Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Biomed Tech (Berl) ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38598849

ABSTRACT

OBJECTIVES: In the past, guided image filtering (GIF)-based methods often utilized total variation (TV)-based methods to reconstruct guidance images. And they failed to reconstruct the intricate details of complex clinical images accurately. To address these problems, we propose a new sparse-view CT reconstruction method based on group-based sparse representation using weighted guided image filtering. METHODS: In each iteration of the proposed algorithm, the result constrained by the group-based sparse representation (GSR) is used as the guidance image. Then, the weighted guided image filtering (WGIF) was used to transfer the important features from the guidance image to the reconstruction of the SART method. RESULTS: Three representative slices were tested under 64 projection views, and the proposed method yielded the best visual effect. For the shoulder case, the PSNR can achieve 48.82, which is far superior to other methods. CONCLUSIONS: The experimental results demonstrate that our method is more effective in preserving structures, suppressing noise, and reducing artifacts compared to other methods.

2.
Med Biol Eng Comput ; 62(7): 2101-2116, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38457068

ABSTRACT

In some fields of medical diagnosis or industrial nondestructive testing, it is difficult to obtain complete computed tomography (CT) data due to the limitation of radiation dose or other factors. Therefore, image reconstruction of incomplete projection data is the focus of this paper. In this paper, a new image reconstruction model based on self-guided image filtering (SGIF) term is proposed for few-view and segmental limited-angle (SLA) CT reconstruction. Then the alternating direction method (ADM) is used to solve this model. For simplicity, we call it ADM-SGIF method. The key idea of ADM-SGIF method is to use the reconstructed image itself as a reference and utilize its structural features to guide CT reconstruction. This method can effectively preserve image structures and remove shading artifacts. To validate the effectiveness of the proposed reconstruction method, we conduct digital phantom and real CT data experiments. The results indicate that ADM-SGIF method outperforms competing methods, including total variation (TV), relative total variation (RTV), and L0-norm minimization solved by ADM (ADM-L0) methods, in both subjective and objective evaluations.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Phantoms, Imaging , Tomography, X-Ray Computed , Tomography, X-Ray Computed/methods , Humans , Image Processing, Computer-Assisted/methods , Artifacts
3.
Front Oncol ; 12: 832037, 2022.
Article in English | MEDLINE | ID: mdl-35574417

ABSTRACT

Cone-beam Computerized Tomography (CBCT) has the advantages of high ray utilization and detection efficiency, short scan time, high spatial and isotropic resolution. However, the X-rays emitted by CBCT examination are harmful to the human body, so reducing the radiation dose without damaging the reconstruction quality is the key to the reconstruction of CBCT. In this paper, we propose a sparse angle CBCT reconstruction algorithm based on Guided Image FilteringGIF, which combines the classic Simultaneous Algebra Reconstruction Technique(SART) and the Total p-Variation (TpV) minimization. Due to the good edge-preserving ability of SART and noise suppression ability of TpV minimization, the proposed method can suppress noise and artifacts while preserving edge and texture information in reconstructed images. Experimental results based on simulated and real-measured CBCT datasets show the advantages of the proposed method.

4.
Med Biol Eng Comput ; 60(7): 2109-2118, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35596032

ABSTRACT

Radiation is harmful to the human body, which is coupled with the fact that scanning conditions pose a number of restrictions. As a result, the projection data of a scanned object are generally acquired within a limited-angle range in practical computed tomography (CT) applications. Under this circumstance, classical image reconstruction methods cannot obtain high-quality images, and limited-angle artifacts appear in the reconstructed image. In recent years, the l1 norm of a gradient image-based total variation minimization (TVL1) image reconstruction method has often been used to deal with the image reconstruction problem from undersampling projection data, but limited-angle artifacts have been encountered near the edges for limited-angle CT. The l0 norm of a gradient image-based total variation minimization (TVL0) image reconstruction method can better preserve the edges, but it cannot obtain acceptable results when the scanning angle range is further reduced. Inspired by the advantages of guided image filtering (GIF), which can better smooth an image and preserve its structure, we used it to improve the reconstructed image quality for limited-angle CT by transferring reconstructed results of the TVL1 method to those of the TVL0 method. Simulation experiments show that the proposed method can better preserve structures and suppress limited-angle artifacts and noise than several related reconstruction methods.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Artifacts , Humans , Image Processing, Computer-Assisted/methods , Phantoms, Imaging , Tomography, X-Ray Computed/methods
5.
Front Bioeng Biotechnol ; 10: 865820, 2022.
Article in English | MEDLINE | ID: mdl-35480971

ABSTRACT

In order to solve the problems of poor image quality, loss of detail information and excessive brightness enhancement during image enhancement in low light environment, we propose a low-light image enhancement algorithm based on improved multi-scale Retinex and Artificial Bee Colony (ABC) algorithm optimization in this paper. First of all, the algorithm makes two copies of the original image, afterwards, the irradiation component of the original image is obtained by used the structure extraction from texture via relative total variation for the first image, and combines it with the multi-scale Retinex algorithm to obtain the reflection component of the original image, which are simultaneously enhanced using histogram equalization, bilateral gamma function correction and bilateral filtering. In the next part, the second image is enhanced by histogram equalization and edge-preserving with Weighted Guided Image Filtering (WGIF). Finally, the weight-optimized image fusion is performed by ABC algorithm. The mean values of Information Entropy (IE), Average Gradient (AG) and Standard Deviation (SD) of the enhanced images are respectively 7.7878, 7.5560 and 67.0154, and the improvement compared to original image is respectively 2.4916, 5.8599 and 52.7553. The results of experiment show that the algorithm proposed in this paper improves the light loss problem in the image enhancement process, enhances the image sharpness, highlights the image details, restores the color of the image, and also reduces image noise with good edge preservation which enables a better visual perception of the image.

6.
Phys Med Biol ; 66(10)2021 05 14.
Article in English | MEDLINE | ID: mdl-33878737

ABSTRACT

Propagation-based x-ray phase-contrast computed tomography (PB-PCCT) images often suffer from severe ring artifacts. Ring artifacts are mainly caused by the nonuniform response of detector elements, and they can degrade image quality and affect the subsequent image processing and quantitative analyses. To remove ring artifacts in PB-PCCT images, a novel method combined sparse-domain regularized stripe decomposition (SDRSD) method with guided image filtering (GIF) was proposed. In this method, polar coordinate transformation was utilized to convert the ring artifacts to stripe artifacts. And then considering the directional and sparse properties of the stripe artifacts and the continuity characteristics of the sample, the SDRSD method was designed to remove stripe artifacts. However, for the SDRSD method, the presence of noise may destroy the edges of the stripe artifacts and lead to incomplete decomposition. Hence, a simple and efficient smoothing technique, namely GIF, was employed to overcome this issue. The simulations and real experiments demonstrated that the proposed method could effectively remove ring artifacts as well as preserve the structures and edges of the samples. In conclusion, the proposed method can serve as an effective tool to remove ring artifacts in PB-PCCT images, and it has high potential for promoting the biomedical and preclinical applications of PB-PCCT.


Subject(s)
Algorithms , Artifacts , Image Processing, Computer-Assisted , Phantoms, Imaging , Tomography, X-Ray Computed , X-Rays
7.
Med Biol Eng Comput ; 58(11): 2621-2629, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32839918

ABSTRACT

In practical computed tomography (CT) applications, projections with low signal-to-noise ratio (SNR) are often encountered due to the reduction of radiation dose or device limitations. In these situations, classical reconstruction algorithms, like simultaneous algebraic reconstruction technique (SART), cannot reconstruct high-quality CT images. Block-matching and 3D filtering (BM3D)-based iterative reconstruction algorithm (POCS-BM3D) has remarkable effect in dealing with CT reconstruction from noisy projections. However, BM3D may restrain noise with excessive loss of details in the case of low-SNR CT reconstruction. In order to achieve a preferable trade-off between noise suppression and edge preservation, we introduce guided image filtering (GIF) into low-SNR CT reconstruction, and propose noise suppression-guided image filtering reconstruction (NSGIFR) algorithm. In each iteration of NSGIFR, the output image of SART reserves more details and is used as input image of GIF, while the image denoised by BM3D serves as guidance image of GIF. Experimental results indicate that the proposed algorithm displays outstanding performance on preserving structures and suppressing noise for low-SNR CT reconstruction. NSGIFR can achieve more superior image quality than SART, POCS-TV and POCS-BM3D in terms of visual effect and quantitative analysis. Graphical abstract Block-matching and 3D filtering (BM3D)-based iterative reconstruction algorithm (POCS-BM3D) has remarkable effect in dealing with CT reconstruction from noisy projections. However, BM3D may restrain noise with excessive loss of details in the case of low-SNR CT reconstruction. In order to achieve a preferable trade-off between noise suppression and edge preservation, we introduce guided image filtering (GIF) into low-SNR CT reconstruction, and propose noise suppression-guided image filtering reconstruction (NSGIFR) algorithm.


Subject(s)
Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Tomography, X-Ray Computed/methods , Algorithms , Head/diagnostic imaging , Humans , Juglans , Phantoms, Imaging , Photons , Signal-To-Noise Ratio
8.
Sensors (Basel) ; 19(10)2019 May 19.
Article in English | MEDLINE | ID: mdl-31109155

ABSTRACT

The laser detection and ranging system (LADAR) is widely used in various fields that require 3D measurement, detection, and modeling. In order to improve the system stability and ranging accuracy, it is necessary to obtain the complete waveform of pulses that contain target information. Due to the inevitable noise, there are distinct deviations between the actual and expected waveforms, so noise suppression is essential. To achieve the best effect, the filters' parameters that are usually set as empirical values should be adaptively adjusted according to the different noise levels. Therefore, we propose a novel noise suppression method for the LADAR system via eigenvalue-based adaptive filtering. Firstly, an efficient noise level estimation method is developed. The distributions of the eigenvalues of the sample covariance matrix are analyzed statistically after one-dimensional echo data are transformed into matrix format. Based on the boundedness and asymptotic properties of the noise eigenvalue spectrum, an estimation method for noise variances in high dimensional settings is proposed. Secondly, based on the estimated noise level, an adaptive guided filtering algorithm is designed within the gradient domain. The optimized parameters of the guided filtering are set according to an estimated noise level. Through simulation analysis and testing experiments on echo waves, it is proven that our algorithm can suppress the noise reliably and has advantages over the existing relevant methods.

9.
J Biomed Opt ; 23(9): 1-22, 2018 06.
Article in English | MEDLINE | ID: mdl-29943527

ABSTRACT

Several algorithms exist to solve the photoacoustic image reconstruction problem depending on the expected reconstructed image features. These reconstruction algorithms promote typically one feature, such as being smooth or sharp, in the output image. Combining these features using a guided filtering approach was attempted in this work, which requires an input and guiding image. This approach act as a postprocessing step to improve commonly used Tikhonov or total variational regularization method. The result obtained from linear backprojection was used as a guiding image to improve these results. Using both numerical and experimental phantom cases, it was shown that the proposed guided filtering approach was able to improve (as high as 11.23 dB) the signal-to-noise ratio of the reconstructed images with the added advantage being computationally efficient. This approach was compared with state-of-the-art basis pursuit deconvolution as well as standard denoising methods and shown to outperform them.


Subject(s)
Image Processing, Computer-Assisted/methods , Photoacoustic Techniques/methods , Tomography/methods , Algorithms , Animals , Brain/diagnostic imaging , Female , Phantoms, Imaging , Rats , Signal Processing, Computer-Assisted , Signal-To-Noise Ratio
10.
J Med Imaging (Bellingham) ; 5(2): 024001, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29662918

ABSTRACT

Deformable image registration, a key component of motion correction in medical imaging, needs to be efficient and provides plausible spatial transformations that reliably approximate biological aspects of complex human organ motion. Standard approaches, such as Demons registration, mostly use Gaussian regularization for organ motion, which, though computationally efficient, rule out their application to intrinsically more complex organ motions, such as sliding interfaces. We propose regularization of motion based on supervoxels, which provides an integrated discontinuity preserving prior for motions, such as sliding. More precisely, we replace Gaussian smoothing by fast, structure-preserving, guided filtering to provide efficient, locally adaptive regularization of the estimated displacement field. We illustrate the approach by applying it to estimate sliding motions at lung and liver interfaces on challenging four-dimensional computed tomography (CT) and dynamic contrast-enhanced magnetic resonance imaging datasets. The results show that guided filter-based regularization improves the accuracy of lung and liver motion correction as compared to Gaussian smoothing. Furthermore, our framework achieves state-of-the-art results on a publicly available CT liver dataset.

11.
J Xray Sci Technol ; 26(1): 51-70, 2018.
Article in English | MEDLINE | ID: mdl-28854528

ABSTRACT

In practice, mis-calibrated detector pixels give rise to wide and faint ring artifacts in the reconstruction image of the In-line phase-contrast computed tomography (IL-PC-CT). Ring artifacts correction is essential in IL-PC-CT. In this study, a novel method of wide and faint ring artifacts correction was presented based on combining TV-L1 model with guided image filtering (GIF) in the reconstruction image domain. The new correction method includes two main steps namely, the GIF step and the TV-L1 step. To validate the performance of this method, simulation data and real experimental synchrotron data are provided. The results demonstrate that TV-L1 model with GIF step can effectively correct the wide and faint ring artifacts for IL-PC-CT.


Subject(s)
Image Processing, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Algorithms , Artifacts , Computer Simulation , Humans , Liver/diagnostic imaging , Liver Cirrhosis/diagnostic imaging , Phantoms, Imaging
12.
J Electron Imaging ; 26(6)2017 Oct 04.
Article in English | MEDLINE | ID: mdl-29225433

ABSTRACT

In this work we propose to combine a supervoxel-based image representation with the concept of graph cuts as an efficient optimization technique for 3D deformable image registration. Due to the pixels/voxels-wise graph construction, the use of graph cuts in this context has been mainly limited to 2D applications. However, our work overcomes some of the previous limitations by posing the problem on a graph created by adjacent supervoxels, where the number of nodes in the graph is reduced from the number of voxels to the number of supervoxels. We demonstrate how a supervoxel image representation, combined with graph cuts-based optimization can be applied to 3D data. We further show that the application of a relaxed graph representation of the image, followed by guided image filtering over the estimated deformation field, allows us to model 'sliding motion'. Applying this method to lung image registration, results in highly accurate image registration and anatomically plausible estimations of the deformations. Evaluation of our method on a publicly available Computed Tomography lung image dataset (www.dir-lab.com) leads to the observation that our new approach compares very favorably with state-of-the-art in continuous and discrete image registration methods achieving Target Registration Error of 1.16mm on average per landmark.

SELECTION OF CITATIONS
SEARCH DETAIL