Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters











Publication year range
1.
Sci Rep ; 14(1): 16807, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039148

ABSTRACT

Today, high-energy applications are devoted to boosting the storage performance of asymmetric supercapacitors. Importantly, boosting the storage performance of the negative electrodes is a crucial topic. Fe3O4-based active materials display a promising theoretical storage performance as a negative electrode. Thus, to get a high storage performance of Fe3O4, it must be tailored to have a higher ionic and electronic conductivity and outstanding stability. Functionalized graphite felt (GF) is an excellent candidate for tailoring Fe3O4 with a facile ionic and electronic pathway. However, the steps of the functionalization of GF are complex and time-consuming as well as the energy loss during this step. Thus, the in-situ functionalization of the GF surface throughout the synthesis of Fe3O4 active materials is proposed herein. Fe3O4 is electrodeposited at the in-situ functionalized GF surface with the crystalline nanowires-like structure as revealed from the various analyses; SEM, TEM, Mapping EDX, XPS, XRD, wettability test, and Raman analysis. Advantageously, the synthetic approach introduces full homogeneous and uniform coverage of the large surface area of the GF. Thus, Fe3O4 nanowires with high ionic and electronic conductivity are characterized by a higher storage performance. Interestingly, Fe3O4/GF possesses a high specific capacity of 1418 mC cm-2 at a potential scan rate of 10 mV s-1 and this value retained to 54% at a potential scan rate of 50 mV s-1 at an extended potential window of 1.45 V. Remarkably, the diffusion-controlled reaction is the main contributor of the storage of Fe3O4/GF electrode as revealed by the mechanistic studies.

2.
Adv Sci (Weinh) ; 11(30): e2401314, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38877663

ABSTRACT

Organic anodes have emerged as a promising energy storage medium in proton ion batteries (PrIBs) due to their ability to reversibly accommodate non-metallic proton ions. Nevertheless, the currently available organic electrodes often encounter dissolution issues, leading to a decrease in long-cycle stability. In addition, the inherent potential of the organic anode is generally relatively high, resulting in low cell voltage of assembled PrIBs (<1.0 V). To address these challenges, a novel long-period stable, low redox potential biphenylzine derivative, [2,2'-biphenazine]-7,7'-tetraol (BPZT) is explored, from the perspective of molecular symmetry and solubility, in conjunction with the effect of the molecular frontier orbital energy levels on its redox potential. Specifically, BPZT exhibited a low potential of 0.29 V (vs SHE) and is virtually insoluble in 2 m H2SO4 electrolyte during cycling. When paired with MnO2@GF or PbO2 cathodes, the resulting PrIBs achieve cell voltages of 1.07 V or 1.44 V, respectively, and maintain a high capacity retention of 90% over 20000 cycles. Additionally, these full batteries can operate stably at a high mass loading of 10 mgBPZT cm-2, highlighting their potential toward long-term energy storage applications.

3.
ACS Appl Mater Interfaces ; 16(25): 32189-32197, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38870428

ABSTRACT

Owing to the advantages of low cost, high safety, and a desirable cycling lifetime, vanadium redox flow batteries (VRFBs) have attracted great attention in the large-scale energy storage field. However, graphite felts (GFs), widely used as electrode materials, usually possess an inferior catalytic activity for the redox reaction of vanadium ions, largely limiting the energy efficiency and rate performance of VRFBs. Here, an in situ growth of amorphous MnO2 on graphite felt (AMO@GF) was designed for application in VRFBs via mild and rapid etching engineering (5 min). After the etching process, the graphite felt fibers showed a porous and defective surface, contributing to abundant active sites toward the redox reaction. In addition, formed amorphous MnO2 can also serve as a powerful catalyst to facilitate the redox couples of VO2+/VO2+ based on density functional theoretical (DFT) calculations. As a result, the VRFB using AMO@GF displayed an elevated energy efficiency and superior stability after 2400 cycles at 200 mA cm-2, and the maximum current density can reach 300 mA cm-2. Such a high-efficiency and convenient design strategy for the electrode material will drive the further development and industrial application of VRFBs and other flow battery systems.

