Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38627939

ABSTRACT

The latest breakthroughs in spatially resolved transcriptomics technology offer comprehensive opportunities to delve into gene expression patterns within the tissue microenvironment. However, the precise identification of spatial domains within tissues remains challenging. In this study, we introduce AttentionVGAE (AVGN), which integrates slice images, spatial information and raw gene expression while calibrating low-quality gene expression. By combining the variational graph autoencoder with multi-head attention blocks (MHA blocks), AVGN captures spatial relationships in tissue gene expression, adaptively focusing on key features and alleviating the need for prior knowledge of cluster numbers, thereby achieving superior clustering performance. Particularly, AVGN attempts to balance the model's attention focus on local and global structures by utilizing MHA blocks, an aspect that current graph neural networks have not extensively addressed. Benchmark testing demonstrates its significant efficacy in elucidating tissue anatomy and interpreting tumor heterogeneity, indicating its potential in advancing spatial transcriptomics research and understanding complex biological phenomena.


Subject(s)
Benchmarking , Gene Expression Profiling , Cluster Analysis , Neural Networks, Computer
2.
Front Comput Neurosci ; 17: 1288842, 2023.
Article in English | MEDLINE | ID: mdl-38077749

ABSTRACT

The emergence of deep learning has not only brought great changes in the field of image recognition, but also achieved excellent node classification performance in graph neural networks. However, the existing graph neural network framework often uses methods based on spatial domain or spectral domain to capture network structure features. This process captures the local structural characteristics of graph data, and the convolution process has a large amount of calculation. It is necessary to use multi-channel or deep neural network structure to achieve the goal of modeling the high-order structural characteristics of the network. Therefore, this paper proposes a linear graph neural network framework [Linear Graph Neural Network (LGNN)] with superior performance. The model first preprocesses the input graph, and uses symmetric normalization and feature normalization to remove deviations in the structure and features. Then, by designing a high-order adjacency matrix propagation mechanism, LGNN enables nodes to iteratively aggregate and learn the feature information of high-order neighbors. After obtaining the node representation of the network structure, LGNN uses a simple linear mapping to maintain computational efficiency and obtain the final node representation. The experimental results show that the performance of the LGNN algorithm in some tasks is slightly worse than that of the existing mainstream graph neural network algorithms, but it shows or exceeds the machine learning performance of the existing algorithms in most graph neural network performance evaluation tasks, especially on sparse networks.

3.
Artif Intell Med ; 145: 102687, 2023 11.
Article in English | MEDLINE | ID: mdl-37925215

ABSTRACT

Drug repurposing has gained the attention of many in the recent years. The practice of repurposing existing drugs for new therapeutic uses helps to simplify the drug discovery process, which in turn reduces the costs and risks that are associated with de novo development. Representing biomedical data in the form of a graph is a simple and effective method to depict the underlying structure of the information. Using deep neural networks in combination with this data represents a promising approach to address drug repurposing. This paper presents BEHOR a more comprehensive version of the REDIRECTION model, which was previously presented. Both versions utilize the DISNET biomedical graph as the primary source of information, providing the model with extensive and intricate data to tackle the drug repurposing challenge. This new version's results for the reported metrics in the RepoDB test are 0.9604 for AUROC and 0.9518 for AUPRC. Additionally, a discussion is provided regarding some of the novel predictions to demonstrate the reliability of the model. The authors believe that BEHOR holds promise for generating drug repurposing hypotheses and could greatly benefit the field.


