Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.871
Filter
1.
Food Chem ; 462: 140987, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39217748

ABSTRACT

This study aimed to investigate the textural changes of cooked germinated brown rice (GBR) during freeze-thaw treatment and propose a strategy for enhancing its texture using magnetic field (MF). Seven freeze-thaw cycles exhibited more pronounced effects compared to 7 days of freezing, resulting in increases in GBR hardness by 85.59 %-164.36 % and decreases in stickiness by 10.34 %-43.55 %. Water loss, structural damage of GBR flour, and starch retrogradation contributed to the deterioration of texture. MF mitigated these effects by inhibiting the transformation of bound water into free water, reducing water loss by 0.39 %-0.57 %, and shortening the phase transition period by 2.0-21.5 min, thereby diminishing structural damage to GBR flour and hindering starch retrogradation. Following MF treatment (5 mT), GBR hardness decreased by 21.00 %, while stickiness increased by 45.71 %. This study elucidates the mechanisms through which MF enhances the texture, offering theoretical insights for the industrial production of high-quality frozen rice products.


Subject(s)
Cooking , Freezing , Germination , Magnetic Fields , Oryza , Oryza/chemistry , Oryza/growth & development , Oryza/metabolism , Flour/analysis , Starch/chemistry , Starch/metabolism , Water/chemistry , Hardness , Food Handling , Seeds/chemistry , Seeds/growth & development
2.
J Environ Sci (China) ; 149: 268-277, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181641

ABSTRACT

Sulfur trioxide (SO3) as a condensable particle matter has a significant influence on atmospheric visibility, which easily arouses formation of haze. It is imperative to control the SO3 emission from the industrial flue gas. Three commonly used basic absorbents, including Ca(OH)2, MgO and NaHCO3 were selected to explore the effects of temperature, SO2 concentration on the SO3 absorption, and the reaction mechanism of SO3 absorption was further illustrated. The suitable reaction temperature for various absorbents were proposed, Ca(OH)2 at the high temperatures above 500°C, MgO at the low temperatures below 320°C, and NaHCO3 at the temperature range of 320-500°C. The competitive absorption between SO2 and SO3 was found that the addition of SO2 reduced the SO3 absorption on Ca(OH)2 and NaHCO3, while had no effect on MgO. The order of the absorption selectivity of SO3 follows MgO, NaHCO3 and Ca(OH)2 under the given conditions in this work. The absorption process of SO3 on NaHCO3 follows the shrinking core model, thus the absorption reaction continues until NaHCO3 was exhausted with the utilization rate of nearly 100%. The absorption process of SO3 on Ca(OH)2 and MgO follows the grain model, and the dense product layer hinders the further absorption reaction, resulting in low utilization of about 50% for Ca(OH)2 and MgO. The research provides a favorable support for the selection of alkaline absorbent for SO3 removal in application.


Subject(s)
Air Pollutants , Sulfur Dioxide , Sulfur Dioxide/chemistry , Air Pollutants/chemistry , Air Pollutants/analysis , Sulfur Oxides/chemistry , Models, Chemical , Magnesium Oxide/chemistry , Calcium Hydroxide/chemistry
3.
J Environ Sci (China) ; 147: 165-178, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003037

ABSTRACT

In this study, two wheat-derived cadmium (Cd)-immobilizing endophytic Pseudomonas paralactis M14 and Priestia megaterium R27 were evaluated for their effects on wheat tissue Cd uptake under hydroponic conditions. Then, the impacts of the biochar (BC), M14+R27 (MR), and BC+MR treatments on wheat Cd uptake and the mechanisms involved were investigated at the jointing, heading, and mature stages of wheat plants under field-plot conditions. A hydroponic experiment showed that the MR treatment significantly decreased the above-ground tissue Cd content compared with the M14 or R27 treatment. The BC+MR treatment reduced the grain Cd content by 51.5%-67.7% and Cd translocation factor at the mature stage of wheat plants and increased the organic matter-bound Cd content by 31%-75% in the rhizosphere soils compared with the BC or MR treatment. Compared with the BC or MR treatment, the relative abundances of the biomarkers associated with Gemmatimonas, Altererythrobacter, Gammaproteobacteria, Xanthomonadaceae, Phenylobacterium, and Nocardioides in the BC+MR-treated rhizosphere microbiome decreased and negatively correlated with the organic matter-bound Cd contents. In the BC+MR-treated root interior microbiome, the relative abundance of the biomarker belonging to Exiguobacterium increased and negatively correlated with the Cd translocation factor, while the relative abundance of the biomarker belonging to Pseudonocardiaceae decreased and positively correlated with the Cd translocation factor. Our findings suggested that the BC+MR treatment reduced Cd availability and Cd transfer through affecting the abundances of these specific biomarkers in the rhizosphere soil and root interior microbiomes, leading to decreased wheat grain Cd uptake in the contaminated soil.


Subject(s)
Cadmium , Charcoal , Soil Microbiology , Soil Pollutants , Triticum , Triticum/metabolism , Triticum/microbiology , Cadmium/metabolism , Soil Pollutants/metabolism , Endophytes/physiology , Rhizosphere , Soil/chemistry , Biodegradation, Environmental , Microbiota/drug effects
4.
J Environ Sci (China) ; 147: 359-369, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003053

ABSTRACT

Agricultural practices significantly contribute to greenhouse gas (GHG) emissions, necessitating cleaner production technologies to reduce environmental pressure and achieve sustainable maize production. Plastic film mulching is commonly used in the Loess Plateau region. Incorporating slow-release fertilizers as a replacement for urea within this practice can reduce nitrogen losses and enhance crop productivity. Combining these techniques represents a novel agricultural approach in semi-arid areas. However, the impact of this integration on soil carbon storage (SOCS), carbon footprint (CF), and economic benefits has received limited research attention. Therefore, we conducted an eight-year study (2015-2022) in the semi-arid northwestern region to quantify the effects of four treatments [urea supplied without plastic film mulching (CK-U), slow-release fertilizer supplied without plastic film mulching (CK-S), urea supplied with plastic film mulching (PM-U), and slow-release fertilizer supplied with plastic film mulching (PM-S)] on soil fertility, economic and environmental benefits. The results revealed that nitrogen fertilizer was the primary contributor to total GHG emissions (≥71.97%). Compared to other treatments, PM-S increased average grain yield by 12.01%-37.89%, water use efficiency by 9.19%-23.33%, nitrogen accumulation by 27.07%-66.19%, and net return by 6.21%-29.57%. Furthermore, PM-S decreased CF by 12.87%-44.31% and CF per net return by 14.25%-41.16%. After eight years, PM-S increased SOCS (0-40 cm) by 2.46%, while PM-U decreased it by 7.09%. These findings highlight the positive effects of PM-S on surface soil fertility, economic gains, and environmental benefits in spring maize production on the Loess Plateau, underscoring its potential for widespread adoption and application.


Subject(s)
Agriculture , Carbon Footprint , Fertilizers , Plastics , Zea mays , Zea mays/growth & development , Agriculture/methods , China , Soil/chemistry , Greenhouse Gases/analysis , Nitrogen/analysis
5.
Sci Total Environ ; : 176742, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39374702

ABSTRACT

The increasing frequency and severity of low temperatures, and soil cadmium (Cd) pollution threaten food security. However, the interactive effects of Cd exposure and low temperatures on rice yield and quality, as well as the mechanisms of Cd absorption and translocation, remain unclear. In this study, two rice varieties were cultivated in soils with two Cd contamination levels (Cdhigh and Cdlow) and exposed to control (CT25) or lower temperatures of 20 °C (LT20) and 17 °C (LT17) during grain-filling stage. Results showed significant decreases in seed setting rate and grain weight, reduced head rice yield, and increased chalkiness due to low temperatures, particularly in Cdhigh soils. Compared to CT25, LT17 and LT20 increased Cd concentration by 37.6 % and accumulation by 14.8 % in grains grown in Cdhigh soils. Enhanced root activity and upregulation of OsNramp1 and OsNramp5 under both low-temperatures increased Cd levels in roots. Lower temperatures also decreased phytochelatins (PCs) and increased expression of OsHMA2 and OsCAL1, facilitating Cd transport and raising Cd levels in stems. Furthermore, upregulated OsHMA2, OsLCT1, and OsZIP7 in stems under low-temperatures promoted Cd transport to panicles. Overall, low temperatures during grain filling increased Cd uptake and translocation into rice grains, especially in high Cd contaminated soils, raising health risks. The study highlights the need to address climate change's impact on cadmium hazards in rice.

6.
Mol Plant ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39354718

ABSTRACT

Rice (Oryza sativa) provides >20% of the consumed calories in the human diet. However, rice is also a leading source of dietary cadmium (Cd) that poses a serious threat to human health. Deciphering the genetic network that underlies the grain-Cd accumulation will benefit the development of low-Cd rice to mitigate the effects of Cd accumulation in the rice grain. In this study, we identified a QTL-gene, OsCS1, that is allelic to OsMTP11 and encodes a protein sequestering Cd in the leaf during vegetative growth and preventing Cd from being translocated to the grain after heading in rice. OsCS1 is predominantly expressed in leaf vascular parenchyma cells, where it binds to a vacuole sorting receptor protein OsVSR2 and is translocated intracellularly from the trans-Golgi network (TGN) to pre-vacuolar compartments (PVCs) and then to the vacuole. In this trafficking process, OsCS1 actively transports Cd into the endomembrane system and eventually sequesters it in vacuoles. There are natural variations in the promoter of OsCS1 between the indica and japonica rice subspecies. Duplication of a G-box-like motif in the promoter region of the superior allele of OsCS1 from indica rice enhances the binding of the transcription factor OsIRO2 to the OsCS1 promoter, thereby promoting OsCS1 expression. Introgression of this allele into commercial rice varieties could significantly lower grain-Cd levels compared to the inferior allele present in japonica rice. Our findings fill a gap in the genetic control of leaf-to-grain Cd translocation and provide a novel gene and its superior allele for the genetic improvement of low-Cd variety in rice.

7.
Front Plant Sci ; 15: 1442123, 2024.
Article in English | MEDLINE | ID: mdl-39359629

ABSTRACT

Introduction: Long-term application of excessive nitrogen (N) not only leads to low N use efficiency (NUE) but also exacerbates the risk of environmental pollution due to N losses. Substituting partial chemical N with organic fertilizer (SP) is an environmentally friendly and sustainable fertilization practice. However, the appropriate rate of SP in rainfed maize cropping systems in semi-arid regions of China is unknown. Methods: Therefore, we conducted a field experiment between 2021 and 2022 in a semi-arid region of Northern China to investigate the effects of SP on maize growth, carbon and N metabolism (C/NM), and NUE. The following treatments were used in the experiment: no N application (CK), 100% chemical N (SP0, 210 kg N ha-1), and SP substituting 15% (SP1), 30% (SP2), 45% (SP3), and 60% (SP4) of the chemical N. The relationship between these indicators and grain yield (GY) was explored using the Mantel test and structural equation modeling (SEM). Results and discussion: The results found that the SP1 and SP2 treatments improved the assimilates production capacity of the canopy by increasing the leaf area index, total chlorophyll content, and net photosynthetic rate, improving dry matter accumulation (DMA) by 6.2%-10.6%, compared to the SP0 treatment. SP1 and SP2 treatments increased total soluble sugars, starch, free amino acids, and soluble protein contents in ear leaves via increasing the enzymatic reactions related to C/NM in ear leaves during the reproductive growth stage compared with SP0 treatment. The highest plant nitrogen uptake (PNU) and nitrogen recovery efficiency were obtained under the SP2 treatment, and the GY and nitrogen agronomic efficiency were higher than the SP0 treatment by 9.2% and 27.8%. However, SP3 and SP4 treatments reduced DMA and GY by inhibiting C/NM in ear leaves compared to SP0 treatment. Mantel test and SEM results revealed that SP treatments indirectly increased GY and PNU by directly positively regulating C/NM in maize ear leaves. Therefore, in the semi-arid regions, substituting 30% of the chemical N with SP could be considered. This fertilizer regime may avoid GY reduction and improve NUE. This study provides new insights into sustainable cultivation pathways for maize in semi-arid regions.

8.
Chemosphere ; : 143458, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39366491

ABSTRACT

Reuse of municipal-treated wastewater for agricultural irrigation is becoming increasingly prevalent due to growing demand and decline in freshwater supplies. However, the microbial contamination profile, including antibiotic resistance genes (ARGs), virulence factors (VFs), and human bacterial pathogens (HBPs) in agricultural soil irrigated with municipal-treated wastewater for paddy cultivation, was unknown. Here, metagenomic analysis was applied to provide a systematic insight into the resistome, VFs and HBPs in paddy soils irrigated with municipal-treated wastewater. The obtained results revealed that the residual antibiotics in municipal-treated wastewater has an impact on the antibiotic resistome by increasing both the total number and abundance of ARGs. Furthermore, it was found that sul1 could serve as a potential risk indicator for assessing ARG contamination. VFs, core HBP abundance, and dangerous pathogens remain unaffected by municipal-treated wastewater irrigation for paddy. The good coexistence patterns of ARGs-HBPs and ARGs-VFs demonstrated the presence of resistant pathogenic bacteria. The network analysis revealed that ARGs-bearing Legionella pneumophila, Mycobacterium marinum, Bordetella pertussis, Staphylococcus aureus, and Pseudomonas aeruginosa might be ranked as high-risk HBPs. Additionally, our investigation also demonstrated that reuse of municipal-treated wastewater for agricultural irrigation had no detrimental effects on rice plant growth and grain quality. This study was the first to investigate the response of VFs and HBPs in paddy soil under long-term municipal-treated wastewater irrigation. The obtained results provide a scientific basis for the safe application of municipal-treated wastewater.

9.
Int J Biol Macromol ; 280(Pt 4): 136230, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39362435

ABSTRACT

Kam sweet rice is a cultural treasure in Qiandongnan, Guizhou Province. However, the situation with low yield and economic value in Kam sweet rice urgently requires improved mechanistic understanding of tillering to increase its yield. In this study, we found that the rate of axillary bud elongation differed significantly among Kam sweet rice varieties, which was positively correlated with tiller number. Transcriptome analysis suggests that genes involved in nitrogen metabolism and plant hormone signaling pathways could be the main reasons for the differences in tillering among these varieties. The amino acid transporter OsAAP11 in the transcriptome was essential for bud outgrowth and rice tillering based on the phenotypic performance of its transgenic plants. Further results found that OsAAP11 was able to transport amino acids such as proline, glycine, and alanine in rice. Natural variations were found in the promoter region of this gene in different Kam sweet rice varieties, which may lead to differences in the transcription levels of OsAAP11. Overall, the results suggest that the natural variations of OsAAP11 in rice might lead to variations in its expression levels, further affecting bud outgrowth and tillering through regulating the transport and accumulation of amino acids.

10.
Small ; : e2404702, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39367553

ABSTRACT

Grain boundary (GB) mass transport, and chemistry exert a pronounced influence on both the performance and stability of electrodes for solid oxide electrochemical cells. Lanthanum strontium cobalt ferrite (LSCF6428) is applied as a model mixed ionic and electronic conducting (MIEC) perovskite oxide. The cation-vacancy distribution at the GBs is studied at both single and multi-grain scales using high-resolution characterization techniques and computational approaches. The accumulation of oxygen vacancies ( V O · · $V_O^{ \cdot \cdot }$ ) in the GB region, rather than necessarily at the GB core, results in an enhancement of the oxygen diffusivity by 3 - 4 orders of magnitude along the GBs (Dgb). At 350 °C, the oxygen tracer diffusion coefficient (D*) is measured as 2.5 × 10-14 cm2 s-1. The Dgb is determined to be 2.8 × 10-10 cm2 s-1 assuming a crystallographic GB width (δcrystal) of 1 nm, and 2.5 × 10-11 cm2 s-1 using a chemically measured δchem of 11.10 nm by atom probe tomography (APT). The origin of the concomitant changes in the cation composition is also investigate. In addition to the host cations, strong Na segregation is detected at all the GBs examined. Despite the low (ppm) level of this impurity, its presence can affect the space charge potential (Φ0). This, in turn, will influence the evolution of GB chemistry.

11.
Adv Mater ; : e2407150, 2024 Oct 06.
Article in English | MEDLINE | ID: mdl-39370569

ABSTRACT

The development of new ionic conductors meeting the requirements of current solid-state devices is imminent but still challenging. Hydrogen-bonded ionic co-crystals (HICs) are multi-component crystals based on hydrogen bonding and Coulombic interactions. Due to the hydrogen bond network and unique features of ionic crystals, HICs have flexible skeletons. More importantly, anion vacancies on their surface can potentially help dissociate and adsorb excess anions, forming cation transport channels at grain boundaries. Here, it is demonstrated that a HIC optimized by adjusting the ratio of zinc salt and imidazole can construct grain boundary-based fast Zn2+ transport channels. The as-obtained HIC solid electrolyte possesses an unprecedentedly high ionic conductivity at room and low temperatures (≈11.2 mS cm-1 at 25 °C and ≈2.78 mS cm-1 at -40 °C) with ultra-low activation energy (≈0.12 eV), while restraining dendrite growth and exhibiting low overpotential even at a high current density (<200 mV at 5.0 mA cm-2) during Zn symmetric cell cycling. This HIC also allows solid-state Zn||covalent organic framework full cells to work at low temperatures, providing superior stability. More importantly, the HIC can even support zinc-ion hybrid supercapacitors to work, achieving extraordinary rate capability and a power density comparable to aqueous solution-based supercapacitors. This work provides a path for designing facilely prepared, low-cost, and environmentally friendly ionic conductors with extremely high ionic conductivity and excellent interface compatibility.

12.
Article in English | MEDLINE | ID: mdl-39370846

ABSTRACT

Lead-free dielectric ceramics exhibiting excellent energy storage capacity, long service life, and good safety have been considered to have immense prospects in next-generation pulsed power capacitors. However, it is still challenging to simultaneously achieve large recoverable energy density (Wrec), high efficiency (η), and excellent charge-discharge performance. Herein, we fabricated lead-free (1 - x)(Bi0.5Na0.5)TiO3-x(Sr0.7Bi0.1La0.1)TiO3 ((1 - x)BNT-xSBLT) dielectric ceramics, and a good balance between Wrec ∼ 4.15 J/cm3 and η ∼ 93.89% under 333 kV/cm, as well as superior charge-discharge properties (power density PD ∼ 185.42 MW/cm3, discharge energy density Wd ∼ 2.2 J/cm3, and discharge time t0.9 ∼ 53.8 ns under 250 kV/cm), was achieved in 0.6BNT-0.4SBLT ceramics. The good energy storage performance can be attributed to the synergistic contributions of significantly enhanced Eb caused by grain refinement and the large ΔP values induced by polar nanoregions (PNRs) under a high external electric field. Moreover, the 0.6BNT-0.4SBLT ceramics also present excellent temperature stability of energy storage properties (the variations of Wrec and η less than 0.45% and 0.14%, respectively) over a temperature range of 25-185 °C. These figures of merit make 0.6BNT-0.4SBLT ceramics the most promising candidate for energy storage capacitors in advanced pulse power systems.

13.
Int J Biol Macromol ; : 136320, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39370071

ABSTRACT

NAR2 (Nitrate assimilation related protein) is a protein chaperone involved in transporting nitrate across membranes. However, the expression pattern and function of NAR2 genes in wheat are still largely unknown. Here, we cloned two TaNAR2 genes (TaNAR2.1 and TaNAR2.2). To assess and compare the functional differences of TaNAR2.1 and TaNAR2.2, we analyzed the subcellular localization and expression pattern of the two genes in wheat under low nitrogen (LN) and high nitrogen (HN) conditions, as well as the nitrate influx and root system architecture of TaNAR2.1 and TaNAR2.2 overexpression wheat under LN and HN. Additionally, we investigated the effects of TaNAR2.1 and TaNAR2.2 overexpression on the growth phenotype, nitrogen uptake and yield of wheat throughout the growth period. There are significant differences in the expression patterns and functions of TaNAR2.1 and TaNAR2.2. TaNAR2.1 is located in the cytoplasm, nucleus and the plasma membrane, whereas TaNAR2.2 is a cytoplasm-specific protein. TaNAR2.1 appears to exhibit larger changes in expression levels and a higher capacity for nitrate influx than TaNAR2.2 under external nitrate supply. Overexpression of TaNAR2.1 significantly improves grain nitrogen use efficiency and increases grain yield, whereas overexpression of TaNAR2.2 enhances vegetative and reproductive growth of wheat roots. These findings indicate that TaNAR2.1 plays a crucial role in wheat nitrogen accumulation and yield, while TaNAR2.2 is pivotal for wheat root growth.

14.
Materials (Basel) ; 17(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39274613

ABSTRACT

High-entropy alloys (HEA) as a kind of new binder for cemented carbide have garnered significant attention. In this work, WC/(17~25 wt.%)Al0.5CoCrFeNiTi0.5 cemented carbides were prepared by hot pressing sintering (HPS), and the reactions between WC powder and Al0.5CoCrFeNiTi0.5 powder during hot pressing sintering were elucidated. It found that different from traditional Co binder, the Al0.5CoCrFeNiTi0.5 binder effectively inhibited WC grain growth. During HPS, the decomposed W and C atoms from WC diffused into the Al0.5CoCrFeNiTi0.5 binder, reacted with the elements in the binder, and then formed the M(Co, Fe, Ni)3W3C phase. The back-diffusion of W and C atoms to WC grains was restricted by the Al0.5CoCrFeNiTi0.5 alloy and inhibited them from re-precipitating onto the large undissolved WC grains. As a result, the average size of WC grains in the cemented carbides was less than 200 nm. This work bright new insight into the grain refinement mechanisms of WC cemented carbide with HEA binder and provide a guidance for designing performance-stable WC/HEA cemented carbide and promoting their application.

15.
Materials (Basel) ; 17(17)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39274727

ABSTRACT

The inefficiency of grain refinement processes has traditionally been attributed to the limited utilization of heterogeneous nucleation particles within master alloy systems, resulting in the formation of abundant inactive particles. This study aims to investigate the alternative influences of particles by incorporating external micrometer-sized TiB2 particles into the grain refinement process. Through a series of experiments, the refinement efficiency, grain refinement mechanism, and resultant microstructure of TiB2 particle-induced grain refinement specimens are comprehensively examined using various microscopy and analytical techniques, including polarization microscopy (OM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). Our findings demonstrate a direct correlation between increased levels of TiB2 particles and enhanced grain refinement efficiency. Moreover, the microstructure analysis reveals the distribution of TiB2 particles along grain boundaries, forming a coating due to self-assembly phenomena, while regions with a lower particle content may exhibit irregular grain structures. DSC analysis further confirms reduced undercooling, indicating the occurrence of heterogeneous nucleation events. However, TEM observations suggest that heterogeneous nucleation is not significantly influenced by the growth restriction factor attributed to TiAl3 2DC compounds. The grain refinement mechanism involving TiB2 particles is elucidated to entail both heterogeneous nucleation and physical growth restriction effects. Specifically, a reduction in average grain size is attributed not only to heterogeneous nucleation but also to the physical growth restriction effect facilitated by the TiB2 particle coating. This study offers insights into leveraging particles that do not participate in heterogeneous nucleation within master alloy-based grain refinement systems.

16.
Materials (Basel) ; 17(17)2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39274817

ABSTRACT

In this study, severe cracking occurred during an investigation of the direct hot rolling of industrial electrolytic nickel plates. To determine the cause of hot-rolling cracking, the microstructure phase composition was analyzed through the utilization of various techniques, including optical microscopy, scanning electron microscopy, electron backscattering diffraction, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and electron probe micro-analysis. The comparative microstructural analysis took place between specimens heat treated in atmospheric and vacuum environments. The characterization and analysis of the hot-rolled plates considered the crack microstructure and fracture morphology. It was shown that holes appeared along the large angular grain boundaries after annealing at 1100 °C for 8 h. Possible reason: In a high-temperature environment, the decomposition of residual additives in the electrolytic nickel releases oxidizing gases, which oxidizes the grain boundaries. The reaction with carbon diffused into the grain boundaries and produced carbon monoxide gas, which induced holes and severely reduced the grain boundary plasticity. The heat treatment time did not need to be very long for severe grain boundary degradation to occur. After severe cavitation, the electrolytic nickel was severely cracked at grain boundaries cracks due to a shear force, and brittle fractures occurred along grains with very low plasticity.

17.
Vavilovskii Zhurnal Genet Selektsii ; 28(5): 506-514, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39280849

ABSTRACT

The use of the gene pool of wild relatives for expanding the genetic diversity of common wheat is an important task of breeding programs. However, the practical application of common wheat lines with alien genetic material is constrained by the lack of information on chromosomal rearrangements and the negative impact of the transferred material on agronomically important traits. This research is aimed at studying 14 introgression lines with the T2DL.2DS-2SS translocation and the 5S(5D) substitution from Aegilops speltoides obtained from crossing common wheat varieties (Aurora, Krasnodarskaya 99, Nika Kubani) with the genome-substituted form Avrodes (BBAASS). Hybrid lines with different combinations of T2DL.2DS-2SS and T1BL.1RS translocations and 5S(5D) substitution were characterized by resistance to leaf and yellow rusts, productivity components and technological qualities of grain. The assessment of the varieties' resistance to rust diseases showed that Krasnodarskaya 99, Nika Kubani and the Aurora variety, which is a carrier of the T1BL.1RS translocation, are highly susceptible to diseases, while the presence of the T2DL.2DS-2SS translocation and the 5S(5D) substitution, both together and separately, provides resistance to fungal pathogens. The analysis of the lines using markers designed for known resistance genes of Ae. speltoides did not reveal the presence of the Lr28, Lr35 and Lr51 genes in the lines. The results suggest that the genetic material of Ae. speltoides transferred to chromosomes 2D and 5D contains new resistance genes. To determine the effect of the T2DL.2DS-2SS translocation and the 5S(5D) substitution on the productivity and technological qualities of grain, the lines were assessed by weight of 1000 grains, grain weight and number of ears per 1 m2, by protein and gluten content, gluten quality and general baking evaluation. A positive effect was determined upon the weight of 1000 grains, protein and gluten content. There were no significant differences in other characteristics. The T2DL.2DS-2SS translocation and the 5S(5D) substitution did not have a negative effect on the productivity and technological quality of grain, and are of interest for breeding practice.

18.
Ultramicroscopy ; 267: 114038, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39276761

ABSTRACT

Determining the full five-parameter grain boundary characteristics from experiments is essential for understanding grain boundaries impact on material properties, improving related models, and designing advanced alloys. However, achieving this is generally challenging, in particular at nanoscale, due to their 3D nature. In our study, we successfully determined the grain boundary characteristics of an annealed nickel-tungsten alloy (NiW) nanocrystalline needle-shaped specimen (tip) containing twins using Scanning Precession Electron Diffraction (SPED) Tomography. The presence of annealing twins in this face-centered cubic (fcc) material gives rise to common reflections in the SPED diffraction patterns, which challenges the reconstruction of orientation-specific virtual dark field (VDF) images required for tomographic reconstruction of the 3D grain shapes. To address this, an automated post-processing step identifies and deselects these shared reflections prior to the reconstruction of the VDF images. Combined with appropriate intensity normalization and projection alignment procedures, this approach enables high-fidelity 3D reconstruction of the individual grains contained in the needle-shaped sample volume. To probe the accuracy of the resulting boundary characteristics, the twin boundary surface normal directions were extracted from the 3D voxelated grain boundary map using a 3D Hough transform. For the sub-set of coherent Σ3 boundaries, the expected {111} grain boundary plane normals were obtained with an angular error of <3° for boundary sizes down to 400 nm². This work advances our ability to precisely characterize and understand the complex grain boundaries that govern material properties.

19.
Front Plant Sci ; 15: 1419227, 2024.
Article in English | MEDLINE | ID: mdl-39228836

ABSTRACT

Bread wheat (T. aestivum) is one of the world's most widely consumed cereals. Since micronutrient deficiencies are becoming more common among people who primarily depend upon cereal-based diets, a need for better-quality wheat varieties has been felt. An association panel of 154 T. aestivum lines was evaluated for the following quality traits: grain appearance (GA) score, grain hardness (GH), phenol reaction (PR) score, protein percent, sodium dodecyl sulfate (SDS) sedimentation value, and test weight (TWt). In addition, the panel was also phenotyped for grain yield and related traits such as days to heading, days to maturity, plant height, and thousand kernel weight for the year 2017-18 at the Borlaug Institute for South Asia (BISA) Ludhiana and Jabalpur sites. We performed a genome-wide association analysis on this panel using 18,351 genotyping-by-sequencing (GBS) markers to find marker-trait associations for quality and grain yield-related traits. We detected 55 single nucleotide polymorphism (SNP) marker trait associations (MTAs) for quality-related traits on chromosomes 7B (10), 1A (9), 2A (8), 3B (6), 2B (5), 7A (4), and 1B (3), with 3A, 4A, and 6D, having two and the rest, 4B, 5A, 5B, and 1D, having one each. Additionally, 20 SNP MTAs were detected for yield-related traits based on a field experiment conducted in Ludhiana on 7D (4) and 4D (3) chromosomes, while 44 SNP MTAs were reported for Jabalpur on chromosomes 2D (6), 7A (5), 2A (4), and 4A (4). Utilizing these loci in marker-assisted selection will benefit from further validation studies for these loci to improve hexaploid wheat for better yield and grain quality.

20.
Food Chem X ; 23: 101723, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39239531

ABSTRACT

With potato starch (PS) and corn starch (CS) as the controls, the structure and physicochemical properties of grain amaranth starch (GAS) and its binding with dihydromyricetin were investigated in this study. The results indicated that GAS granules were small in size (3.21 ± 0.13 µm) and had a low amylose content (11.57 ± 0.91%). GAS exhibited low paste clarity, solubility, and swelling power, but demonstrated good freeze-thaw stability and resistance to retrogradation. Although the pasting temperature of GAS was high (75.88 ± 0.03 °C), its peak viscosity, breakdown viscosity, and setback viscosity were significantly lower than those of PS and CS. GAS was classified as A-type starch, with a high molecular weight and broad distribution (Mw, 3.96 × 107 g/mol; PDI, 2.67). For its chain length distribution, chain B1 had the highest proportion (50.09%), while chain B3 had the lowest proportion (13.50%). The complexation of GAS with dihydromyricetin effectively enhanced its ABTS and DPPH free radical scavenging capacities.

SELECTION OF CITATIONS
SEARCH DETAIL