Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.666
Filter
1.
Plant Direct ; 8(6): e614, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38887666

ABSTRACT

Eukaryotic cells are highly compartmentalized, requiring elaborate transport mechanisms to facilitate the movement of proteins between membrane-bound compartments. Most proteins synthesized in the endoplasmic reticulum (ER) are transported to the Golgi apparatus through COPII-mediated vesicular trafficking. Sar1, a small GTPase that facilitates the formation of COPII vesicles, plays a critical role in the early steps of this protein secretory pathway. Sar1 was characterized in yeast, animals and plants, but no Sar1 homolog has been identified and functionally analyzed in algae. Here we identified a putative Sar1 homolog (CrSar1) in the model green alga Chlamydomonas reinhardtii through amino acid sequence similarity. We employed site-directed mutagenesis to generate a dominant-negative mutant of CrSar1 (CrSar1DN). Using protein secretion assays, we demonstrate the inhibitory effect of CrSar1DN on protein secretion. However, different from previously studied organisms, ectopic expression of CrSar1DN did not result in collapse of the ER-Golgi interface in Chlamydomonas. Nonetheless, our data suggest a largely conserved role of CrSar1 in the ER-to-Golgi protein secretory pathway in green algae.

2.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892221

ABSTRACT

Chronic kidney disease (CKD) presents a significant global health challenge, characterized by complex pathophysiology. This study utilized a multi-omic approach, integrating genomic data from the CKDGen consortium alongside transcriptomic, metabolomic, and proteomic data to elucidate the genetic underpinnings and identify therapeutic targets for CKD and kidney function. We employed a range of analytical methods including cross-tissue transcriptome-wide association studies (TWASs), Mendelian randomization (MR), summary-based MR (SMR), and molecular docking. These analyses collectively identified 146 cross-tissue genetic associations with CKD and kidney function. Key Golgi apparatus-related genes (GARGs) and 41 potential drug targets were highlighted, with MAP3K11 emerging as a significant gene from the TWAS and MR data, underscoring its potential as a therapeutic target. Capsaicin displayed promising drug-target interactions in molecular docking analyses. Additionally, metabolome- and proteome-wide MR (PWMR) analyses revealed 33 unique metabolites and critical inflammatory proteins such as FGF5 that are significantly linked to and colocalized with CKD and kidney function. These insights deepen our understanding of CKD pathogenesis and highlight novel targets for treatment and prevention.


Subject(s)
Molecular Docking Simulation , Renal Insufficiency, Chronic , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/drug therapy , Humans , Genome-Wide Association Study , Kidney/metabolism , Kidney/pathology , Transcriptome , Proteomics/methods , Mendelian Randomization Analysis , Genetic Predisposition to Disease , Metabolomics/methods , Proteome/metabolism , Metabolome , Multiomics
3.
Front Neural Circuits ; 18: 1409993, 2024.
Article in English | MEDLINE | ID: mdl-38827189

ABSTRACT

For neural circuit construction in the brain, coarse neuronal connections are assembled prenatally following genetic programs, being reorganized postnatally by activity-dependent mechanisms to implement area-specific computational functions. Activity-dependent dendrite patterning is a critical component of neural circuit reorganization, whereby individual neurons rearrange and optimize their presynaptic partners. In the rodent primary somatosensory cortex (barrel cortex), driven by thalamocortical inputs, layer 4 (L4) excitatory neurons extensively remodel their basal dendrites at neonatal stages to ensure specific responses of barrels to the corresponding individual whiskers. This feature of barrel cortex L4 neurons makes them an excellent model, significantly contributing to unveiling the activity-dependent nature of dendrite patterning and circuit reorganization. In this review, we summarize recent advances in our understanding of the activity-dependent mechanisms underlying dendrite patterning. Our focus lays on the mechanisms revealed by in vivo time-lapse imaging, and the role of activity-dependent Golgi apparatus polarity regulation in dendrite patterning. We also discuss the type of neuronal activity that could contribute to dendrite patterning and hence connectivity.


Subject(s)
Dendrites , Somatosensory Cortex , Vibrissae , Animals , Dendrites/physiology , Somatosensory Cortex/physiology , Somatosensory Cortex/growth & development , Somatosensory Cortex/cytology , Vibrissae/physiology , Animals, Newborn
4.
J Lipid Res ; : 100584, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925252

ABSTRACT

Measurements of sphingolipid metabolism are most accurately performed by liquid chromatography-mass spectrometry. However, this technique is expensive, not widely accessible, and without the use of specific probes, it does not provide insight into metabolic flux through the pathway. Employing the fluorescent ceramide analogue NBD-C6-ceramide as a tracer in intact cells, we developed a comprehensive HPLC-based method that simultaneously measures the main nodes of ceramide metabolism in the Golgi. Hence, by quantifying the conversion of NBD-C6-Ceramide to NBD-C6-sphingomyelin, NBD-C6-Hexosylceramides, and NBD-C6-ceramide-1-phosphate (NBD-C1P), the activities of Golgi resident enzymes sphingomyelin synthase 1, glucosylceramide synthase, and ceramide kinase (CERK) could be measured simultaneously. Importantly, the detection of NBD-C1P allowed us to quantify CERK activity in cells, a usually difficult task. By applying this method, we evaluated the specificity of commonly used sphingolipid inhibitors and discovered that PDMP, which targets glucosylceramide synthase, and fenretinide (4HPR), an inhibitor for dihydroceramide desaturase, also suppress CERK activity. This study demonstrates the benefit of an expanded analysis of ceramide metabolism in the Golgi, and it provides a qualitative and easy-to-implement method.

5.
Int J Biol Sci ; 20(8): 2881-2903, 2024.
Article in English | MEDLINE | ID: mdl-38904019

ABSTRACT

The mechanism that maintains ER-to-Golgi vesicles formation and transport is complicated. As one of the adapters, Ninein-like protein (Nlp) participated in assembly and transporting of partial ER-to-Golgi vesicles that contained specific proteins, such as ß-Catenin and STING. Nlp acted as a platform to sustain the specificity and continuity of cargoes during COPII and COPI-coated vesicle transition and transportation through binding directly with SEC31A as well as Rab1B. Thus, we proposed an integrated transport model that particular adapter participated in specific cargo selection or transportation through cooperating with different membrane associated proteins to ensure the continuity of cargo trafficking. Deficiency of Nlp led to vesicle budding failure and accumulation of unprocessed proteins in ER, which further caused ER stress as well as Golgi fragmentation, and PERK-eIF2α pathway of UPR was activated to reduce the synthesis of universal proteins. In contrast, upregulation of Nlp resulted in Golgi fragmentation, which enhanced the cargo transport efficiency between ER and Golgi. Moreover, Nlp deficient mice were prone to spontaneous B cell lymphoma, since the developments and functions of lymphocytes significantly depended on secretory proteins through ER-to-Golgi vesicle trafficking, including IL-13, IL-17 and IL-21. Thus, perturbations of Nlp altered ER-to-Golgi communication and cellular homeostasis, and might contribute to the pathogenesis of B cell lymphoma.


Subject(s)
Endoplasmic Reticulum , Golgi Apparatus , Animals , Humans , Mice , COP-Coated Vesicles/metabolism , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Protein Transport
6.
Prostaglandins Other Lipid Mediat ; : 106865, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945355