Subject(s)
Drug Repositioning , Neural Networks, Computer , Reproducibility of Results
4.
Med Image Anal ; 88: 102839, 2023 08.
Article in English | MEDLINE | ID: mdl-37263109

ABSTRACT

Graphs are a powerful tool for representing and analyzing unstructured, non-Euclidean data ubiquitous in the healthcare domain. Two prominent examples are molecule property prediction and brain connectome analysis. Importantly, recent works have shown that considering relationships between input data samples has a positive regularizing effect on the downstream task in healthcare applications. These relationships are naturally modeled by a (possibly unknown) graph structure between input samples. In this work, we propose Graph-in-Graph (GiG), a neural network architecture for protein classification and brain imaging applications that exploits the graph representation of the input data samples and their latent relation. We assume an initially unknown latent-graph structure between graph-valued input data and propose to learn a parametric model for message passing within and across input graph samples, end-to-end along with the latent structure connecting the input graphs. Further, we introduce a Node Degree Distribution Loss (NDDL) that regularizes the predicted latent relationships structure. This regularization can significantly improve the downstream task. Moreover, the obtained latent graph can represent patient population models or networks of molecule clusters, providing a level of interpretability and knowledge discovery in the input domain, which is of particular value in healthcare.


Subject(s)
Connectome , Learning , Humans , Brain/diagnostic imaging , Neural Networks, Computer
5.
Brief Bioinform ; 24(3)2023 05 19.
Article in English | MEDLINE | ID: mdl-37080761

ABSTRACT

Advancing spatially resolved transcriptomics (ST) technologies help biologists comprehensively understand organ function and tissue microenvironment. Accurate spatial domain identification is the foundation for delineating genome heterogeneity and cellular interaction. Motivated by this perspective, a graph deep learning (GDL) based spatial clustering approach is constructed in this paper. First, the deep graph infomax module embedded with residual gated graph convolutional neural network is leveraged to address the gene expression profiles and spatial positions in ST. Then, the Bayesian Gaussian mixture model is applied to handle the latent embeddings to generate spatial domains. Designed experiments certify that the presented method is superior to other state-of-the-art GDL-enabled techniques on multiple ST datasets. The codes and dataset used in this manuscript are summarized at https://github.com/narutoten520/SCGDL.


Subject(s)
Deep Learning , Transcriptome , Bayes Theorem , Gene Expression Profiling , Cell Communication
6.
Hum Genomics ; 15(1): 33, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099048

ABSTRACT

BACKGROUND: Recent efforts in the field of nutritional science have allowed the discovery of disease-beating molecules within foods based on the commonality of bioactive food molecules to FDA-approved drugs. The pioneering work in this field used an unsupervised network propagation algorithm to learn the systemic-wide effect on the human interactome of 1962 FDA-approved drugs and a supervised algorithm to predict anticancer therapeutics using the learned representations. Then, a set of bioactive molecules within foods was fed into the model, which predicted molecules with cancer-beating potential.The employed methodology consisted of disjoint unsupervised feature generation and classification tasks, which can result in sub-optimal learned drug representations with respect to the classification task. Additionally, due to the disjoint nature of the tasks, the employed approach proved cumbersome to optimize, requiring testing of thousands of hyperparameter combinations and significant computational resources.To overcome the technical limitations highlighted above, we represent each drug as a graph (human interactome) with its targets as binary node features on the graph and formulate the problem as a graph classification task. To solve this task, inspired by the success of graph neural networks in graph classification problems, we use an end-to-end graph neural network model operating directly on the graphs, which learns drug representations to optimize model performance in the prediction of anticancer therapeutics. RESULTS: The proposed model outperforms the baseline approach in the anticancer therapeutic prediction task, achieving an F1 score of 67.99%±2.52% and an AUPR of 73.91%±3.49%. It is also shown that the model is able to capture knowledge of biological pathways to predict anticancer molecules based on the molecules' effects on cancer-related pathways. CONCLUSIONS: We introduce an end-to-end graph convolutional model to predict cancer-beating molecules within food. The introduced model outperforms the existing baseline approach, and shows interpretability, paving the way to the future of a personalized nutritional science approach allowing the development of nutrition strategies for cancer prevention and/or therapeutics.


Subject(s)
Antineoplastic Agents/therapeutic use , Neoplasms/diet therapy , Nutritional Sciences/trends , Algorithms , Antineoplastic Agents/chemistry , Computational Biology , Humans , Neoplasms/drug therapy , Neoplasms/epidemiology , Neoplasms/genetics , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL