Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Front Immunol ; 15: 1452609, 2024.
Article in English | MEDLINE | ID: mdl-39091499

ABSTRACT

Galectins (Gals) are a type of S-type lectin that are widespread and evolutionarily conserved among metazoans, and can act as pattern recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs). In this study, 10 Gals (ToGals) were identified in the Golden pompano (Trachinotus ovatus), and their conserved domains, motifs, and collinearity relationships were analyzed. The expression of ToGals was regulated following infection to Cryptocaryon irritans and Streptococcus agalactiae, indicating that ToGals participate in immune responses against microbial pathogens. Further analysis was conducted on one important member, Galectin-3, subcellular localization showing that ToGal-3like protein is expressed both in the nucleus and cytoplasm. Recombinant protein obtained through prokaryotic expression showed that rToGal-3like can agglutinate red blood cells of rabbit, carp and golden pompano and also agglutinate and kill Staphylococcus aureus, Bacillus subtilis, Vibrio vulnificus, S. agalactiae, Pseudomonas aeruginosa, and Aeromonas hydrophila. This study lays the foundation for further research on the immune roles of Gals in teleosts.


Subject(s)
Galectins , Phylogeny , Animals , Galectins/genetics , Galectins/immunology , Galectins/metabolism , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/metabolism , Multigene Family , Streptococcus agalactiae/immunology , Fish Diseases/immunology , Fish Diseases/microbiology , Fishes/immunology , Fishes/genetics , Perciformes/immunology , Perciformes/genetics , Gene Expression Profiling
2.
Fish Shellfish Immunol ; 150: 109616, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38734118

ABSTRACT

Enteritis posed a significant health challenge to golden pompano (Trachinotus ovatus) populations. In this research, a comprehensive multi-omics strategy was implemented to elucidate the pathogenesis of enteritis by comparing both healthy and affected golden pompano. Histologically, enteritis was characterized by villi adhesion and increased clustering after inflammation. Analysis of the intestinal microbiota revealed a significant increase (P < 0.05) in the abundance of specific bacterial strains, including Photobacterium and Salinivibrio, in diseased fish compared to the healthy group. Metabolomic analysis identified 5479 altered metabolites, with significant impacts on terpenoid and polyketide metabolism, as well as lipid metabolism (P < 0.05). Additionally, the concentrations of several compounds such as calcitetrol, vitamin D2, arachidonic acid, and linoleic acid were significantly reduced in the intestines of diseased fish post-enteritis (P < 0.05), with the detection of harmful substances such as Efonidipine. In transcriptomic profiling, enteritis induced 68 upregulated and 73 downregulated genes, predominantly affecting steroid hormone receptor activity (P < 0.05). KEGG pathway enrichment analysis highlighted upregulation of SQLE and CYP51 in steroidogenesis, while the HSV-1 associated MHC1 gene exhibited significant downregulation. Integration of multi-omics results suggested a potential pathogenic mechanism: enteritis may have resulted from concurrent infection of harmful bacteria, specifically Photobacterium and Salinivibrio, along with HSV-1. Efonidipine production within the intestinal tract may have blocked certain calcium ion channels, leading to downregulation of MHC1 gene expression and reduced extracellular immune recognition. Upregulation of SQLE and CYP51 genes stimulated steroid hormone synthesis within cells, which, upon binding to G protein-coupled receptors, influenced calcium ion transport, inhibited immune activation reactions, and further reduced intracellular synthesis of anti-inflammatory substances like arachidonic acid. Ultimately, this cascade led to inflammation progression, weakened intestinal peristalsis, and villi adhesion. This study utilized multi-level omics detection to investigate the pathological symptoms of enteritis and proposed a plausible pathogenic mechanism, providing innovative insights into enteritis verification and treatment in offshore cage culture of golden pompano.


Subject(s)
Enteritis , Fish Diseases , Gastrointestinal Microbiome , Animals , Enteritis/veterinary , Enteritis/immunology , Enteritis/microbiology , Fish Diseases/immunology , Gene Expression Profiling/veterinary , Perciformes/immunology , Perciformes/genetics , Transcriptome , Metabolomics , Multiomics
3.
Fish Shellfish Immunol ; 149: 109568, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636741

ABSTRACT

Pompano fishes have been widely farmed worldwide. As a representative commercial marine species of the Carangidae family, the golden pompano (Trachinotus blochii) has gained significant popularity in China and worldwide. However, because of rapid growth and high-density aquaculture, the golden pompano has become seriously threatened by various diseases. Cell lines are the most cost-effective resource for in vitro studies and are widely used for physiological and pathological research owing to their accessibility and convenience. In this study, we established a novel immortal cell line, GPF (Golden pompano fin cells). GPF has been passaged over 69 generations for 10 months. The morphology, adhesion and extension processes of GPF were evaluated using light and electron microscopy. GPF cells were passaged every 3 days with L-15 containing 20 % fetal bovine serum (FBS) at 1:3. The optimum conditions for GPF growth were 28 °C and a 20 % FBS concentration. DNA sequencing of 18S rRNA and mitochondrial 16S rRNA confirmed that GPF was derived from the golden pompano. Chromosomal analysis revealed that the number pattern of GPF was 48 chromosomes. Transfection experiments demonstrated that GPF could be utilized to express foreign genes. Furthermore, heavy metals (Cd, Cu, and Fe) exhibited dose-dependent cytotoxicity against GPF. After polyinosinic-polycytidylic acid (poly I:C) treatment, transcription of the retinoic acid-inducible gene I-like receptor (RLR) pathway genes, including mda5, mita, tbk1, irf3, and irf7 increased, inducing the expression of interferon (IFN) and anti-viral proteins in GPF cells. In addition, lipopolysaccharide (LPS) stimulation up-regulated the expression of inflammation-related factors, including myd88, irak1, nfκb, il1ß, il6, and cxcl10 expression. To the best of our knowledge, this is the first study on the immune response signaling pathways of the golden pompano using an established fin cell line. In this study, we describe a preliminary investigation of the GPF cell line immune response to poly I:C and LPS, and provide a more rapid and efficient experimental material for research on marine fish immunology.


Subject(s)
Fish Diseases , Animals , Cell Line , Fish Diseases/immunology , Animal Fins/immunology , Poly I-C/pharmacology , Immunity, Innate , Perciformes/immunology , Perciformes/genetics , Fishes/immunology
4.
Food Chem ; 447: 139029, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38513480

ABSTRACT

Hydrocolloids synthesized by gallic acid (GA) and ferulic acid (FA) grafting onto chitosan (CS) were characterized, and their effects on PhIP formation in pan-fried golden pompano were investigated. Spectrograms including nuclear magnetic resonance, Fourier transform infrared spectroscopy and ultraviolet-visible confirmed that GA and FA were successfully grafted onto CS via covalent bonds, with grafting degree of 97.06 ± 2.56 mg GA/g and 93.56 ± 2.76 mg FA/g, respectively. The CS-g-GA and CS-g-FA exerted better solubility and antioxidant activities than CS. For the 8-min pan-fried golden pompano fillets, CS-g-GA and CS-g-FA (0.5 %, m/v) significantly reduced the PhIP formation by 61.71 % and 81.64 %, respectively. Chemical models revealed that CS-g-GA and CS-g-FA inhibited PhIP formation mainly by decreasing the phenylacetaldehyde contents from Maillard reaction and competing with creatinine to react with phenylacetaldehyde. Therefore, it was suggested that CS-g-phenolic acids emerge as novel coating for aquatic products during processing and inhibit heterocyclic amines generation.


Subject(s)
Acetaldehyde/analogs & derivatives , Chitosan , Imidazoles , Chitosan/chemistry , Polyphenols , Antioxidants/chemistry , Gallic Acid/chemistry
5.
Food Chem ; 447: 138981, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38518613

ABSTRACT

In the current study, the preservation effect of plasma-activated water (PAW), coconut exocarp flavonoids (CF) and their combination on golden pompano fillets during refrigerated storage was investigated with emphasize on the treating sequence. PAW effectively inactivated spoilage bacteria and inhibited total volatile basic nitrogen (TVB-N) increase, while boosted the TBARS and carbonyl values. PAW+CF exerted synergistic effect on extending the period before total bacterial count and TVB-N content reaching acceptance limit than PAW or CF alone (P < 0.05). In addition, their combined treatment effectively reduced fillets discoloration and texture deterioration. Simultaneously, lipid and protein oxidation were significantly inhibited, which was comparable to CF. It was indicated that the treatment sequence of PAW and CF profoundly impact the preservation effect. Specifically, prior CF marinating followed by PAW was more effective than the opposite sequence. Thus, combination of CF followed by PAW served as promising technique for fish fillets preservation.


Subject(s)
Cocos , Food Preservation , Animals , Food Preservation/methods , Water , Fishes
6.
Food Chem ; 441: 138332, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38183722

ABSTRACT

The impact of oxidized myoglobin (Mb) on myofibrillar protein (MP) oxidation and water retention was investigated. Results showed that the oxidation of Mb increased with increasing concentration of oxidized linoleic acid (OLA). In the presence of 100 mmol/L OLA, hemin iron decreased by 62.07 % compared to the control group. Further investigation showed that mild oxidation of Mb (≤10 mmol/L OLA) increased the water retention and the absolute value of the zeta potential of MP, whereas excessive oxidation (>10 mmol/L OLA) decreased these properties. With the increase of Mb oxidation, the carbonyl content in MP increased, and α-helices changed to random helix. And the tertiary structure changed. Pearson correlation analysis suggested that oxidized Mb affected the water retention of MP, which was closely related to hemin iron and non-hemin iron. In conclusion, OLA induced Mb oxidation, further promoted MP oxidation and affected its water retention.


Subject(s)
Hemin , Myoglobin , Myoglobin/chemistry , Hemin/chemistry , Oxidation-Reduction , Iron , Water
7.
J Fish Dis ; 47(3): e13894, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38014554

ABSTRACT

Golden pompano (Trachinotus blochii) is a carnivorous teleost cultured in the Asia-Pacific region. Fish culture in high densities and numbers results in disease outbreaks, causing huge economic losses. Here, we collected cultured golden pompanos from 2021 to 2022 and identified the pathogens isolated from the diseased fish. Out of a total of 64 clinical cases observed in both sea cages and fish ponds, it was found that Nocardia seriolae was the predominant pathogen (26%), followed by Lactococcus garvieae (13%). Trichodina spp. was the most prevalent parasite in sea cages and earthen ponds (21%), while Neobenedenia spp. was the primary parasitic pathogen (16%) in sea cages. Given these findings, further investigations were conducted, including antibiotic susceptibility and pathogenicity tests specific to N. seriolae in golden pompanos. Antibiotic susceptibility tests of N. seriolae revealed that all strains were susceptible to doxycycline, oxytetracycline, florfenicol and erythromycin but resistant to amoxicillin and ampicillin. Additionally, a pathogenicity assessment was carried out by administering an intraperitoneal injection of 0.1 mL containing 107 CFU of N. seriolae per fish. The mortality rates observed varied between 40% and 90%, with the P2 strain exhibiting the highest level of virulence, resulting in a cumulative mortality of 90%. Therefore, disease outbreaks in fish can be minimized by developing effective treatments and prevention methods.


Subject(s)
Fish Diseases , Nocardia Infections , Animals , Taiwan/epidemiology , Fish Diseases/epidemiology , Fish Diseases/prevention & control , Nocardia Infections/epidemiology , Nocardia Infections/veterinary , Fishes , Anti-Bacterial Agents/pharmacology
8.
Dev Comp Immunol ; 152: 105123, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38135022

ABSTRACT

This study presents a genome-wide identification of NOD-like receptors (NLRs) in the golden pompano, key to its innate immunity. We identified 30 ToNLRs, analyzing their chromosomal positions, characteristics, evolutionary relationships, evidence of positive selection, and synteny with the yellowtail kingfish. Our findings categorize these NLRs into three main subgroups: NLRA, NLRC, and the distinct ToNLRX1. Post-exposure to Streptococcus agalactiae, most ToNLRs increased expression in the spleen, whereas NLRC3like13, NLRC3like16, and NLRC3like19 so in the kidneys. Upon Cryptocaryon irritans exposure, we categorized our groups based on the site of infection into the control group (BFS), the trophont-attached skin (TAS), and the nearby region skin (NRS). ToAPAF1 and ToNOD1 expressions rose in the NRS, in contrast to decreased expressions of ToNLRC5, ToNWD1 and ToCIITA. Other ToNLRs showed variable expressions in the TAS. Overall, this research lays the groundwork for further exploration of innate immunity in the golden pompano.


Subject(s)
Fish Diseases , Perciformes , Animals , NLR Proteins/genetics , Fishes , Immunity, Innate , Streptococcus agalactiae , Fish Proteins/metabolism
9.
J Adv Res ; 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38043610

ABSTRACT

INTRODUCTION: Golden pompano (Trachinotus ovatus) is economically significant important for offshore cage aquaculture in China and Southeast Asian countries. Lack of high-quality genomic data and accurate gene annotations greatly restricts its genetic breeding progress. OBJECTIVES: To decode the mechanisms of sex determination and rapid growth in golden pompano and facilitate the sex- and growth-aimed genetic breeding. METHODS: Genome assemblies of male and female golden pompano were generated using Illumina, PacBio, BioNano, genetic maps and Hi-C sequencing data. Genomic comparisons, whole genome re-sequencing of 202 F1 individuals, QTL mapping and gonadal transcriptomes were used to analyze the sex determining region, sex chromosome evolution, SNP loci, and growth candidate genes. Zebrafish model was used to investigate the functions of growth candidate gene. RESULTS: Female (644.45 Mb) and male (652.12 Mb) genomes of golden pompano were assembled and annotated at the chromosome level. Both genomes are highly conserved and no new or highly differentiated sex chromosomes occur. A 3.5 Mb sex determining region on LG15 was identified, where Hsd17b1, Micall2 and Lmx1a were putative candidates for sex determination. Three SNP loci significantly linked to growth were pinpointed, and a growth-linked gene gpsstr1 was identified by locus BSNP1369 (G â†’ C, 17489695, Chr23). Loss of sstr1a (homologue of gpsstr1) in zebrafish caused growth retardation. CONCLUSION: This study provides insights into sex chromosome evolution, sex determination and rapid growth of golden pompano.

10.
Fish Shellfish Immunol ; 143: 109163, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37838211

ABSTRACT

The golden pompano (Trachinotus blochii), a pivotal commercial marine species in China, has gained significant popularity worldwide. However, accompanied with rapid growth and high density aquaculture, golden pompano has been seriously threatened by Nervous necrosis virus (NNV), while its molecular biology research regarding the innate immune system remains unexplored, which is crucial for understanding the activation of interferon (IFN) production and antiviral responses. In this study, we aimed to identify the characterization and function of golden pompano TANK-binding kinase 1 (gpTBK1), thereby providing evidence of the conservation of this classical factor in the RLR pathway among marine fish. Initially, we found the expression of gpTBK1 upregulation in diseased golden pompano with NNV infection and we successfully cloned the full-length open reading frame (ORF) of gpTBK1, consisting of 2172 nucleotides encoding 723 amino acids, from the head kidney. Subsequent analysis of the amino acid sequence revealed homology between gpTBK1 and other fish TBK1 proteins, with conserved N-terminal Serine/Threonine protein kinases catalytic domain (S_TKc) and C-terminal coiled coil domain (CCD). Moreover, the expression pattern showed that gpTBK1 exhibited ubiquitous expression across all evaluated tissues. Furthermore, functional identification experiments indicated that gpTBK1 activated interferon promoters' activity in golden pompano and induced the expression of downstream IFN-stimulated genes (ISGs). Notably, gpTBK1 was found to co-localize and interact with gpIRF3 in the cytoplasm. Collectively, these data provide a comprehensive analysis of the characterization and functional role of gpTBK1 in promoting interferon production. This research may facilitate the further study of the innate antiviral response, particularly the anti-NNV mechanisms, in golden pompano.


Subject(s)
Fishes , Immunity, Innate , Animals , Immunity, Innate/genetics , Fish Proteins/chemistry , Interferons , Antiviral Agents
11.
J Fish Dis ; 46(11): 1295-1309, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37578999

ABSTRACT

Lactococcosis, caused by Lactococcus garvieae, is an acute hemorrhagic septicemia in fish recorded in marine and freshwater aquaculture during the summer months. In 2020-2021, several sea cage Pompano farms recorded sudden fish mortality events. Based on the results of phenotypic and biochemical tests, L. garvieae was predicted to be the cause. PCR with L. garvieae specific primers (pLG1 and pLG2) targeting the 16S rRNA region further confirmed the etiological agent as L. garvieae after amplifying an 1100 base pairs (bp) product. Furthermore, the 16S rRNA sequences of the two representative strains (AOD109-196-2B and AOD110-215-2B) shared 99.81% identity with L. garvieae (GenBank accession number: MT597707.1). The genetic profiles of the strains were classified using pulsed-field gel electrophoresis after digestion with SmaI and ApaI, which clustered our strains under the same pulsotype. Multiplex PCR targeting the capsule gene cluster and serotype-specific PCR collectively showed that the strains were non-capsulated; thus, they belonged to serotype I. An experimental infection was designed to fulfil Koch's postulates by infecting healthy Pompano with case-driven L. garvieae strains (AOD109-196-2B and AOD110-215-2B) with a cumulative mortality of 70%. Overall, L. garvieae infection in Pompano emphasizes the need for better monitoring and control procedures in aquaculture settings.

12.
Food Chem X ; 18: 100695, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37234402

ABSTRACT

Cold plasma (CP) is a non-thermal novel technology for the processing of heat-sensitive food products, but there is concern regarding its impact on food quality. Voltage is one of the most direct factors affecting the bacteriostatic effect of CP. Golden pompano (Trachinotus ovatus) was treated with CP at different voltages (10, 20, and 30 kV). The total viable count decreased as the CP voltage increased, reaching a maximum reduction of 1.54 lg CFU/g on golden pompano treated at 30 kV. No effects on water-holding capacity, pH, total volatile base nitrogen, and T2b relaxation time were observed, indicating that all CP treatments retained the freshness and bound water of the samples. However, as the CP voltage increased, peroxide value and thiobarbituric acid-reactive substances of golden pompano gradually increased, the protein tertiary structure unfolded, and α-helices converted to ß-sheets, indicating inevitable lipid and protein oxidation caused by excessive CP voltage. Therefore, a suitable voltage of CP should be selected to inhibits the growth of microorganisms, which avoids deterioration of sea-foods quality.

13.
Food Res Int ; 169: 112865, 2023 07.
Article in English | MEDLINE | ID: mdl-37254315

ABSTRACT

Fermentation plays a key role in taste formation in traditional fermented golden pompano and involves a series of complex metabolic reactions. Indeed, the taste profile of fermented golden pompano exhibits remarkable variation during early fermentation. Herein, nutritional fingerprinting (proteins, amino acids, lipids, etc.) was applied to discriminate the various biomolecular changes involved in golden pompano fermentation. Among the differential metabolites, amino acids, small peptides, lipids, and nucleotides were considered taste-related compounds. An increase in the amino acid content was observed during fermentation, while the peptide content decreased. Glutamic acid, alanine, and lysine had the highest taste activity values and were the main contributors to taste formation. Metabolic pathway enrichment analysis revealed that taste formation was primarily associated with alanine, aspartate, and glutamate metabolism. These findings provide a deeper understanding of taste mechanisms and establish a basis for the targeted regulation of taste formation in the fermented fish industry.


Subject(s)
Amino Acids , Taste , Animals , Amino Acids/metabolism , Fishes/metabolism , Alanine , Peptides , Lipids
14.
Foods ; 12(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36900608

ABSTRACT

The relationship between the gel quality of golden pompano surimi treated with dense phase carbon dioxide (DPCD) and changes in water characteristics was evaluated. Low-field nuclear magnetic resonance (LF-NMR) and nuclear magnetic resonance imaging were used to monitor changes in the water status of surimi gel under different treatment conditions. Whiteness, water-holding capacity and gel strength were used as the quality indicators of the surimi gel. The results showed that DPCD treatment could significantly increase the whiteness of surimi and the strength of the gel, while the water-holding capacity decreased significantly. LF-NMR analysis showed that, as the DPCD treatment intensity increased, the relaxation component T22 shifted to the right, T23 shifted to the left, the proportion of A22 decreased significantly (p < 0.05) and the proportion of A23 increased significantly (p < 0.05). A correlation analysis of water characteristics and gel strength showed that the water-holding capacity of surimi induced by DPCD was strongly positively correlated with gel strength, while A22 and T23 were strongly negatively correlated with gel strength. This study provides helpful insights into the quality control of DPCD in surimi processing and also provides an approach for the quality evaluation and detection of surimi products.

15.
Food Sci Nutr ; 11(2): 1024-1039, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36789046

ABSTRACT

Golden pompano (Trachinotus ovatus) and hybrid grouper (Epinephelus lanceolatus × Epinephelus fuscoguttatus) has widely been distributed in China and Southeast Asian countries with great commercial importance. In this study, the nutritional profiles, chemical and physical parameters of back and abdomen muscles were determined. Significantly different (p < .05) proximate compositions were found in two fish muscles. The contents of water-soluble protein, salt-soluble protein, and non-nitrogenous protein were higher in the golden pompano while salt-insoluble proteins were higher in the hybrid grouper. The main minerals found were K (3700.56-4495.57 µg/g) followed by P > Na > Mg > and Ca, respectively. Fatty acids contents consisted of polyunsaturated fatty acids ranging from 29.40% to 43.09% and saturated fatty acids 28.33% to 39.61%. The muscles were rich in n-3 PUFAs with n-6/n-3 ratio of 1.36%-2.96% in the back and abdomen. On the other hand, total amino acid and non-essential amino acid contents were found higher in the hybrid grouper while essential amino acid and delicious amino acid contents were higher in the golden pompano. Glutamic acid was the most predominant amino acid. The amino acid scores (AAS) of six amino acids were close to 1.00, whereas lysine showed the highest AAS while tryptophan was the most limited essential amino acid in all muscles, respectively. These results indicated golden pompano and hybrid grouper exhibited a varied nutritional composition and offered a good nutritional profile.

16.
Food Chem ; 407: 135092, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36502731

ABSTRACT

This study evaluated the effects of magnetic field-assisted immersion freezing (MIF) with different magnetic field intensities (0, 20, 40, 60, and 80 mT) on the freezing curves, ice crystal area, microstructure, and physicochemical properties of golden pompano (Trachinotus ovatus) muscle. The result showed that, compared with refrigerator freezing (RF) and immersion freezing (MIF-0), magnetic fields prolonged the freezing time. However, the centrifugal loss and cooking loss of MIF-20 were 23.55 % and 29.18 % lower than those of MIF-0 group, respectively (P < 0.05). Low field-nuclear magnetic resonance results showed that MIF-20 group exhibited more homogeneous of water distribution and higher water content, the T22 was 20.59 % shorter than of MIF-0 (P < 0.05). Microscopic observations confirmed that the MIF-20 group had the smallest and the most evenly distribution of ice crystals. Therefore, MIF at 20 mT intensity can effectively improve the muscle qualities of frozen golden pompano.


Subject(s)
Ice , Perciformes , Animals , Freezing , Fishes , Muscles , Cooking
17.
Int J Biol Macromol ; 224: 1266-1275, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36306912

ABSTRACT

The effect of chitosan-wampee seed essential oil (WSEO) composite film coating before cold plasma (CP) treatment on the quality preservation of golden pompano fillets during refrigerated storage was investigated and compared with that of chitosan and CP alone. The results indicated that the chitosan-WSEO composite film coating before CP treatment and modified atmosphere packaging (MAP), referred to as CPCW-M, exhibited the lowest total bacterial count, total volatile base nitrogen, and peroxide and thiobarbituric acid values of 4.03 log culture-forming units (CFU)/g, 13.45 mg/100 g, 24.65 meq/kg, and 1428.4 µg MDAeq/kg, respectively. Simultaneously, it contributed to the most profound inhibition of the lipid hydrolase, lipoxygenase, thus effectively preventing the oxidative deterioration of unsaturated fatty acids. Moreover, minimal color changes, drip loss, and texture deterioration of the fillets were observed. Therefore, the edible chitosan-WSEO composite film, together with CP and MAP, was effective in preserving golden pompano fillets and extending shelf life throughout the refrigerated storage period.