ABSTRACT

Pneumonia, an acute inflammatory lesion of the lung, is the leading cause of death in children aged < 5 years. We aimed to study the function and mechanism of Golgi phosphoprotein 3 (GOLPH3) in infantile pneumonia. Lipopolysaccharide (LPS)-induced acute lung injury (ALI) mice and injury of MLE-12 cells were used as the pneumonia model in vitro. After GOLPH3 was knocked down, the histopathological changes of lung tissues were assessed by hematoxylin-eosin (H&E) staining. The Wet/Dry ratio of lung tissues was calculated. The enzyme-linked immunosorbent assay (ELISA) method was used to detecte the contents of inflammatory factors in bronchoalveolar lavage fluid (BALF). The damaged DNA in apoptotic cells in lung tissues was tested by Terminal deoxynucleotidyl transferase-mediated dUTP Nick end labeling (TUNEL) staining. Immunofluorescence staining analyzed LC3II and Golgi matrix protein 130 (GM130) expression in lung tissues and MLE-12 cells. The apoptosis of MLE-12 cells was measured by flow cytometry analysis. Additionally, the expression of proteins related to apoptosis, autophagy and Golgi stress was examined with immunoblotting. Results indicated that GOLPH3 knockdown alleviated lung tissue pathological changes in LPS-triggered ALI mice. LPS-induced inflammation and apoptosis in lung tissues and MLE-12 cells were remarkably alleviated by GOLPH3 deficiency. Besides, GOLPH3 depletion suppressed autophagy and Golgi stress in lung tissues and MLE-12 cells challenged with LPS. Moreover, Rapamycin (Rap), an autophagy inhibitor, counteracted inflammation and apoptosis inhibited by GOLPH3 silencing in LPS-induced MLE-12 cells. Furthermore, brefeldin A (BFA) pretreatment apparently abrogated the inhibitory effect of GOLPH3 knockdown on autophagy in MLE-12 cells exposed to LPS. To be concluded, GOLPH3 knockdown exerted lung protective effect against LPS-triggered inflammation and apoptosis by inhibiting Golgi stress mediated autophagy.

7.
Biology (Basel) ; 13(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38927283

ABSTRACT

A central hypothesis concerning brain functioning is that plasticity regulates the signal transfer function by modifying the efficacy of synaptic transmission. In the cerebellum, the granular layer has been shown to control the gain of signals transmitted through the mossy fiber pathway. Until now, the impact of plasticity on incoming activity patterns has been analyzed by combining electrophysiological recordings in acute cerebellar slices and computational modeling, unraveling a broad spectrum of different forms of synaptic plasticity in the granular layer, often accompanied by forms of intrinsic excitability changes. Here, we attempt to provide a brief overview of the most prominent forms of plasticity at the excitatory synapses formed by mossy fibers onto primary neuronal components (granule cells, Golgi cells and unipolar brush cells) in the granular layer. Specifically, we highlight the current understanding of the mechanisms and their functional implications for synaptic and intrinsic plasticity, providing valuable insights into how inputs are processed and reconfigured at the cerebellar input stage.

8.
Bioelectrochemistry ; 160: 108767, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38878458

ABSTRACT

Golgi protein 73 (GP73) is a novel tumor marker in the early diagnosis and prognosis of hepatocellular carcinoma (HCC). Herein, a competitive electrochemical aptasensor for detecting GP73 was constructed using reduced graphene oxide-ferrocene-polyaniline nanocomposite (rGO-Fc-PANi) as the biosensing platform. The rGO-Fc-PANi had larger specific surface area, excellent conductivity and outstanding electroactive performance, which served as nanocarrier for GP73 aptamer (GP73Apt) binding and as redox nanoprobe for record electrical signal. Then, a complementary chain (cDNA) was fixed to the electrode by hybridization with GP73Apt. When GP73 was present, a competitive process happened among cDNA, GP73Apt and GP73, formed the GP73-GP73Apt stable chemical structure and made cDNA detach from the sensing electrode, resulting in enhancement of electrical signal. The difference in the corresponding peak current before and after the competition can be used to indicate the quantitative of GP73. Under optimal conditions, the DPV current response showed a good log-linear relationship with GP73 concentrations (0.001 âˆ¼ 100.0 ng/mL) with a detection limit of 0.15 pg/mL (S/N = 3). It was successfully used for GP73 detection in human serum with RSDs ranging from 1.08 % to 6.96 %. Therefore, the aptasensor could provide an innovative technology platform and hold a great potential in clinical application.

9.
Life Sci ; : 122868, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936604

ABSTRACT

Membrane trafficking within the Golgi apparatus plays a pivotal role in the intracellular transportation of lipids and proteins. Dysregulation of this process can give rise to various pathological manifestations, including cancer. Exploiting Golgi defects, cancer cells capitalise on aberrant membrane trafficking to facilitate signal transduction, proliferation, invasion, immune modulation, angiogenesis, and metastasis. Despite the identification of several molecular signalling pathways associated with Golgi abnormalities, there remains a lack of approved drugs specifically targeting cancer cells through the manipulation of the Golgi apparatus. In the initial section of this comprehensive review, the focus is directed towards delineating the abnormal Golgi genes and proteins implicated in carcinogenesis. Subsequently, a thorough examination is conducted on the impact of these variations on Golgi function, encompassing aspects such as vesicular trafficking, glycosylation, autophagy, oxidative mechanisms, and pH alterations. Lastly, the review provides a current update on promising Golgi apparatus-targeted inhibitors undergoing preclinical and/or clinical trials, offering insights into their potential as therapeutic interventions. Significantly more effort is required to advance these potential inhibitors to benefit patients in clinical settings.

10.
Eur J Neurosci ; 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853295

ABSTRACT

Heteronymous inhibition between lower limb muscles is primarily attributed to recurrent inhibitory circuits in humans but could also arise from Golgi tendon organs (GTOs). Distinguishing between recurrent inhibition and mechanical activation of GTOs is challenging because their heteronymous effects are both elicited by stimulation of nerves or a muscle above motor threshold. Here, the unique influence of mechanically activated GTOs was examined by comparing the magnitude of heteronymous inhibition from quadriceps (Q) muscle stimulation onto ongoing soleus electromyographic at five Q stimulation intensities (1.5-2.5× motor threshold) before and after an acute bout of stimulation-induced Q fatigue. Fatigue was used to decrease Q stimulation evoked force (i.e., decreased GTO activation) despite using the same pre-fatigue stimulation currents (i.e., same antidromic recurrent inhibition input). Thus, a decrease in heteronymous inhibition after Q fatigue and a linear relation between stimulation-evoked torque and inhibition both before and after fatigue would support mechanical activation of GTOs as a source of inhibition. A reduction in evoked torque but no change in inhibition would support recurrent inhibition. After fatigue, Q stimulation-evoked knee torque, heteronymous inhibition magnitude and inhibition duration were significantly decreased for all stimulation intensities. In addition, heteronymous inhibition magnitude was linearly related to twitch-evoked knee torque before and after fatigue. These findings support mechanical activation of GTOs as a source of heteronymous inhibition along with recurrent inhibition. The unique patterns of heteronymous inhibition before and after fatigue across participants suggest the relative contribution of GTOs, and recurrent inhibition may vary across persons.

11.
Dev Cell ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38870942

ABSTRACT

Retrograde transport of WLS (Wntless) from endosomes to trans-Golgi network (TGN) is required for efficient Wnt secretion during development. However, the molecular players connecting endosomes to TGN during WLS trafficking are limited. Here, we identified a role for Eyes Absent (EYA) proteins during retrograde trafficking of WLS to TGN in human cell lines. By using worm, fly, and zebrafish models, we found that the EYA-secretory carrier-associated membrane protein 3 (SCAMP3) axis is evolved in vertebrates. EYAs form a complex and interact with retromer on early endosomes. Retromer-bound EYA complex recruits SCAMP3 to endosomes, which is necessary for the fusion of WLS-containing endosomes to TGN. Loss of EYA complex or SCAMP3 leads to defective transport of WLS to TGN and failed Wnt secretion. EYA mutations found in patients with hearing loss form a dysfunctional EYA-retromer complex that fails to activate Wnt signaling. These findings identify the EYA complex as a component of retrograde trafficking of WLS from the endosome to TGN.

