Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.858
Filter
1.
Sci Bull (Beijing) ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39122617

ABSTRACT

We reconstruct the cosmological background evolution under the scenario of dynamical dark energy through the Gaussian process approach, using the latest Dark Energy Spectroscopic Instrument (DESI) baryon acoustic oscillations (BAO) combined with other observations. Our results reveal that the reconstructed dark-energy equation-of-state (EoS) parameter w(z) exhibits the so-called quintom-B behavior, crossing -1 from phantom to quintessence regime as the universe expands. We investigate under what situation this type of evolution could be achieved from the perspectives of field theories and modified gravity. In particular, we reconstruct the corresponding actions for f(R),f(T), and f(Q) gravity, respectively. We explicitly show that, certain modified gravity can exhibit the quintom dynamics and fit the recent DESI data efficiently, and for all cases the quadratic deviation from the ΛCDM scenario is mildly favored.

2.
Heliyon ; 10(15): e35520, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170304

ABSTRACT

This study provides advanced knowledge of the subsurface structural characteristics of the northwest Ethiopian plateau. With its complex geologic structure, the Northwest Ethiopian plateau is being studied for density boundary mapping using geophysical methods. However, its application to the mapping of geological structures such as faults and contacts which appear as lineaments in gravity data has not been studied so far. Thus, the goal of this research is to increase our understanding of the subsurface structural lineaments and their depth beneath the Ethiopian plateau in the northwest using global gravity model GGMplus2013. These subsurface structural lineaments and their depths were investigated using the LTHG, EHGA, and tilt depth techniques. The results indicate that the main subsurface structural lineaments identified in the study region are dipping between 3.2 and 8 km and are developing in the NE-SW, N-S, E-W, and NW-SE orientations.

3.
Biochem Biophys Rep ; 39: 101792, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39149414

ABSTRACT

In recent years, it has become clear that the cytotoxicity of γ-irradiation of cells is increased under microgravity conditions. However, there has been no study of the effect of the gravity vector direction, rather than the magnitude, on γ-ray-induced cytotoxicity. Therefore, in this study, we inverted cultures of human bronchial epithelium BEAS-2B cells and human lung cancer A549 cells in order to change the gravity vector direction by 180° with respect to the cells and observed the cellular response to radiation in this state. We found that cells in inverted culture showed increased irradiation-induced production of reactive oxygen species and decreased expression of the antioxidant protein thioredoxin-1 compared to cells in normal culture. Furthermore, the DNA damage response was delayed in γ-irradiated cells in inverted culture, and the number of unrepaired DNA sites was increased, compared to irradiated cells in normal culture. γ-Ray-induced cell death and the number of G2-M arrested cells were increased in inverted culture, in accordance with the decreased capacity for DNA repair. Our findings suggest that the gravity vector direction, as well as its magnitude, alters the cellular response to radiation.

4.
Sci Rep ; 14(1): 19427, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39169102

ABSTRACT

Any means to control gravity like electromagnetism is currently out of reach by many orders of magnitude even under extreme laboratory conditions. Some often poorly executed experiments or pseudoscience theories appear from time to time claiming for example anomalous forces from capacitors that suggest a connection between the two fields. We developed novel and high resolution horizontal-, vertical- and rotation-balances that allow to test electric devices completely shielded and remotely controlled under high vacuum conditions to perform the first in-depth search for such a coupling using steady fields. Our testing included a variety of capacitors of different shapes and compositions as well as for the first-time solenoids and tunneling currents from Zener diodes and varistors. A comprehensive coupling-scheme table was used to test almost all combinations including capacitors and solenoids with permittivity and permeability gradients as well as capacitors and varistors within crossed magnetic fields. We also tested a crossed-coil producing helical magnetic field lines as well as interactions between a pair of shielded toroidal coils to look for proposed extensions to Maxwell's equations. No anomalous forces or torques down to the nano-Newton or nano-Newton-Meter range were found providing new limits many orders of magnitude below previous assessments ruling out claims or theories and providing a basis for future research on the topic.