Subject(s)
Chitosan , Oils, Volatile , Plasma Gases , Animals , Food Preservation/methods , Chitosan/pharmacology , Food Packaging/methods , Fishes , Food Storage
18.
Food Chem ; 401: 134112, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36099819

ABSTRACT

Drying is an important process that can impart a different flavor to dried fish. The differences and sources of flavor of semi-dried golden pompano at different drying temperatures (40, 48, and 56 °C) were investigated, and the sensory quality, flavor substances, nonenzymatic reactions, and protein degradation were analyzed. Significant flavor differences were observed among different drying temperatures (P < 0.05), with several sensory properties showing superior results in the 40 °C group. Thirteen volatile compounds that contributed to the overall aroma were screened according to the relative odor activity value. Glu (umami taste) and Ala (sweet taste) were identified as key flavor substances based on the taste activity value. Nonanal, hexanal, heptanal, acetoin, pentadecane, and octanal represented the flavor markers. The flavor sources at higher drying temperatures included the joint action of lipid oxidation and the Maillard reaction, while those at lower temperature were lipid oxidation and protein degradation, which increased the aldehyde and free amino acid levels in the product, thus leading to the best flavor.


Subject(s)
Food Handling , Volatile Organic Compounds , Animals , Temperature , Food Handling/methods , Volatile Organic Compounds/analysis , Acetoin , Aldehydes/analysis , Taste , Odorants/analysis , Fishes , Amino Acids , Lipids
19.
Front Nutr ; 9: 1063836, 2022.
Article in English | MEDLINE | ID: mdl-36505247

ABSTRACT

The quality of dried fish products differs based on the drying method employed owing to the different drying principles, with changes in protein affecting the quality of these products. Therefore, we investigated the differences in golden pompano (Trachinotus ovatus) fish tissue structure and protein physicochemical properties under different drying methods. Freeze drying (FD) induced less tissue damage, leaving more intact myofibrils, than that of hot air drying (HAD) and heat pump drying (HPD). The structural stability of myofibrillar protein was retained to a greater extent after FD, while myoglobin oxidation was lower, and fish meat color was well maintained. Our findings not only elucidated the effects of several drying methods on the physicochemical properties of fish protein, but also determined the mechanism underlying quality changes observed during the drying process. This provides a theoretical reference for the study of dried fish filet processing.

20.
Fish Shellfish Immunol ; 130: 31-42, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36038103

ABSTRACT

In general, starch, as a complex carbohydrate, is the most economical energy source in aquaculture for its relatively low cost. However, excessive dietary levels of carbohydrate result in pathological conditions. An 8-week feeding trial with CT (control diet, containing 21% carbohydrate), HC (a high-carbohydrate diet, containing 50% carbohydrate) and HCR (a HC diet supplemented with 0.015% Rhizoma curcumae Longae) was performed to investigate the protective effect of curcumin on high-carbohydrate-induced hepatic oxidative stress and intestine lesion in juvenile Trachinotus ovatus. In the current study, HC group significantly decreased WGR, SGR, plasma CAT activity, intestinal C4 levels, hepatic Nrf2, Keap1, Bach1, HO1, CAT, and GPX mRNA expression as well as ZO-1, Occludin, and Claudin-3, TGF-ß mRNA transcription levels, while the opposite was true for plasma AST activity, hepatic MDA contents, intestinal Claudin-15, NF-κB, IL-1ß, IL-6, and TNF-α mRNA expression. In contrast with the HC group, the HCR group significantly increased the activities of hepatic CAT, SOD, intestinal C3, C4, IgG and LZM levels, hepatic Nrf2, Bach1, CAT, and GPX mRNA expression as well as intestinal ZO-1, Occludin, Claudin-3, TGF-ß and IL-10 mRNA expression levels, but the opposite trend was found in plasma triglyceride content, hepatic lipid deposition, hepatic Keap1 mRNA level as well as intestinal NF-κB, IL-6. In conclusion, high-carbohydrate diet can cause detrimental effect on physiological health status in Trachinotus ovatus, while adding Rhizoma curcumae Longae can improve hepatic and intestinal health status via attenuating the oxidative stress, inflammation, and reducing lipid deposition.


Subject(s)
Curcumin , Perciformes , Animal Feed/analysis , Animals , Claudin-3 , Diet/veterinary , Dietary Carbohydrates , Dietary Supplements/analysis , Immunoglobulin G , Inflammation/chemically induced , Inflammation/veterinary , Interleukin-10 , Interleukin-6 , Kelch-Like ECH-Associated Protein 1 , Lipids , NF-E2-Related Factor 2 , NF-kappa B , Occludin , Oxidative Stress , RNA, Messenger , Starch , Superoxide Dismutase , Transforming Growth Factor beta , Triglycerides , Tumor Necrosis Factor-alpha
SELECTION OF CITATIONS
SEARCH DETAIL