12.
Ecotoxicol Environ Saf ; 281: 116630, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38917590

ABSTRACT

Benzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon compound that is generated during combustion processes, and is present in various substances such as foods, tobacco smoke, and burning emissions. BaP is extensively acknowledged as a highly carcinogenic substance to induce multiple forms of cancer, such as lung cancer, skin cancer, and stomach cancer. Recently it is shown to adversely affect the reproductive system. Nevertheless, the potential toxicity of BaP on oocyte quality remains unclear. In this study, we established a BaP exposure model via mouse oral gavage and found that BaP exposure resulted in a notable decrease in the ovarian weight, number of GV oocytes in ovarian, and oocyte maturation competence. BaP exposure caused ribosomal dysfunction, characterized by a decrease in the expression of RPS3 and HPG in oocytes. BaP exposure also caused abnormal distribution of the endoplasmic reticulum (ER) and induced ER stress, as indicated by increased expression of GRP78. Besides, the Golgi apparatus exhibited an abnormal localization pattern, which was confirmed by the GM130 localization. Disruption of vesicle transport processes was observed by the abnormal expression and localization of Rab10. Additionally, an enhanced lysosome and LC3 fluorescence intensity indicated the occurrence of protein degradation in oocytes. In summary, our results suggested that BaP exposure disrupted the distribution and functioning of organelles, consequently affecting the developmental competence of mouse oocytes.

13.
J Photochem Photobiol B ; 257: 112950, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38851042

ABSTRACT

Hepatic fibrosis (HF) is caused by persistent inflammation, which is closely associated with hepatic oxidative stress. Peroxynitrite (ONOO-) is significantly elevated in HF, which would be regarded as a potential biomarker for the diagnosis of HF. Research has shown that ONOO- in the Golgi apparatus can be overproduced in HF, and it can induce hepatocyte injury by triggering Golgi oxidative stress. Meanwhile, the ONOO- inhibitors could effectively relieve HF by inhibiting Golgi ONOO-, but as yet, no Golgi-targetable fluorescent probe available for diagnosis and assessing treatment response of HF through sensing Golgi ONOO-. To this end, we reported a ratiometric fluorescent probe, Golgi-PER, for diagnosis and assessing treatment response of HF through monitoring the Golgi ONOO-. Golgi-PER displayed satisfactory sensitivity, low detection limit, and exceptional selectivity to ONOO-. Combined with excellent biocompatibility and good Golgi-targeting ability, Golgi-PER was further used for ratiometric monitoring the Golgi ONOO- fluctuations and screening of ONOO- inhibitors from polyphenols in living cells. Meanwhile, using Golgi-PER as a probe, the overexpression of Golgi ONOO- in HF and the treatment response of HF to the screened rosmarinic acid were precisely visualized for the first time. Furthermore, the screened RosA has a remarkable therapeutic effect on HF, which may be a new strategy for HF treatment. These results demonstrated the practicability of Golgi-PER for monitoring the occurrence, development, and personalized treatment response of HF.

14.
Arch Biochem Biophys ; 758: 110049, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38879142

ABSTRACT

Formation of transport vesicles requires the coordinate activity of the coating machinery that selects cargo into the nascent vesicle and the membrane bending machinery that imparts curvature to the forming bud. Vesicle coating at the trans-Golgi Network (TGN) involves AP1, GGA2 and clathrin, which are recruited to membranes by activated ARF GTPases. The ARF activation at the TGN is mediated by the BIG1 and BIG2 guanine nucleotide exchange factors (GEFs). Membrane deformation at the TGN has been shown to be mediated by lipid flippases, including ATP8A1, that moves phospholipids from the inner to the outer leaflet of the TGN membrane. We probed a possible coupling between the coating and deformation machineries by testing for an interaction between BIG1, BIG2 and ATP8A1, and by assessing whether such an interaction may influence coating efficiency. Herein, we document that BIG1 and BIG2 co-localize with ATP8A1 in both, static and highly mobile TGN elements, and that BIG1 and BIG2 bind ATP8A1. We show that the interaction involves the catalytic Sec7 domain of the GEFs and the cytosolic C-terminal tail of ATP8A1. Moreover, we report that the expression of ATP8A1, but not ATP8A1 lacking the GEF-binding cytosolic tail, increases the generation of activated ARFs at the TGN and increases the selective recruitment of AP1, GGA2 and clathrin to TGN membranes. This occurs without increasing BIG1 or BIG2 levels at the TGN, suggesting that the binding of the ATP8A1 flippase tail to the Sec7 domain of BIG1/BIG2 increases their catalytic activity. Our results support a model in which a flippase component of the deformation machinery impacts the activity of the GEF component of the coating machinery.

15.
Biochim Biophys Acta Proteins Proteom ; 1872(5): 141029, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38917877

ABSTRACT

The Golgi apparatus is a critical organelle in protein sorting and lipid metabolism. Characterized by its stacked, flattened cisternal structure, the Golgi exhibits distinct polarity with its cis- and trans-faces orchestrating various protein maturation and transport processes. At the heart of its structural integrity and organisation are the Golgi Matrix Proteins (GMPs), predominantly comprising Golgins and GRASPs. These proteins contribute to this organelle's unique stacked and polarized structure and ensure the precise localization of Golgi-resident enzymes, which is crucial for accurate protein processing. Despite over a century of research since its discovery, the Golgi architecture's intricate mechanisms still need to be fully understood. Here, we discuss that GMPs across different Eukaryotic lineages present a significant tendency to form biomolecular condensates. Moreover, we validated experimentally that members of the GRASP family also exhibit a strong tendency. Our findings offer a new perspective on the possible roles of protein disorder and condensation of GMPs in the Golgi organisation.

16.
Front Cell Neurosci ; 18: 1409974, 2024.
Article in English | MEDLINE | ID: mdl-38933178

ABSTRACT

Introduction: Motor neurons (MNs) within the nucleus ambiguus innervate the skeletal muscles of the larynx, pharynx, and oesophagus. These muscles are activated during vocalisation and swallowing and must be coordinated with several respiratory and other behaviours. Despite many studies evaluating the projections and orientation of MNs within the nucleus ambiguus, there is no quantitative information regarding the dendritic arbours of MNs residing in the compact, and semicompact/loose formations of the nucleus ambiguus.. Methods: In female and male Fischer 344 rats, we evaluated MN number using Nissl staining, and MN and non-MN dendritic morphology using Golgi-Cox impregnation Brightfield imaging of transverse Nissl sections (15 µm) were taken to stereologically assess the number of nucleus ambiguus MNs within the compact and semicompact/loose formations. Pseudo-confocal imaging of Golgi-impregnated neurons within the nucleus ambiguus (sectioned transversely at 180 µm) was traced in 3D to determine dendritic arbourisation. Results: We found a greater abundance of MNs within the compact than the semicompact/loose formations. Dendritic lengths, complexity, and convex hull surface areas were greatest in MNs of the semicompact/loose formation, with compact formation MNs being smaller. MNs from both regions were larger than non-MNs reconstructed within the nucleus ambiguus. Conclusion: Adding HBLS to the diet could be a potentially effective strategy to improve horses' health.

17.
Biomed Pharmacother ; 175: 116646, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692058

ABSTRACT

The Golgi apparatus plays a crucial role in mediating the modification, transport, and sorting of intracellular proteins and lipids. The morphological changes occurring in the Golgi apparatus are exceptionally important for maintaining its function. When exposed to external pressure or environmental stimulation, the Golgi apparatus undergoes adaptive changes in both structure and function, which are known as Golgi stress. Although certain signal pathway responses or post-translational modifications have been observed following Golgi stress, further research is needed to comprehensively summarize and understand the related mechanisms. Currently, there is evidence linking Golgi stress to neurodegenerative diseases; however, the role of Golgi stress in the progression of neurodegenerative diseases such as Alzheimer's disease remains largely unexplored. This review focuses on the structural and functional alterations of the Golgi apparatus during stress, elucidating potential mechanisms underlying the involvement of Golgi stress in regulating immunity, autophagy, and metabolic processes. Additionally, it highlights the pivotal role of Golgi stress as an early signaling event implicated in the pathogenesis and progression of neurodegenerative diseases. Furthermore, this study summarizes prospective targets that can be therapeutically exploited to mitigate neurodegenerative diseases by targeting Golgi stress. These findings provide a theoretical foundation for identifying novel breakthroughs in preventing and treating neurodegenerative diseases.


Subject(s)
Golgi Apparatus , Neurodegenerative Diseases , Humans , Golgi Apparatus/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Animals , Signal Transduction , Autophagy/physiology , Stress, Physiological/physiology
18.
Bio Protoc ; 14(9): e4979, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38737505

ABSTRACT

The cation-independent mannose 6-phosphate receptors (CI-M6PR) bind newly synthesized mannose 6-phosphate (Man-6-P)-tagged enzymes in the Golgi and transport them to late endosomes/lysosomes, providing them with degradative functions. Following the cargo delivery, empty receptors are recycled via early/recycling endosomes back to the trans-Golgi network (TGN) retrogradely in a dynein-dependent motion. One of the most widely used methods for studying the retrograde trafficking of CI-M6PR involves employing the CD8α-CI-M6PR chimera. This chimera, comprising a CD8 ectodomain fused with the cytoplasmic tail of the CI-M6PR receptor, allows for labeling at the plasma membrane, followed by trafficking only in a retrograde direction. Previous studies utilizing the CD8α-CI-M6PR chimera have focused mainly on colocalization studies with various endocytic markers under steady-state conditions. This protocol extends the application of the CD8α-CI-M6PR chimera to live cell imaging, followed by a quantitative analysis of its motion towards the Golgi. Additionally, we present an approach to quantify parameters such as speed and track lengths associated with the motility of CD8α-CI-M6PR endosomes using the Fiji plugin TrackMate. Key features • This assay is adapted from the methodology by Prof. Matthew Seaman for studying the retrograde trafficking of CI-M6PR by expressing CD8α-CI-M6PR chimera in HeLa cells. • The experiments include live-cell imaging of surface-labeled CD8α-CI-M6PR molecules, followed by a chase in cells. • Allows the monitoring of real-time motion of CD8α-CI-M6PR endosomes and facilitates calculation of kinetic parameters associated with endosome trajectories, e.g., speed and distance (run lengths).

19.
Genetics ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752295

ABSTRACT

Cryptococcus neoformans is a fungal pathogen of the top critical priority recognized by the World Health Organization. This clinically important fungus also serves as a eukaryotic model organism. A variety of resources have been generated to facilitate investigation of the C. neoformans species complex, including congenic pairs, well-annotated genomes, genetic editing tools, and gene deletion sets. Here, we generated a set of strains with all major organelles fluorescently marked. We tested short organelle-specific targeting sequences and successfully labeled the following organelles by fusing the targeting sequences with a fluorescence protein: the plasma membrane, the nucleus, the peroxisome, and the mitochondrion. We used native cryptococcal Golgi and late endosomal proteins fused with a fluorescent protein to label these two organelles. These fluorescence markers were verified via colocalization using organelle-specific dyes. All the constructs for the fluorescent protein tags were integrated in an intergenic safe haven region. These organelle-marked strains were examined for growth and various phenotypes. We demonstrated that these tagged strains could be employed to track cryptococcal interaction with the host in phagocytosis assays. These strains also allowed us to discover remarkable differences in the dynamics of proteins targeted to different organelles during sexual reproduction. Additionally, we revealed that "dormant" spores transcribed and synthesized their own proteins and trafficked the proteins to the appropriate subcellular compartments, demonstrating that spores are metabolically active. We anticipate that these newly generated fluorescent markers will greatly facilitate further investigation of cryptococcal biology and pathogenesis.

20.
Front Cell Dev Biol ; 12: 1386149, 2024.
Article in English | MEDLINE | ID: mdl-38721528

ABSTRACT

The Golgi apparatus plays a crucial role in lysosome biogenesis and the delivery of lysosomal enzymes, essential for maintaining cellular homeostasis and ensuring cell survival. Deficiencies in Golgi structure and function can profoundly impact lysosomal homeostasis, leading to various lysosomal storage diseases and neurodegenerative disorders. In this review, we highlight the role of the Golgi Reassembly Stacking Proteins (GRASPs) in the formation and function of the Golgi apparatus, emphasizing the current understanding of the association between the Golgi apparatus, lysosomes, and lysosomal storage diseases. Additionally, we discuss how Golgi dysfunction leads to the secretion of lysosomal enzymes. This review aims to serve as a concise resource, offering insights into Golgi structure, function, disease-related defects, and their consequential effects on lysosomal biogenesis and function. By highlighting Golgi defects as an underappreciated contributor to lysosomal dysfunction across various diseases, we aim to enhance comprehension of these intricate cellular processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...