5.
Sci Rep ; 14(1): 19475, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39174665

ABSTRACT

This paper investigates some implications of mimetic gravity on the black hole thermodynamics. We begin with an analysis of the mimetic action and its relationship to the spacetime curvature, highlighting the field equations and their contributions to the black hole solutions. Then we explore the behavior of various thermodynamic parameters including pressure, temperature and heat capacity, revealing some intriguing features of the system near the event horizon. We analyze also the inversion temperatures, inversion curves and the Joule-Thomson coefficients to enrich our comprehension of thermodynamic phenomena in this context. By extending coordinates close to the event horizon, we study the Joule-Thomson expansion, demonstrating how strong gravitational fields create pressure gradients similar to gas cooling processes. Comparison between mimetic black hole and Schwarzschild black hole in this setup provides a deeper understanding of the unique characteristics of the mimetic gravity.

6.
Curr Biol ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39106864

ABSTRACT

Having a profound influence on marine and coastal environments worldwide, jellyfish hold significant scientific, economic, and public interest.1,2,3,4,5 The predictability of outbreaks and dispersion of jellyfish is limited by a fundamental gap in our understanding of their movement. Although there is evidence that jellyfish may actively affect their position,6,7,8,9,10 the role of active swimming in controlling jellyfish movement, and the characteristics of jellyfish swimming behavior, are not well understood. Consequently, jellyfish are often regarded as passively drifting or randomly moving organisms, both conceptually2,11 and in process studies.12,13,14 Here we show that the movement of jellyfish is modulated by distinctly directional swimming patterns that are oriented away from the coast and against the direction of surface gravity waves. Taking a Lagrangian viewpoint from drone videos that allows the tracking of multiple adjacent jellyfish, and focusing on the scyphozoan jellyfish Rhopilema nomadica as a model organism, we show that the behavior of individual jellyfish translates into a synchronized directional swimming of the aggregation as a whole. Numerical simulations show that this counter-wave swimming behavior results in biased correlated random-walk movement patterns that reduce the risk of stranding, thus providing jellyfish with an adaptive advantage critical to their survival. Our results emphasize the importance of active swimming in regulating jellyfish movement and open the way for a more accurate representation in model studies, thus improving the predictability of jellyfish outbreaks and their dispersion and contributing to our ability to mitigate their possible impact on coastal infrastructure and populations.

7.
Sci Rep ; 14(1): 18607, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39127802

ABSTRACT

The Oldest Ice Reconnaissance (OIR) airborne geophysical survey in East Antarctica was flown over approximately 170,000 km2 of the Dome Fuji region in 2016/17. The survey's results support new insights into the subglacial geology and its meaning for the tectonic histories of the supercontinents Rodinia and Gondwana. The new magnetic and radar-derived bed topography data are integrated with previously acquired magnetic and gravity data, allowing the mapping of crustal domains within and beyond the survey's limits. The magnetic data reveal three distinct domains within the survey region, delineated by N-S oriented boundaries, partly aligned with gravity domains following upward continuation transformations for both datasets. Additionally, four primary sets of magnetic lineaments were identified, exhibiting correlations with topographic and gravity patterns. These correlations indicate the continuation of the Tonian Oceanic Arc Super Terrane (TOAST) southward of its previously known southern limit. Moreover, an E-W-trending magnetic anomaly, the Elbert magnetic anomaly, suggests the suture between the recently-proposed subglacial Valkyrie craton and the TOAST. Furthermore, the analysis reveals a broad scale shear zone, named here the OIR shear zone, which formed as a result of oblique collision of the Ruker and Valkyrie cratons during the amalgamation of Gondwana.

8.
J Clin Med ; 13(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39200966

ABSTRACT

Background: Severe spinal deformity manifests as a pronounced deviation from the normal curvature of the spine in the frontal, sagittal, and horizontal planes, where the coronal plane curvature exceeds 90 degrees and may coincide with hyperkyphotic deformity. The most severe deformities exhibit rigidity, with flexibility below 30%. If left untreated or improperly treated, these deformities can result in serious complications associated with progression of the curvature. A combination of surgical techniques is frequently employed to attain optimal outcomes and minimize the risk of complications. The overall medical condition of the patient, their capacity to endure extensive procedures, the expertise of the surgeon, and the resources available all play significant roles in determining the course of management. A systematic and thorough review of the relevant literature was conducted utilizing a variety of electronic databases. The primary objective of this study was to scrutinize the surgical techniques commonly employed in complex spine surgeries for the management of severe scoliosis without resection vertebral body techniques, with higher potential risk of major complications, including permanent neurological deficit. Conclusions: Halo-gravity traction, halo femoral traction, and all techniques for releases of the spine (anterior, posterior, or combine), as well as thoracoplasty, have demonstrated significant effectiveness in managing severe and rigid idiopathic scoliosis. The combination of several of these methods can lead to optimal alignment correction without the need to perform high-risk techniques involving three-column osteotomies. Surgeons must customize the indications based on factors such as available resources, characteristics of the deformity, and the patient's individual profile. Surgical correction of severe scoliosis without vertebral body resection surgeries decreases the potential risks related to neurological and pulmonary complications while providing significant clinical improvement outcomes. The powerful Ponte osteotomy is indicated for severe scoliosis, curves with poor flexibility, for better restoration of hypokyphosis, and decrease of hyperkyphosis. These corrective techniques combined with HGT or temporary internal distraction rods are recommended as viable options for managing individuals with severe rigid spine deformity characteristics. Therefore, they also should be considered and performed by a proficient surgical team. The presence of neuromonitoring is crucial throughout these procedures.

9.
Int J Pharm ; 663: 124577, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39137820

ABSTRACT

This study investigates the impact of intravenous (IV) infusion protocols on the stability of Intravenous Immunoglobulin G (IVIG) and Rituximab, with a particular focus on subvisible particle generation. Infusion set based on peristaltic movement (Medifusion DI-2000 pump) was compared to a gravity-based infusion system (Accu-Drip) at different flow rates. The impacts of different diluents (0.9 % saline and 5.0 % dextrose) and plastic syringes with or without silicone oil (SO) were also investigated. The results from the aforementioned particular case demonstrated that peristaltic pumps generated high levels of subvisible particles (prominently < 25 µm), exacerbated by increasing flow rates, specifically in formulations lacking surfactants. Other factors, such as diluent type and syringe composition, also increased the number of subvisible particles. Strategies that can help overcome these complications include surfactant addition as well as the use of SO-free syringes and a gravity infusion system, which aid in reducing particle formation and preserving antibody monomer during administration. Altogether, these findings highlight the importance of the careful selection of formulations and infusion protocols to minimize particle generation during IV infusion both for patients' safety and treatment efficacy.


Subject(s)
Drug Stability , Immunoglobulins, Intravenous , Rituximab , Syringes , Rituximab/administration & dosage , Rituximab/chemistry , Infusions, Intravenous , Immunoglobulins, Intravenous/administration & dosage , Immunoglobulins, Intravenous/chemistry , Infusion Pumps , Surface-Active Agents/chemistry , Silicone Oils/chemistry , Drug Packaging , Plastics/chemistry , Glucose/chemistry , Humans
10.
Entropy (Basel) ; 26(8)2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39202132

ABSTRACT

We consider a dynamic scenario for characterizing the late Universe evolution, aiming to mitigate the Hubble tension. Specifically, we consider a metric f(R) gravity in the Jordan frame which is implemented to the dynamics of a flat isotropic Universe. This cosmological model incorporates a matter creation process, due to the time variation of the cosmological gravitational field. We model particle creation by representing the isotropic Universe (specifically, a given fiducial volume) as an open thermodynamic system. The resulting dynamical model involves four unknowns: the Hubble parameter, the non-minimally coupled scalar field, its potential, and the energy density of the matter component. We impose suitable conditions to derive a closed system for these functions of the redshift. In this model, the vacuum energy density of the present Universe is determined by the scalar field potential, in line with the modified gravity scenario. Hence, we construct a viable model, determining the form of the f(R) theory a posteriori and appropriately constraining the phenomenological parameters of the matter creation process to eliminate tachyon modes. Finally, by analyzing the allowed parameter space, we demonstrate that the Planck evolution of the Hubble parameter can be reconciled with the late Universe dynamics, thus alleviating the Hubble tension.

11.
Entropy (Basel) ; 26(8)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39202183

ABSTRACT

We consider three different systems in a heat flow: an ideal gas, a van der Waals gas, and a binary mixture of ideal gases. We divide each system internally into two subsystems by a movable wall. We show that the direction of the motion of the wall, after release, under constant boundary conditions, is determined by the same inequality as in equilibrium thermodynamics dU-dQ≤0. The only difference between the equilibrium and non-equilibrium laws is the dependence of the net heat change, dQ, on the state parameters of the system. We show that the same inequality is valid when introducing the gravitational field in the case of both the ideal gas and the van der Waals gas in the heat flow. It remains true when we consider a thick wall permeable to gas particles and derive Archimedes' principle in the heat flow. Finally, we consider the Couette (shear) flow of the ideal gas. In this system, the direction of the motion of the internal wall follows from the inequality dE-dQ-dWs≤0, where dE is the infinitesimal change in total energy (internal plus kinetic) and dWs is the infinitesimal work exchanged with the environment due to the shear force imposed on the flowing gas. Ultimately, we synthesize all these cases within a general framework of the second law of non-equilibrium thermodynamics.

12.
Front Physiol ; 15: 1370079, 2024.
Article in English | MEDLINE | ID: mdl-39100275

ABSTRACT

There are several well-known medical conditions in which posture and gravity interact with natural history, including pregnancy. In this review, we provide a comprehensive overview of interactions between maternal posture and maternal physiology and pathophysiology at rest during pregnancy. We conducted a systematic literature search of the MEDLINE database and identified 644 studies from 1991 through 2021, inclusive, that met our inclusion criteria. We present a narrative review of the resulting literature and highlight discrepancies, research gaps, and potential clinical implications. We organize the results by organ system and, commencing with the neurological system, proceed in our synthesis generally in the craniocaudal direction, concluding with the skin. The circulatory system warranted our greatest and closest consideration-literature concerning the dynamic interplay between physiology (heart rate, stroke volume, cardiac output, blood pressure, and systemic vascular resistance), pathophysiology (e.g., hypertension in pregnancy), and postural changes provide an intricate and fascinating example of the importance of the subject of this review. Other organ systems discussed include respiratory, renal, genitourinary, gastrointestinal, abdominal, and endocrine. In addition to summarizing the existing literature on maternal posture-physiology interactions, we also point out gaps and opportunities for further research and clinical developments in this area. Overall, our review provides both insight into and relevance of maternal posture-physiology interactions vis à vis healthcare's mission to improve health and wellness during pregnancy and beyond.

13.
Adv Colloid Interface Sci ; 332: 103275, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39142063

ABSTRACT

The Hungarian baron Roland Eötvös (Eötvös Loránd, 1848-1919) lived in the difficult period between two revolutions in Hungary, but nevertheless he achieved revolutionary results in two fields of science: capillarity (1875-1886) and gravity (after 1886). This paper describes his famous capillary equation published in 1886 in the world-language of the time (German) and in one of the most famous scientific journals of the time (Annalen der Physik und Chemie). In his paper he showed a simple equation for the temperature dependence of surface tension of one-component liquids and more importantly he showed that this quantity approaches zero as temperature tends towards the critical temperature. This result was achieved by measuring the surface tension of 160 (!) different liquids along their boiling lines as function of temperature, in a home-made high-pressure high-temperature equipment, probably the first one of this kind. In this way he extended the meaning of the critical point previously introduced by van der Waals. In this paper, also a modern model of surface tension of one-component liquids is discussed, simplified and compared to the Eötvös equation. It is also shown, how the Avogadro number and the molecular sizes can be determined from the experimental results of Eötvös (note: the Avogadro number was estimated with reasonable accuracy for the first time by Einstein in 1905 from the kinetic theory of liquids). Apparently, it was not that easy to do back in 1886: this becomes obvious from the 1911-paper by Einstein, who gave a wrong estimate for the diameter of Hg atoms (5.19 nm) using the data of Eötvös (the correct value is around 0.3 nm). The Appendix to this paper contains the summary of 1543 handwritten pages on surface tension by Eötvös, including the on-line availability of all pdf files. Note also, that Eötvös used g = 10.0 m/s2 for acceleration due gravity and so he over-estimated his surface tension values and also his Eötvös constant by about 2.0%. The corrected Eötvös constant using his measured values but the correct g-value would be "0.222" vs his published value of "0.227". Probably this uncertainty in the value of g was one of the motives that pushed Eötvös to study gravity after 1886.

14.
Sci Total Environ ; 952: 175850, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39209175

ABSTRACT

Sewage surveillance is widely applied to track valid human excretion information and identify public health conditions during corona virus disease 2019 (COVID-19) pandemic. This approach can be applied to monitor the antibiotic resistance level in sewers and to assess the risk of spreading antibiotic resistance in municipal wastewater systems. However, there is still little information about human antibiotic resistance occurrence characteristics in sewer system. This study conducted a field trial for whole year to advance understanding on spatial and temporal occurrence of antibiotic resistance genes (ARGs) in gravity sewerage. The spatial distribution of ARGs along the drainage pipe line (from human settlements to wastewater treatement pant (WWTP)) was insignificant, which may be affected by irregular human emission alongside the pipeline. The correlation between ARGs and antibiotics in sewage was insignificant. The temporal distribution showed that the effect of temperature on ARGs abundance was evident, the ARGs abundance in sewage was generally higher during the cold season. Metagenomic analysis revealed that the detected ARGs were mainly distributed in Proteobacteria (47.51 %) and Antinobacteria (20.11 %). Potential hosts of ARGs in sewage were mainly identified as human gut microorganisms, including human pathogenic bacteria, such as Prevotella, Kocuria, and Propionibacterium, etc. This study provides a new insight into the sewerage surveillance tracking characteristics of human ARGs in sewer system, and suggesting that the sewage-carried ARGs surveillance is a promising method for assessment and management of antibiotic resistance level on population size.

15.
Water Res ; 266: 122332, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39216126

ABSTRACT

Substantial volumes of hazardous shale gas produced water (SGPW) generated in unconventional natural gas exploration. Membrane distillation (MD) is a promising approach for SGPW desalination, while membrane fouling, wetting, and permeate deterioration restrict MD application. The integration of gravity-driven membrane (GDM) with MD process was proposed to improve MD performance, and different pretreatment methods (i.e., oxidation, coagulation, and granular filtration) were systematically investigated. Results showed that pretreatment released GDM fouling and improved permeate quality by enrich certain microbes' community (e.g., Proteobacteria and Nitrosomonadaceae), greatly ensured the efficient desalination of MD. Pretreatment greatly influences GDM fouling layer morphology, leading to different flux performance. Thick/rough/hydrophilic fouling layer formed after coagulation, and thin/loose fouling layer formed after silica sand filtration improved GDM flux by 2.92 and 1.9 times, respectively. Moreover, the beneficial utilization of adsorption-biodegradation effects significantly enhanced GDM permeate quality. 100 % of ammonia and 53.99 % of UV254 were efficiently removed after zeolite filtration-GDM and granular activated carbon filtration-GDM, respectively. Compared to the surged conductivity (41.29 µS/cm) and severe flux decline (>82 %) under water recovery rate of 75 % observed in single MD for SGPW treatment, GDM economically controlled permeate conductivity (1.39-19.9 µS/cm) and MD fouling (flux decline=8.3 %-27.5 %). Exploring the mechanisms, the GDM-MD process has similarity with Janus MD membrane in SGPW treatment, significantly reduced MD fouling and wetting.

16.
Heliyon ; 10(11): e32161, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38947488

ABSTRACT

Additive manufacturing (AM) has gained significant attention in recent years owing to its ability to fabricate intricate shapes and structures that are often challenging or unattainable using conventional manufacturing techniques. This high-quality development trend entails higher requirements for the structural design of 3D printers. In this study, polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) filaments were fed through a heated extrusion nozzle, which melted the material and deposited it onto a build platform. This study's objectives are high-gravitational material extrusion (HG-MEX) systems development, analyzing the high gravity influences on the flow behavior of materials during extrusion, and understanding the effects of gravitational on material flow and overall extrusion performance. HG-MEX systems have great potential for addressing various challenges in additive manufacturing, such as precise manufacturing. The highlight of the progress is that we developed an HG-MEX system and applied surface science to material extrusion in different gravity. We established a system and obtained results on different gravity, we analyzed the analogy between different gravity phenomena. We analyzed the interplay between the behavior of the fabricated parts and gravity. We analyzed high gravity effects on extrusion processes. The results confirmed the characteristics and feasibility of the developed system. The results suggest that a material extrusion line operating under 15 G conditions resulted in better printing quality compared to one operating under 1 G conditions. This observation implies that high gravity had a positive effect on the extrusion process, leading to improved material extrusion performance.

17.
Physiol Rep ; 12(13): e16034, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38949844

ABSTRACT

This study compared the joint kinematics between the front squat (FS) conducted in the upright (natural gravity) position and in the supine position on a short arm human centrifuge (SAHC). Male participants (N = 12) with no prior experience exercising on a centrifuge completed a FS in the upright position before (PRE) and after (POST) a FS exercise conducted on the SAHC while exposed to artificial gravity (AG). Participants completed, in randomized order, three sets of six repetitions with a load equal to body weight or 1.25 × body weight for upright squats, and 1 g and 1.25 g at the center of gravity (COG) for AG. During the terrestrial squats, the load was applied with a barbell. Knee (left/right) and hip (left/right) flexion angles were recorded with a set of inertial measurement units. AG decreased the maximum flexion angle (MAX) of knees and hips as well as the range of motion (ROM), both at 1 and 1.25 g. Minor adaptation was observed between the first and the last repetition performed in AG. AG affects the ability to FS in naïve participants by reducing MAX, MIN and ROM of the knees and hip.


Subject(s)
Centrifugation , Exercise , Knee Joint , Range of Motion, Articular , Humans , Male , Range of Motion, Articular/physiology , Biomechanical Phenomena , Adult , Knee Joint/physiology , Exercise/physiology , Young Adult , Hip Joint/physiology , Posture/physiology , Gravity, Altered
18.
J Plant Res ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954119

ABSTRACT

We have performed a lab-based hypergravity cultivation experiment using a centrifuge equipped with a lighting system and examined long-term effects of hypergravity on the development of the main axis of the Arabidopsis (Arabidopsis thaliana (L.) Heynh.) primary inflorescence, which comprises the rachis and peduncle, collectively referred to as the main stem for simplicity. Plants grown under 1 × g (gravitational acceleration on Earth) conditions for 20-23 days and having the first visible flower bud were exposed to hypergravity at 8 × g for 10 days. We analyzed the effect of prolonged hypergravity conditions on growth, lignin deposition, and tissue anatomy of the main stem. As a result, the length of the main stem decreased and cross-sectional area, dry mass per unit length, cell number, and lignin content of the main stem significantly increased under hypergravity. Lignin content in the rosette leaves also increased when they were exposed to hypergravity during their development. Except for interfascicular fibers, cross-sectional areas of the tissues composing the internode significantly increased under hypergravity in most types of the tissues in the basal part than the apical part of the main stem, indicating that the effect of hypergravity is more pronounced in the basal part than the apical part. The number of cells in the fascicular cambium and xylem significantly increased under hypergravity both in the apical and basal internodes of the main stem, indicating a possibility that hypergravity stimulates procambium activity to produce xylem element more than phloem element. The main stem was suggested to be strengthened through changes in its morphological characteristics as well as lignin deposition under prolonged hypergravity conditions.

19.
Front Physiol ; 15: 1417719, 2024.
Article in English | MEDLINE | ID: mdl-38989048

ABSTRACT

Introduction: Space is a unique environment characterized by isolation from community life and exposure to circadian misalignment, microgravity, and space radiation. These multiple differences from those experienced on the earth may cause systemic and local tissue stress. Autonomic nerves, including sympathetic and parasympathetic nerves, regulate functions in multiple organs. Saliva is secreted from the salivary gland, which is regulated by autonomic nerves, and plays several important roles in the oral cavity and digestive processes. The balance of the autonomic nervous system in the seromucous glands, such as the submandibular glands, precisely controls serous and mucous saliva. Psychological stress, radiation damage, and other triggers can cause an imbalance in salivary secretion systems. A previous study reported that amylase is a stress marker in behavioral medicine and space flight crews; however, the detailed mechanisms underlying amylase regulation in the space environment are still unknown. Methods: In this study, we aimed to elucidate how lunar gravity (1/6 g) changes mRNA expression patterns in the salivary gland. Using a multiple artificial gravity research system during space flight in the International Space Station, we studied the effects of two different gravitational levels, lunar and Earth gravity, on the submandibular glands of mice. All mice survived, returned to Earth from space, and their submandibular glands were collected 2 days after landing. Results: We found that lunar gravity induced the expression of the salivary amylase gene Amy1; however, no increase in Aqp5 and Ano1, which regulate water secretion, was observed. In addition, genes involved in the exocrine system, such as vesicle-associated membrane protein 8 (Vamp8) and small G proteins, including Rap1 and Rab families, were upregulated under lunar gravity. Conclusion: These results imply that lunar gravity upregulates salivary amylase secretion via Rap/Rab signaling and exocytosis via Vamp8. Our study highlights Amy1 as a potential candidate marker for stress regulation in salivary glands in the lunar gravity environment.

20.
MethodsX ; 12: 102783, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38966713

ABSTRACT

In recent years, frequent and substantial area-wide power outages have underscored the critical need for cities to possess robust backup power sources capable of swift response to prevent prolonged power system disruptions. Electric vehicles can contribute electricity to the power grid using vehicle-to-grid technology. The power delivered by electric vehicles in this context is termed as response capability. However, existing studies have overlooked response capability dynamics during transitions between electric vehicle states-such as the shift from charging or discharging to an idle state, thereby hindering a comprehensive understanding of this aspect. Hence, this paper introduces a multi-timescale response capability prediction model that evaluates the electric vehicle's state of charge to ensure users' requirements are met for upcoming trips. To better assess users' travel demand, the gravity model is employed as a precursor to response capability prediction to further enhance the validity of the prediction outcomes. Three neighborhoods in Los Angeles have been chosen for analysis: Downtown, Lincoln Heights, and Silver Lake. Predictions indicate that neglecting the response capability when electric vehicles undergo state transformation can lead to a differential response capability ranging from 2000 kWh to 4000 kWh, resulting in a loss of prediction accuracy by 20 % to 25 %.•The response capability of EV is non-zero during state transformations•Users' travel demand assessment•Seamless integration of vehicle-to-grid technology into the power grid.

SELECTION OF CITATIONS
SEARCH DETAIL