Aged , Neuropsychological Tests/statistics & numerical data , Self Report
16.
Water Res ; 261: 121986, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38924948

ABSTRACT

Glyphosate is widely used in agriculture for weed control; however, it may pollute water systems with its by-product, aminomethylphosphonic acid (AMPA). Therefore, a better understanding of the flows of glyphosate and AMPA from soils into rivers is required. We developed the spatially explicit MARINA-Pesticides model to estimate the annual inputs of glyphosate and AMPA into rivers, considering 10 crops in 10,226 sub-basins globally for 2020. Our model results show that, globally, 880 tonnes of glyphosate and 4,090 tonnes of AMPA entered rivers. This implies that 82 % of the river inputs were from AMPA, with glyphosate accounting for the remainder. Over half of AMPA and glyphosate in rivers globally originated from corn and soybean production; however, there were differences among sub-basins. Asian sub-basins accounted for over half of glyphosate in rivers globally, with the contribution from corn production being dominant. South American sub-basins accounted for approximately two-thirds of AMPA in rivers globally, originating largely from soybean production. Our findings constitute a reference for implementing and supporting effective control strategies to achieve Sustainable Development Goals 2 and 6 (food production and clean water, respectively) simultaneously in the future.

17.
Environ Pollut ; : 124432, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925219

ABSTRACT

Glyphosate as an effective broad-spectrum herbicide is frequently detected in various water and soil resources. Given the ubiquity of ß-MnO2 and δ-MnO2 colloids in groundwater and soil, the abiotic removal of glyphosate by MnO2 colloids was investigated. ß-MnO2 colloids exhibited superior glyphosate removal efficiency, up to 37%, compared to 21% for δ-MnO2 colloids at a pH of 4.0. Glyphosate removal involved simultaneous adsorption and oxidation process, identified by HRTEM, NH3-TPD, XPS, LC-MS, FTIR analyses and the occurrence of aminomethylphosphonic acid (AMPA) and Mn2+. Moreover, adsorption dominated the removal of glyphosate by two MnO2 colloids. The solution pH had a substantial effect on glyphosate removal. Co-existing ions in the solution, such as carbonate (CO32-), phosphate (Na2HPO4, NaH2PO4) and humic acid (HA), were also found to impede glyphosate removal. Phosphate, in particular, exhibited a strong competitive effect for adsorption sites on both MnO2 colloids. Of them, the removal of glyphosate by ß-MnO2 colloids was more prone to occur due to its higher specific surface area, abundant oxygen vacancies, and moderate acid sites. However, δ-MnO2 colloids presented a stronger oxidation capacity than that of ß-MnO2 colloids due to the quicker generation rate of Mn2+. Finally, AMPA was the same products by two MnO2 colloids in the oxidation process, revealing the degradation pathway based on the cleavage of C-N bond. Therefore, by comparing kinetics and mechanisms of glyphosate removal by ß- and δ-MnO2 colloids, this study improves us better understanding for the behavior of glyphosate in the environment.

18.
Huan Jing Ke Xue ; 45(6): 3234-3246, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897747

ABSTRACT

Effective treatment of pesticide residue-induced pollution in the aqueous environment is the key to improving the water quality of rivers and lakes. Modified biomass material (Fe-Al-PS) was successfully prepared by impregnating Fe and Al bimetallic compounds to peanut shell powder for adsorption of glyphosate isopropylamine salt herbicide residues in aqueous environments. Fe-Al-PS reached adsorption equilibrium for 10 mg·L-1 of glyphosate isopropylamine salt at the adsorbent dosage and adsorption time of 0.14 g and 10 min, respectively, and the removal rates were stabilized at 99.9 % and 99.6 %, respectively. The adsorption process followed the pseudo-secondary kinetic and Freundlich adsorption isotherm models and belonged to multi-molecular layer chemisorption. The removal of glyphosate isopropylamine salt by Fe-Al-PS was greater than 95 % in a wide range of pH (2-11). The thermodynamic results indicated that the adsorption was a spontaneous exothermic process. Fe-Al-PS materials were easy to access and involved simple synthesis and low energy consumption, had high anti-interference ability, were reusable, and could be used not only for the effective removal of glyphosate isopropylamine salt herbicide in real water bodies but also for the removal of inorganic phosphorus.

19.
Anal Bioanal Chem ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896239

ABSTRACT

Residues of various highly polar pesticides and their metabolites are commonly found in numerous food products. Some of these compounds, such as glyphosate, are not only used in large amounts in agriculture, but are also controversially discussed in public. Here, we present a method, employing ion chromatography (IC) coupled to tandem mass spectrometry (IC-MS/MS), for the analyses of glyphosate, aminomethyl phosphonic acid (AMPA), N-acetyl-glyphosate (NAGly), fosetyl, and 10 further highly polar pesticides and metabolites in various plant and animal matrices following a minimal sample preparation by means of the QuPPe method. Thorough investigations showed that an AS19 column enabled the analysis of all 14 compounds within 30 min. The best sensitivity could be obtained with the make-up solvent acetonitrile being admixed to the mobile phase at a 1:2 flow rate ratio. Matrix effects were thoroughly studied in terms of ion suppression and retention time shifts. Conductivity detection was used to monitor elution profiles of matrix co-extractives in comparison with matrix effect profiles obtained by continuous post-column infusion of a mix with 13 highly polar pesticides and metabolites. These tests indicated that a fivefold dilution of QuPPe extracts was suitable for the routine analysis of samples for MRL-conformity, as it considerably reduced matrix effects maintaining sufficient sensitivity and high recovery rates in eight different commodities. The suitability of the final method for its application in routine analysis was verified by the analysis of >130 samples containing incurred residues where the results were compared with two existing LC-MS/MS methods.

20.
Breastfeed Med ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900678

ABSTRACT

Purpose: The World Health Organization's International Agency on Research for Cancer has determined that glyphosate is "probably carcinogenic to humans." There is a great public interest to investigate whether glyphosate are detected in breast milk. Thus, the goal of this study was to assess the concentration of glyphosate and its main metabolite in breast milk. Materials and Methods: Liquid chromatography was performed at 25°C using a Luna NH2, 50 × 2 mm, 3⎛ m (Phenomenex) analytical column. Electrospray ionization mass spectrometry was collected using negative ionization mode. The calibration curve for glyphosate ranged from 10 to 250 ng/mL. The detection limit was 1 ng/mL. Results: Breast milk samples were collected from 74 women, which included vegans (n = 26), vegetarians (n = 22), and nonvegetarians (n = 26). One of the 74 milk samples contained a detectable concentration of glyphosate and an additional 7 were found to contain aminomethylphosphonic acid. Conclusions: In breast milk samples collected mainly from women residing in urban regions of the United States, glyphosate detection was rare. Consistently, breastfed infants have a low or minimal risk of being exposed to glyphosate through ingestion of mother's milk. It is possible that the presence/absence and/or level of concentration of milk glyphosate depend on a place of residency and time of breastfeeding vis-à-vis time of its agricultural application.

SELECTION OF CITATIONS
SEARCH DETAIL
...