4.
Waste Manag ; 186: 35-45, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38852375

ABSTRACT

The active graphite felt (GF) catalytic layer was effectively synthesized through a wet ultrasonic impregnation-calcination method, modified with CB and PTFE, and implemented in a pioneering side-aeration electrochemical in-situ H2O2 reactor. The optimal mass ratio (CB: PTFE 1:4) for the modified cathode catalytic layer was determined using a single-factor method. Operating under optimum conditions of initial pH 5, 0.5 L/min air flow, and a current density of 9 mA/cm2, the system achieved a remarkable maximum H2O2 accumulation of 560 mg/L, with the H2O2 production capacity consistently exceeding 95 % over 6 usage cycles. The refined mesoporous structure and improved three-phase interface notably amplified oxygen transfer, utilization, and H2O2 yield. Side aeration led to an oxygen concentration near the cathode reaching 20 mg/L, representing a five-fold increase compared to the 3.95 mg/L achieved with conventional bottom aeration. In the final application, the reaction system exhibited efficacy in the degradation of landfill leachate concentrate. After a 60-minute reaction, complete removal of chroma was attained, and the TOC degradation rate surpassed 60 %, marking a sixfold improvement over the conventional system. These results underscore the substantial potential of the system in H2O2 synthesis and environmental remediation.


Subject(s)
Electrodes , Hydrogen Peroxide , Water Pollutants, Chemical , Hydrogen Peroxide/chemistry , Water Pollutants, Chemical/chemistry , Electrochemical Techniques/methods , Catalysis , Graphite/chemistry , Oxygen/chemistry
5.
Nanomaterials (Basel) ; 14(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38727361

ABSTRACT

Electrodes are one of the key components that influence the performance of all-vanadium redox flow batteries (VRFBs). A porous graphite felt with modified fiber surfaces that can provide a high specific activation surface is preferred as the electrode of a VRFB. In this study, a simple binder-free approach is developed for preparing stable carbon nanotube modified graphite felt electrodes (CNT-GFs). Heat-treated graphite felt electrodes (H-GFs) are dip-coated using CNT homogeneous solution. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) results conclude that CNT-GFs have less resistance, better reaction currents, and reversibility as compared to H-GF. Cell performances showed that CNT-GFs significantly improve the performance of a VRFB, especially for the CNT-GF served in the positive side of the VRFB. CNT presence increases the electrochemical properties of the graphite electrode; as a result, reaction kinetics for both VO2+/VO2+ and V3+/V2+ are improved. Positive CNT-GF (P-CNT-GF) configured VRFB exhibits voltage efficiency, coulombic efficiency, and energy efficiency of 85%, 97%, and 82%, respectively, at the operating current density of 100 mA cm-2. At high current density of 200 mA cm-2, the VRFB with P-CNT-GF shows 73%, 98%, and 72% of the voltage, coulombic, and energy efficiencies, respectively. The energy efficiency of the CNT-GF is 6% higher when compared with that of B-H-GF. The VRFB with CNT-GF can provide stable performance for 300 cycles at 200 mA cm-2.

6.
J Hazard Mater ; 470: 134198, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38608582

ABSTRACT

A novel Ag3PO4/ZnWO4-modified graphite felt electrode (AZW@GF) was prepared by drop coating method and applied to photoelectrocatalytic removal of harmful algae. Results showed that approximately 99.21% of chlorophyll a and 91.57% of Microcystin-LR (MCLR) were degraded by the AZW@GF-Pt photoelectrocatalytic system under the optimal operating conditions with a rate constant of 0.02617 min-1 and 0.01416 min-1, respectively. The calculated synergistic coefficient of photoelectrocatalytic algal removal and MC-LR degradation by the AZW@GF-Pt system was both larger than 1.9. In addition, the experiments of quenching experiments and electron spin resonance (ESR) revealed that the photoelectrocatalytic reaction mainly generated •OH and •O2- for algal removal and MC-LR degradation. Furthermore, the potential pathway for photoelectrocatalytic degradation of MC-LR was proposed. Finally, the photoelectrocatalytic cycle algae removal experiments were carried out on AZW@GF electrode, which was found to maintain the algae removal efficiency at about 91% after three cycles of use, indicating that the photoelectrocatalysis of AZW@GF electrode is an effective emergency algae removal technology.


Subject(s)
Electrodes , Graphite , Marine Toxins , Microcystins , Silver Compounds , Graphite/chemistry , Graphite/radiation effects , Microcystins/chemistry , Microcystins/isolation & purification , Catalysis , Silver Compounds/chemistry , Phosphates/chemistry , Oxides/chemistry , Electrochemical Techniques , Tungsten/chemistry , Chlorophyll A/chemistry , Zinc/chemistry , Water Purification/methods , Chlorophyll/chemistry , Photochemical Processes , Harmful Algal Bloom
7.
ACS Appl Mater Interfaces ; 16(12): 14781-14788, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38471072

ABSTRACT

The most prominent and widely used electrical energy storage devices are lithium-ion batteries (LIBs), which in recent years have become costly and deficient. Consequently, new energy storage devices must be introduced into the current market. Sodium-ion batteries (SIBs) are starting to emerge as a promising solution because of sodium's abundance and low cost. To offer these batteries into the current market, their properties must match surpass those of LIB predecessors, necessitating the need for research in this field. In this research work, three methods of graphite felt (GF) and copper sulfide (CuxS) composite preparation using a hydrothermal approach have been explored and compared. The obtained samples exhibited different morphologies and thermal properties when different hydrothermal composite preparation methods were used. The areal charge capacitance values of these samples differed from 8.81 to 13.65 mF/cm2, and the areal discharge capacitance values differed from 10.06 to 13.65 mF/cm2. Notably, these achieved values are higher than those of the CuxS and GF single substances.

8.
ACS Appl Mater Interfaces ; 16(8): 10019-10032, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38374647

ABSTRACT

In this study, new fluorite high-entropy oxide (HEO), (BiZrMoWCeLa)O2, nanoparticles were produced using a surfactant-assisted hydrothermal technique followed by calcination and were used as novel catalytic materials for vanadium redox flow batteries (VRFBs). The HEO calcined at 750 °C (HEO-750) demonstrates superior electrocatalytic activity toward V3+/V2+ and VO2+/VO2+ redox couples compared to those of cells assembled with other samples. The charge-discharge tests further confirm that VRFBs using the HEO-750 catalyst demonstrate excellent Coulombic efficiency, voltage efficiency, and energy efficiency of 97.22, 87.47, and 85.04% at a current density of 80 mA cm-2 and 98.10, 74.76, and 73.34% at a higher current density of 160 mA cm-2, respectively. Moreover, with 500 charge-discharge cycles, there is no discernible degradation. These results are attributed to the calcination heat treatment, which induces the formation of a new single-phase fluorite structure, which facilitates the redox reactions of the vanadium redox couples. Furthermore, a high surface area, wettability, and plenty of oxygen vacancies can give more surface electroactive sites, improving the electrochemical performance, the charge transfer of the redox processes, and the stability of the VRFBs' electrode. This is the first report on the development of fluorite structure HEO nanoparticles in VRFBs, and it opens the door to further research into other HEOs.

9.
Environ Sci Pollut Res Int ; 31(12): 18614-18624, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38349493

ABSTRACT

In this study, cobalt etched graphite felt electrodes were produced using a simple etching technique. It was used in combination with a solid polymer electrolyte (SPE) for the degradation of the target contaminant Orange II by Electro-Fenton (EF) technique in low conductivity water. In this method, 94% of Orange II in low conductivity water was removed in 90 min. The characterization analysis substantiates the hypothesis that the electrodes produced exhibit a three-dimensional porous structure, augmented defect concentration, and enhanced electron transfer capability. In addition, the potential reaction mechanism was inferred from the radical quenching experiments, and hydroxyl radicals (·OH) were deemed the main reactive substances. The combination of cobalt etched graphite felt electrodes with SPE demonstrates remarkable efficacy in the treatment of organic wastewater characterized by low electrical conductivity.


Subject(s)
Azo Compounds , Benzenesulfonates , Graphite , Water Pollutants, Chemical , Graphite/chemistry , Cobalt , Polymers , Electrodes , Water , Water Pollutants, Chemical/chemistry , Hydrogen Peroxide/chemistry , Oxidation-Reduction
10.
Chemosphere ; 340: 139817, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37586485

ABSTRACT

In Electro-Fenton (EF) processes, the use of iron as a catalyst under acidic conditions results in increased costs and potential secondary pollution. To address these issues, we developed a CuFeV layered double hydroxide (LDH) coating on graphite felt (GF) (CuFeV LDH@GF) that offers an effective performance across a broad pH range without causing metal pollution. The CuFeV LDH@GF cathode exhibited a good oxygen reduction performance, high stability, and an efficient removal of levofloxacin (LEV) over a wide pH range (pH = 3-10). The simultaneous presence of Cu2+/Cu3+, Fe2+/Fe3+, and V4+/V5+ redox pairs played a crucial role in facilitating interfacial electron transfer, thereby enhancing the production and subsequent activation of H2O2 within the system. The apparent rate constant (kapp) of LEV removal under neutral conditions with the CuFeV LDH@GF electrode was more than twice that of the raw GF electrode. This improvement can be attributed to the CuFeV LDH coating, which increased the generation of hydroxyl radicals (•OH) from 0.64 to 1.27 mM. Importantly, the CuFeV LDH@GF electrode maintained its efficiency and stability even after 10 reuse cycles. Additionally, GC-MS analyses revealed the degradation of intermediate compounds, which included cyclic and aliphatic compounds. This study provides significant insights into the synergistic effects of trimetallic LDHs, contributing to the development of high-performance cathodes.


Subject(s)
Graphite , Water Pollutants, Chemical , Levofloxacin , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Electrodes , Graphite/chemistry , Hydroxides
11.
Chemosphere ; 336: 139225, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37356583

ABSTRACT

The influence of anode materials on the electrochemical treatment of tannery wastewater (TWW) was evaluated using Pt, Ti/RuO2-IrO2 (DSA), Ti/SnO2-Sb, Ti/PbO2, and Ti/SnO2-Sb/PbO2 electrodes. The comparison of the degradation mechanism of these electrodes in the electro-Fenton (EF) treatment was evaluated. The Ti/SnO2-Sb/PbO2 anode was efficient, with high electrocatalytic activity, stability, and reproducibility of the degradation results. Further, the study was extended to define the ability of sequential EF and electrocoagulation (EC) processes to clean TWW. The EC treatment was conducted using Al electrodes, and the performance of the combined treatment was evaluated by the removal of chemical oxygen demand (COD), turbidity, total suspended solids (TSS), sulfide, and Cr removal. The role of chlorides and sulfate salts during both treatments was evaluated by monitoring the concentration changes of these anions during the whole treatment using ion chromatography (IC). A sequential 1.5 h EF and 1 h EC treatment were applied to achieve a satisfactory degradation of (81.2 ± 3.9)% COD, >98% Cr, >99% turbidity, TSS, and sulfide removal. Additionally, the combined treatment was found to be more efficient towards the COD removal, achieving about 22.5% higher COD removal consuming almost the same amount of electrical energy.


Subject(s)
Water Pollutants, Chemical , Water Purification , Oxidation-Reduction , Reproducibility of Results , Electrocoagulation , Wastewater , Electrodes , Water Purification/methods , Water Pollutants, Chemical/chemistry , Titanium/chemistry
12.
J Environ Manage ; 342: 118090, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37182481

ABSTRACT

The heterogeneous Electro-Fenton (EF) process is a promising wastewater treatment technology that can generate onsite H2O2, and operate in a wide pH range without generating a metal sludge. However, the heterogeneous EF process needs bifunctional cathode electrodes that can have high activity in 2e- oxygen reduction reaction and H2O2 decomposition. Herein, ZnFeV layered double hydroxide (LDH), as a heterogeneous catalyst, was coated on the graphite felt (ZnFeV LDH@GF) cathode using the electrophoretic deposition method. ZnFeV LDH@GF cathode was able to generate 59.8 ± 5.9 mg L-1 H2O2 in 90 min under a constant supply of O2. EF process with ZnFeV LDH@GF cathode exhibited 89.8 ± 6.8% removal efficiency for pharmaceutical (ciprofloxacin) at neutral pH. Remarkably, the apparent reaction rate constant (kapp) of the ZnFeV LDH@GF-EF was 2.14 times that of the EF process with pristine GF. ZnFeV LDH coating increased the hydroxyl radical (•OH) production of the EF process from 1.74 mM to 3.65 mM. The pathway of •OH production is thought to be a single electron transfer from redox couples of Fe2+/Fe3+ and [Formula: see text] to H2O2. After 10 reuse cycles, the ZnFeV LDH@GF cathode retained 90.2% of its efficiency. Eight intermediate compounds were identified by GC-MS including cyclic compounds and aliphatic compounds.


Subject(s)
Environmental Pollutants , Graphite , Water Pollutants, Chemical , Iron/chemistry , Graphite/chemistry , Hydrogen Peroxide/chemistry , Water Pollutants, Chemical/chemistry , Hydroxyl Radical , Oxidation-Reduction , Electrodes
13.
Small ; 19(32): e2300943, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37060221

ABSTRACT

Iron-chromium redox flow batteries have attracted widespread attention because of their low cost. However, the performance of these batteries is still lower than that of vanadium redox flow batteries due to the poor electrochemical activity of Cr3+ /Cr2+ redox couples on graphite felt electrodes. Herein, binder-free TiN nanorods array-decorated 3D graphite felt composite electrode-is demonstrated. The dendrite-like TiN nanorods array increases the specific surface area of the electrode. The nitrogen and oxygen elements on the surface provide more adsorption sites and electrochemically active sites for Cr3+ /Cr2+ . The contact resistance of the composite electrode is effectively reduced and its homogeneity and stability are improved by avoiding the use of a binder and mixing process. A battery prepared using the TiN nanorods array-decorated 3D graphite felt electrode has enabled the maximum power density to be 427 mW·cm-2 , which is 74.0% higher than a battery assembled with TiN nanoparticles bonded to graphite felt. At a current density of 80 mA·cm-2 , the TiN nanorods battery exhibits the highest coulombic efficiency of 93.0%, voltage efficiency of 90.4%, and energy efficiency of 84.1%. Moreover, the battery efficiency and composite electrode structure remains stable during a redox flow battery cycle test.

14.
Adv Sci (Weinh) ; 10(18): e2300640, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37088735

ABSTRACT

The scarcity of high electrocatalysis composite electrode materials has long been suppressing the redox reaction of V(II)/V(III) and V(IV)/V(V) couples in high performance vanadium redox flow batteries (VRFBs). Herein, through ingeniously regulating the growth of Aspergillus Niger, a wrinkle-like carbon (WLC) material that possesses edge-rich carbon, abundant heteroatoms, and nature wrinkle-like structure is obtained, which is subsequently successfully introduced and uniform dispersed on the surface of carbon fiber of graphite felt (GF). This composite electrode presents a lower overpotential and higher charge transfer ability, as the codoped multiheteroatoms increase the electrocatalysis activity and the wrinkled structure affords more abundant reaction area for vanadium ions in the electrolyte when compared with the pristine GF electrode, which is also supported by the density functional theory (DFT) calculations. Hence, the assembled battery using WLC electrodes achieves a high energy efficiency of 74.5% for 300 cycles at a high current density of 200 mA cm-2 , as well as the highest current density of 450 mA cm-2 . The WLC material not only uncovers huge potential in promoting the application of VRFBs, but also offers referential solution to synthesis microorganism-based high-performance electrode in other energy storage systems.


Subject(s)
Carbon , Graphite , Carbon/chemistry , Aspergillus niger , Vanadium/chemistry , Graphite/chemistry , Oxidation-Reduction , Electrodes
15.
Sci Total Environ ; 875: 162645, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36889393

ABSTRACT

This study aimed to further improve the degradation efficiency of pollutants by electrochemical oxidation system and reduce the consumption of electric energy. A simple method of electrochemical exfoliation was used to modify graphite felt (GF) to prepare an anode material (Ee-GF) with high degradation performance. An anode and cathode cooperative oxidation system was constructed with Ee-GF as the anode and CuFe2O4/Cu2O/Cu@EGF as the cathode to efficiently degrade sulfamethoxazole (SMX). Complete degradation of SMX was achieved within 30 min. Compared with anodic oxidation system alone, the degradation time of SMX was reduced by half and the energy consumption was reduced by 66.8 %. The system displayed excellent performance for the degradation of different concentrations (10-50 mg L-1) of SMX, different pollutants, and under different water quality conditions. In addition, the system still maintained 91.7 % removal rate of SMX after ten consecutive runs. At least 12 degradation products and seven possible degradation routes of SMX were generated in the degradation process by the combined system. The eco-toxicity of degradation products of SMX was reduced after the proposed treatment. This study provided a theoretical basis for the safe, efficient, and low energy consumption removal of antibiotic wastewater.

16.
Chem Asian J ; 18(5): e202201208, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36644964

ABSTRACT

All-vanadium redox flow batteries are promising large-scale energy storage solutions to support intermittent power generation. Commercial graphite felts are among the most used materials as electrodes for these batteries due to their cheap price, high conductivity, and large surface area. However, these materials exhibit poor wettability and electrochemical activity towards vanadium redox reactions, which translates into overpotentials and lower efficiencies. Deep eutectic solvents (DES) are mixtures of Lewis acids and bases that exhibit lower melting points than their original components. Here, a DES composed of choline chloride and urea, and a DES composed of FeCl3 and NH4 Cl have been employed to modify the surface of graphite felts alongside a series of re-carbonization steps. The resulting materials were compared against pristine, thermally activated, and oxidatively activated graphite felts. Our results indicated that the treatments introduced new oxygen and nitrogen functionalities to the carbonaceous surface and increased the surface area, the degree of disorder and defects in the graphitic layers of the fibres. Cyclic voltammetry studies demonstrated higher electrochemical activity towards vanadium redox reactions and electrochemical impedance spectroscopy experiments showed the modified materials exhibited significantly lower charge transfer resistances. When tested in full cell configuration the electrode modified with the urea-based DES exhibited comparable coulombic efficiencies and superior energy storage capacity retention than the thermally oxidized felt used as benchmark, suggesting that the introduction of oxygen- and nitrogen-rich functional groups had a positive effect on the overall electrochemical performance of graphite felts.

17.
Chemosphere ; 313: 137388, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36455658

ABSTRACT

The interactions between the microbes and the surface of an anode play an important role in capturing the respiratory electrons from bacteria in a microbial fuel cell (MFC). The chemical and electrochemical characteristics of the carbon material affect biofilm growth and direct electron transfer in MFCs. This study examined the electrodeposition of polydopamine (PDA) and polypyrrole (PPY) on graphite felt electrode (GF). The MFC with the modified PDA/PPY-GF reached 920 mW/m2, which was 1.5, 1.17, and 1.18 times higher than those of the GF, PDA-GF, and PPY-GF, respectively. PDA has superior hydrophilicity and adhesive force biofilm formation, while PPY provides electrochemically active sites for microbial electron transfer. Raman spectroscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller surface area measurements, and contact angle analysis revealed the enhanced physicochemical properties of the carbon electrode. These results show that co-doped PDA/PPY provides a strategy for electroactive biofilm development and improves the bioelectrochemical performance in realistic MFC reactors.


Subject(s)
Bioelectric Energy Sources , Graphite , Bioelectric Energy Sources/microbiology , Polymers/chemistry , Graphite/chemistry , Pyrroles/chemistry , Bacteria , Carbon , Electrodes
18.
Molecules ; 27(19)2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36234835

ABSTRACT

The commercial graphite felt GFA 10 was subjected to an activation process with the use of CO2 at 900 °C for 35 and 70 min. Pristine and heat-treated materials were characterized using various methods: low-temperature N2 adsorption, SEM, and EDS. Voltammetric measurements of GFA samples (before and after activation) as the working electrode were carried out. Voltammograms were recorded in aqueous solutions of 4-chlorophenol and sodium sulfate as supporting electrolyte. The catalytic activity of GFA samples in the process of 4-chlorophenol oxidation with the use of H2O2 was also investigated. The influence of graphite felt thermal activation in the CO2 atmosphere on its electrochemical and catalytic behavior was analyzed and discussed. Results of the investigation indicate that GFA activated in CO2 can be applied as an electrode material or catalytic material in the removal of organic compounds from industrial wastewater. However, the corrosion resistance of GFA, which is decreasing during the activation, needs to be refined.


Subject(s)
Graphite , Carbon Dioxide , Chlorophenols , Electrodes , Graphite/chemistry , Hydrogen Peroxide/chemistry , Wastewater
19.
Front Chem ; 10: 899287, 2022.
Article in English | MEDLINE | ID: mdl-35572110

ABSTRACT

Iron-chromium redox flow batteries (ICRFBs) have the advantages of high safety, long cycle life, flexible design, and low maintenance costs. Polyacrylonitrile-based graphite felt composite material has good temperature resistance, corrosion resistance, large surface area and excellent electrical conductivity, and is often used as the electrode material of ICRFB, but its chemical activity is poor. In order to improve the activity of the graphite felt electrode, In3+ was used for modification in this paper, and the modified graphite felt was used as the electrode material for iron-chromium batteries. The structure and surface morphology of the modified graphite felt were analyzed by the specific surface area analyzer and scanning electron microscope; the electrochemical impedance spectroscopy and cyclic voltammetry experiments were carried out on the electrochemical workstation to study the electro catalytic activity of In3+ modified graphite felt and its performance in ICRFBS. The results show that the graphite felt electrode modified with a concentration of 0.2 M In3+ was activated at 400°C for 2 h, and its surface showed a lot of grooves, and the specific surface area reached 3.889 m2/g, while the specific surface area of the untreated graphite felt was only 0.995 m2/g significantly improved. Electrochemical tests show that the electrochemical properties of graphite felt electrodes are improved after In3+ modification. Therefore, the In3+ modified graphite felt electrode can improve the performance of ICRFB battery, and also make it possible to realize the engineering application of ICRFB battery.

20.
Chemosphere ; 297: 134257, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35271897

ABSTRACT

In the heterogeneous electro-Fenton (EF) system, high-efficiency and durable materials have attracted widespread attention as cathodes for degradation of refractory organic pollutants. In this study, a stable Cu/Fe oxide modified graphite felt electrode (Cu0.33Fe0.67NBDC-300/GF) was fabricated via a one-step hydrothermal method and subsequent thermal treatment, which used a bimetallic metal-organic framework (MOF) with 2-aminoterephthalic acid (NH2BDC) ligand as the precursor. The Cu0.33Fe0.67NBDC-300/GF electrode was used as the cathode for sulfamethoxazole (SMX) degradation in the heterogeneous EF process. The coexistence of the FeII/FeIII and CuI/CuII redox couples significantly accelerates the regeneration of FeII and promotes the generation of active free radicals (•OH and •O2-). FeIV was detected during the process, which indicates that the high-valent iron-oxo species was produced in near-neutral pH conditions. The removal efficiency of SMX (10 mg L-1) can reach 100.0% within 75 min over a wide pH range (4.0-9.0). After five cycles, the electrode retained a high stability and an outstanding catalytic capacity. Furthermore, the mechanisms and pathways for SMX degradation were proposed, the products and intermediates of SMX were analyzed, and the toxicity was evaluated. It was found that the toxicity decreased after degradation. This study displays a novel strategy for building an efficient and stable self-supporting electrode for treating antibiotic wastewater.


Subject(s)
Graphite , Water Pollutants, Chemical , Electrodes , Ferric Compounds , Ferrous Compounds , Hydrogen Peroxide , Oxidation-Reduction , Oxides , Sulfamethoxazole , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL